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Abstract

Data-to-text Natural Language Generation (NLG) is the computational process of generating
natural language in the form of text or voice from non-linguistic data. A core micro-planning
task within NLG is referring expression generation (REG), which aims to automatically generate
noun phrases to refer to entities mentioned as discourse unfolds. A limitation of novel REG
models is not being able to generate referring expressions to entities not encountered during the
training process. To solve this problem, we propose two extensions to NeuralREG, a state-of-
the-art encoder-decoder REG model. The first is a copy mechanism, whereas the second consists
of representing the gender and type of the referent as inputs to the model. Drawing on the results
of automatic and human evaluation as well as an ablation study using the WebNLG corpus, we
contend that our proposal contributes to the generation of more meaningful referring expressions
to unseen entities than the original system and related work. Code and all produced data are
publicly available12.

1 Introduction

Data-to-text Natural Language Generation (NLG) is the computational process of generating natural lan-
guage in the form of text or voice from non-linguistic data. A traditional micro-planning task within the
pipeline data-to-text architecture is referring expression generation (REG) (Krahmer and van Deemter,
2019), which aims to automatically generate appropriate noun phrases (e.g., The mathematician Ada
Lovelace) to refer to entities (e.g., Ada Lovelace) mentioned as discourse unfolds (e.g., “ was the
first to recognise that the machine had applications beyond pure calculation.”).

Traditionally, REG systems produce references to discourse entities in two explicit steps. First, they
decide on the referential form, i.e., choosing whether a referring expression should be a pronoun (She),
a proper name (Ada Lovelace), a description (The mathematician), etc. Once the choice is made, such
systems textually realize the referring expression based on the chosen referential form and discourse
context. If the first step selects a proper name as the form to refer to Ada Lovelace for instance,
the ensuing step is responsible for deciding, among Ada, Ada Lovelace, or another text realization of
a proper name, i.e., the one that is the most appropriate referring expression to that entity in a given
discourse context.

With the advent of large amounts of data, REG systems have undergone a significant change in their
architecture. From being rule-based modular, they have become data-driven end-to-end systems that
aim to perform the choice of referential form and surface realization jointly. An example of these more
integrated approaches is NeuralREG (Castro Ferreira et al., 2018a), an end-to-end neural REG model
that produces referring expressions deciding on form and content jointly based on representations of the
referent and its surrounding context.

1https://github.com/rossanacunha/NeuralREG
2https://github.com/ThiagoCF05/NeuralREG/tree/improvements

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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Although NeuralREG is able to generate adequate referring expressions to discourse entities already
seen during the training phase, the model does not generalize to unseen ones, i.e., it can not generate
referring expressions to entities which were not seen during its training. This study aims to fill this
gap by proposing two extensions to the model’s original architecture. The first is a copy mechanism,
which may decide at each decoding timestep whether the next token of the referring expression should
be generated from the output vocabulary or copied from the input representation of the target entity. We
thereby hypothesize that the model will be able to generate a token from the vocabulary for seen entities
and to copy tokens from the input representation in the case of unseen ones. The second extension
consists of representing the gender and type of the entity as input to the model. Such information can be
easily extracted from the Semantic Web and may help the model to generate pronominal (e.g., She) and
descriptive (e.g., The country) referring expressions to unseen entities.

To evaluate our approach, we conducted experiments relying on a delexicalized version (Castro Fer-
reira et al., 2018b) of the WebNLG corpus (Gardent et al., 2017b). We first compare our proposal with
the original NeuralREG and other related approaches as ProfileREG (Cao and Cheung, 2019). Second,
to assess the quality of the texts generated by our model, we conducted a supplementary evaluation with
human judges. Next, we follow the rationale of ablation studies to analyze the importance of each feature
in our model within the process of referring expression generation. Finally, we discuss some advantages
of the introduced features and how they interact to improve accuracy, variety, and generalization.

2 Related work

Given an entity to be referred to in a particular context, traditional REG methods have addressed this
task in two steps. The first one concerns the choice of referential form, i.e., deciding whether the target
reference is more likely to be a proper name (Belo Horizonte), a description (The city), a pronoun (It),
or another referential form. Regarding this step, Reiter and Dale (2000) suggested to always choose a
full proper name as the first reference to a particular entity in a given context, whereas pronouns may be
used for its subsequent references if there is no other entity with the same person, gender and number
in-between the target reference and its antecedents. More recently, Castro Ferreira et al. (2016) proposed
a naive Bayes method, which is able to non-deterministically choose a referential form to a particular
reference. The model’s choice is conditioned upon discourse features which studies in psycholinguistics
have shown to impact this choice, such as grammatical position, givenness and recency of the target
reference.

Once the referential form is chosen, the second step of traditional REG models focuses on the surface
realization of the reference. Most part of the literature on this step focuses on the generation of descrip-
tions (Dale and Reiter, 1995) although some studies have approached the generation of proper names
(Siddharthan et al., 2011; van Deemter, 2016; Castro Ferreira et al., 2017).

In contrast to previous proposals that have focused on selecting referential form or referential content,
Castro Ferreira et al. (2018a) proposed an end-to-end approach: NeuralREG, a referring expression
generator able to perform the choice of referential form and the surface realization in an end-to-end style
using a neural encoder-decoder architecture. Given an entity to be referred to in a particular textual
context, the approach first encodes the entity identifier and the text prior (pre-context) and subsequent to
the reference (post-context) to later decode this representation into an appropriate referring expression
using attention (Bahdanau et al., 2015).

Although NeuralREG (Castro Ferreira et al., 2018a) can generate suitable referring expressions to
entities seen during training, it presents certain problems when referring to unseen ones. To overcome
this limitation, Cao and Cheung (2019) presented a profile based model. Their solution uses information
from both profile3 (i.e., information retrieved from the entity’s Wikipedia page) and context (pre- and
post-contexts jointly) to generate suitable references to unseen entities. The authors conclude that their
approach is more successful to determine the most suitable referring expression to a particular entity.

In contrast to Cao and Cheung (2019) solution, in order to address the limitations of dealing with
unseen relations and entities, our proposal uses a combination of a copy mechanism together with rep-

3https://en.wikipedia.org/wiki/Ada_Lovelace
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Triples
Subject Predicate Object
Adenan Satem birthPlace Japanese occupation of British Borneo
Abdul Taib Mahmud successor Adenan Satem
Abdul Taib Mahmud residence Sarawak
Abdul Taib Mahmud party “Barisan Raayat Jati Sarawak”

Corresponding Text
Adenan Satem was born in
Japanese Occupied British Bor-
neo. His successor was Abdul Taib
Mahmud, who, resides in Sarawak
and is a member of the “Barisan
Raáyat Jati Sarawak” party.

Tag Entity/Constant Referring Expression
BRIDGE-1 Adenan Satem Adenan Satem
PATIENT-1 Japanese occupation of British Borneo Japanese Occupied British Borneo
BRIDGE-1 Adenan Satem His
AGENT-1 Abdul Taib Mahmud Abdul Taib Mahmud
PATIENT-2 Sarawak Sarawak
PATIENT-3 “Barisan Raayat Jati Sarawak” Barisan Ra’ayat Jati Sarawak

Template
BRIDGE-1 was born in
PATIENT-1. BRIDGE-1
successor was AGENT-
1, who, resides in
PATIENT-2 and is a
member of the PATIENT-
3 party.

Table 1: A set of RDF triples and their corresponding text. Followed by entities mapping and a delexi-
calized template.

resentations of gender and type of referent as input to the model. We expect both extensions to make
the model able to produce suitable referring expressions in particular to unseen entities. We describe our
model in more detail in the next sections, based on the data used to investigate and evaluate our approach.

3 Data

We evaluated our proposal based on an enriched version (Castro Ferreira et al., 2018b) of
the WebNLG corpus (Gardent et al., 2017a). The original resource is a parallel corpus with
sets of RDF (Resource Description Framework) triples and their corresponding verbalizations.
Each RDF triple set consists of subject-predicate-object (e.g., Adenan Satem | birthPlace |
Japanese occupation of British Borneo), which is illustrated in Table 1 and can be ver-
balized in different forms. Each subject and object is a Uniform Resource Identifier (URI), which can be
represented by a Wikipedia ID (e.g., Adenan Satem, Abdul Taib Mahmud) or a literal value like
a date, number, or constant (e.g., “Barisan Raayat Jati Sarawak”), followed by a predicate
(e.g., birthPlace) which is a relation between these entities (Gardent et al., 2017a; Gardent et al.,
2017b).

The WebNLG dataset is an NLG benchmark that differs from other datasets (Novikova et al., 2017;
Mille et al., 2018) due to its data diversity in terms of attributes, patterns, and shapes (i.e., RDF tree
shapes from DBPedia). The corpus contains 25,298 English texts verbalizing sets of 1 to 7 RDF triples
in 15 different domains. The dataset has five domains exclusive to the test set, providing adequate means
to evaluate our model’s performance regarding the generation of referring expressions to unseen entities.

We used an enriched version of the WebNLG corpus obtained by a delexicalization process (i.e.,
mapping each entity to a generic tag and later replacing their corresponding referring expressions in
discourse with these tags) which was created by Castro Ferreira et al. (2018b). Table 1 shows an example
of a set of 4 triples and corresponding text, together with the intermediate representations obtained in the
delexicalization process, such as general tags, Wikipedia IDs (entity/constant), referring expressions and
the delexicalized template.

To train and evaluate our approach, we have a pre-processing stage where we extract a collection
of referring expression entries from the enriched version of WebNLG (Castro Ferreira et al., 2018b).
This stage is performed once, where we map the WebNLG corpus information as the basis to obtain
external information without adding new features nor changing the WebNLG structure. We avoid a
possible impact on the evaluation results since all entities are available on DBPedia. Each entry consists
of a Wikipedia ID, i.e., a target entity (Adenan Satem), a truecased tokenized referring expression
(Adenan Satem or His), and lowercased tokenized pre- (Adenan Satem was born in) and
post-contexts (Adenan Satem successor was Abdul Taib Mahmud, who, resides
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in Sarawak and is a member of the barisan raayat jati sarawak party.),
indicating the surrounding context of the target reference.

4 Model

Our approach was based on NeuralREG (Castro Ferreira et al., 2018a) and aims to generate a referring
expression y = {y1, y2, ..., yN} with N tokens to refer to a target entity, given the textual context prior
to the reference X(pre) = {x(pre)1 , x

(pre)
2 , ..., x(pre)M } with M tokens (e.g., pre-context) and subsequent

to the reference X(post) = {x(post)1 , x
(post)
2 , ..., x(post)L } with L tokens (e.g., post-context). Unlike Cas-

tro Ferreira et al. (2018a), where the target entity is represented by a single token, our approach describes
the referent by an identifier X(wiki) = {x(wiki)

1 , x
(wiki)
2 , ..., x(wiki)

T } with T tokens and its entity type E
and gender G. To generate the referring expression given the description of the target entity and its sur-
rounding context, we implemented an encoder-attention-decoder architecture with a copy mechanism,
sharing the same input word-embedding matrix V , as explained in the following sections.

4.1 Encoder
In order to generate feature representations for the inputs, the model starts by encoding the identi-
fier of the target entity as well as the pre- and post-contexts, using three different bidirectional Long-
Short Term Memory layers (LSTM) (Hochreiter and Schmidhuber, 1997). The identifier of the target
entity X(wiki) = {x(wiki)

1 , x
(wiki)
2 , ..., x(wiki)

T } is represented by the forward and backward hidden-
state vectors (

−→
h

(wiki)
1 , · · · ,

−→
h

(wiki)
m ) and (

←−
h

(wiki)
1 , · · · ,

←−
h

(wiki)
m ). To form its final feature repre-

sentation, forward and backward hidden-state representations at each timestep t are concatenated as
h
(wiki)
t = [

−→
h

(wiki)
t ,

←−
h

(wiki)
t ]. Using the two remaining bidirectional LSTMs, the same process is re-

peated for the textual context surrounding the reference, resulting in the final pre- and post-context repre-
sentations ([

−→
h

(pre)
1 ,

←−
h

(pre)
1 ], · · · , [

−→
h

(pre)
m ,

←−
h

(pre)
m ]) and ([

−→
h

(post)
1 ,

←−
h

(post)
1 ], · · · , [

−→
h

(post)
m ,

←−
h

(post)
m ]), re-

spectively. Finally, the type and gender of the target entity is encoded into their respective vector repre-
sentations, Vtype and Vgender, by looking up their entry in the sharing word-embedding matrix V .

4.2 Decoder
Once the information about the target entity and its surrounding contexts are encoded, their vector rep-
resentations are fed into an LSTM decoder, augmented with attention and copy mechanisms, in order
to produce an adequate referring expression to the target entity according to the context. The process is
explained in detail in the following sections.

Attention Mechanism The decoder process starts by the attention mechanism (Bahdanau et al., 2015),
which aims to compute a vector ct at each timestep t. The mechanism first computes the energies
e
(wiki)
tj , e(pre)tj and e(post)tj based on the encoder states h(wiki)

t , h(pre)t and h(post)t , together with the decoder
state st−1. The softmax function is then applied over these energies, resulting in the final attention
probabilities α(wiki)

t , α(pre)
t and α(post)

t . Equations 1 and 2 show the computation of the energies and
final attention probabilities, where k ∈ {wiki, pre, post} and the matrices W (k)

a and U (k)
a as well as the

attention vectors v(k)a are training parameters.

e
(k)
tj = v(k)Ta tanh(W (k)

a st−1 + U (k)
a h

(k)
j ) (1)

α
(k)
tj =

exp(e
(k)
tj )∑N

n=1 exp(e
(k)
tn )

(2)

At each decoding step t, a final context vector c(k)t is computed based on the sum of the encoder states
h
(k)
t weighed by the attention probabilities α(k)

tj , as the following equation expresses:

c
(k)
t =

N∑
j=1

α
(k)
tj h

(k)
j (3)
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Finally, in order to obtain the final context vector ct, we follow the concatenative approach of
NeuralREG, where the attention vectors c(wiki)

t , c(pre)t and c
(post)
t are simply concatenated, such as

ct = [c
(wiki)
t , c

(pre)
t , c

(post)
t ].

Decoding After attending the representations of the target entity and its surrounding contexts, the re-
sulting attention vector ct is concatenated with the previous decoding state st−1, the word-embedding
of the previous generated token Vy−1 and the vector representations of the type and gender of the target
entity, Vtype and Vgender. This concatenation is then fed into the decoding layer, which produces its next
state st. Finally, a softmax layer is applied over the decoding state st to generate a probability distribution
over the output vocabulary. Equations 4, 5 and 6 summarize this process:

st = Φdec(st−1, [ct, Vyt−1 , Vtype, Vgender]) (4)

zt = Wbst + b (5)

Pvocab(w) =
exp(zti)∑J
j=1 exp(ztj)

(6)

Copy Mechanism To make the approach able to generate referring expressions to unseen entities, we
also implemented a copy mechanism during the decoding process, similar to the one presented by See et
al. (2017). This mechanism first computes a probability pgen based on the attention vector of the target
entity c(wiki)

t , the decoding state st−1 and the word-embedding of the previously generated token Vyt−1 ,
as the following equation expresses:

pgen = sigmoid(Wcc
(wiki)
t +Wdst−1 +WeVyt−1 + b) (7)

pgen is used to decide between (1) choosing the token with the highest probability in the softmax
probability distributionPvocab(w) in Equation 6 or (2) copying the token from the description of the entity
X(wiki) with the highest probability according to the attention weights α(wiki)

t . The final probability
distribution to choose the next token at each timestep t is given by the following Equation:

P (w) = pgenPvocab(w) + (1 − pgen)
∑

i:wi=w

α
(wiki)
ti (8)

In this context, we expect the model to learn that pgen should have a higher value when the target
entity was seen during training, and a lower one when a referring expression should be generated for an
unseen entity.

Loss During training time, the approach has its training parameters updated in order to minimize the
following loss function:

J(θ) = −
∑
t

P (yt)) (9)

5 Automatic Evaluation

5.1 Data
We used the delexicalized version of the WebNLG corpus described in Section 3. In particular, we used
version 1.5 of the corpus, which is publicly available4. This version of the corpus contains 67,027, 8,278
and 19,210 referring expression instances in training, development and test sets, respectively. Training
and development domains have instances of 10 semantic domains, whereas the test set has instances of
those 10 domains, plus 5 unseen ones in the former sets.

Each instance of the sets is formed by the target entity, a referring expression, and pre- and post-
contexts. Pre- and post-contexts are represented in their lowercased and tokenized forms, whereas the
referring expression in its truecased and tokenized one. Moreover, references to different discourse
entities are represented by their Wikipedia IDs. In contrast, numbers, dates, and other constants are

4https://github.com/ThiagoCF05/webnlg
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represented by one-word ID replacing white spaces with underscores and eliminating double-quotes
(Castro Ferreira et al., 2018a; Castro Ferreira et al., 2018b). To represent the target entity X(wiki) as de-
scribed in Section 4, we lowercase the Wikipedia ID of the target entity, remove all special characters and
split it in a list based on underscores (e.g., Abdul Taib Mahmud→ [abdul, taib, mahmud]).
Accordingly, all target entities’ gender (female, male, neutral) and type (person, organization, etc.), used
by our approach, were automatically retrieved from DBpedia5.

5.2 Model Settings

Regarding the model parameters, we followed most of the settings from NeuralREG’s set-up of Castro
Ferreira et al. (2019). We trained the model with 60 epochs with a dropout of 0.2. Furthermore, we
set the early stopping of the neural networks to 10 and the beam size to 1. We applied a maximum
output limit generation of 30. Moreover, we set the batch, state, and attention sizes to 80, 256, and 256,
respectively. Additionally, we set pre-context, post-context, and entity word embeddings to be 128D
each.

5.3 Baselines

We compared our proposal (NeuralREG+Copy) against three baselines: the concatenative attention ver-
sion of the original model NeuralREG, OnlyNames (Castro Ferreira et al., 2016), and ProfileREG (Cao
and Cheung, 2019).

OnlyNames correlates an entity that will be referred to by its Wikipedia ID. This baseline exclusively
works with proper names by replacing entities underscores with white spaces (e.g., Ada Lovelace to
“Ada Lovelace”). Instead of working exclusively with proper names, our approach implements other
referential forms, such as pronouns and descriptions, consequently yielding a more natural discourse
flow in the texts produced.

NeuralREG+Catt is as an end-to-end deep neural network model that uses both form and content to
generate texts. The model works with a delexicalized version of the WebNLG corpus by first encoding
pre- and post-contexts as a reference. In contrast to our proposal, NeuralREG+Catt does not imple-
ment a copy mechanism and does not consider any external knowledge when selecting the best referring
expression.

ProfileREG encodes information from a local context and an external profile to generate references to
a given entity. This model is able to determine the best reference to an entity by selecting from existing
vocabulary, pronouns, or entity profile. Contrary to ProfileREG, our model uses selected entity features
and different architectures in order to evaluate the best scenario for generating referring expressions.

5.4 Metrics

We calculated Accuracy and String Edit Distance (Levenshtein, 1966) in order to measure the quality of
the generated referring expressions in comparison with the gold-standard ones. To evaluate the models’
performance in realizing pronouns, we also computed the accuracy, precision, recall, and F1-score, based
on a concise difference between the gold-standard referring expressions to the ones produced by the
model. Finally, we compared the original texts against the references lexicalized through the models by
computing text accuracy and BLEU score (Papineni et al., 2002).

5.5 Results

Table 2 presents the results of our model in comparison with the baselines for all entities as well as
for seen and unseen ones. In terms of referring expression accuracy, string edit distance, text accuracy,
and BLEU score, our proposed approach outperforms the three baselines considering all entities and
seen ones only. Regarding unseen entities, our model presents higher results for the same metrics in
comparison with all models, except for OnlyNames one. Regarding pronouns, ProfileREG introduces

5http://dbpedia.org/page/Ada_Lovelace
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Entities Model RE Acc. SED BLEU Txt Acc. Precision Recall F1-score

All OnlyNames 0.51 4.21 65.48 0.14 - - -
NeuralREG 0.38 9.86 48.10 0.11 0.72 0.63 0.67
NeuralREG+Copy 0.59 3.53 66.14 0.16 0.79 0.53 0.63
ProfileREG 0.42 7.05 54.08 0.09 0.82 0.86 0.84

Seen OnlyNames 0.53 4.32 66.39 0.16 - - -
NeuralREG 0.70 3.07 70.21 0.20 0.78 0.76 0.77
NeuralREG+Copy 0.73 2.50 71.74 0.24 0.79 0.71 0.75
ProfileREG 0.69 3.11 69.11 0.17 0.79 0.90 0.84

Unseen OnlyNames 0.50 4.10 63.97 0.11 - - -
NeuralREG 0.07 16.71 25.42 0.00 0.67 0.55 0.61
NeuralREG+Copy 0.46 4.57 59.15 0.08 0.79 0.42 0.54
ProfileREG 0.14 11.03 36.45 0.00 0.84 0.83 0.84

Table 2: (a) Referring Expressions’ Accuracy and String-edit distance (SED), (b) BLEU and Text Accu-
racy scores of the models, (c) Pronoun - Precision, Recall, and F1-Score of the models in the automatic
evaluation. Best results are boldfaced, whereas the second best are underlined.

Original: Adenan Satem was born in Japanese Occupied British Borneo. His successor was Abdul Taib Mahmud,
who, resides in Sarawak and is a member of the “Barisan Raáyat Jati Sarawak” party.
OnlyNames: Adenan Satem was born in Japanese Occupied British Borneo. Adenan Satem successor was Abdul Taib
Mahmud, who, resides in Sarawak and is a member of the “Barisan Raáyat Jati Sarawak” party.
NeuralREG: The Boeing light combat was born in Abilene, in Texas. They successor was the hal of the astronaut, who,
resides in the state of Grenada and is a member of the “Barisan Raáyat Jati Sarawak” party.
NeuralREG+Copy: Adenan Satem was born in the Japanese Occupied British Borneo. His successor was Abdul Taib
Mahmud, who, resides in Sarawak and is a member of “Barisan Raáyat Jati Sarawak” party.
ProfileREG: 258.2 Satem was born in the Japanese. Its successor was the Taib the Moro, who, resides in the Sarawak
and is a member of the “Barisan Raáyat Jati Sarawak” party.

Table 3: Sample outputs of an unseen domain (Politician) - original and generated text of each model.
Referring expressions are boldfaced, and constants are double-quoted and italicized.

the best results, while the OnlyNames model is not considered, since this model is not able to generate
this form of reference.

Table 3 shows an example of a text lexicalized with referring expressions generated by our proposal
and the three baselines. The text was extracted from the test set of the data in the Politician domain,
not present in the training and development sets. By comparing our approach (NeuralREG+Copy)
to the baseline OnlyNames, we can see that our model is able to generate more variation in referring
mechanisms since it makes use of a pronoun as a referential form, while OnlyNames uses repetition of
proper names. The outputs for the Adenan Satem for NeuralREG and ProfileREG models show gen-
eration problems, namely entities completely unrelated to the references (e.g., The Boeing light
combat and 258.2 Satem, respectively).

6 Human Evaluation

To assess the quality of the texts generated by our proposal and the three baselines, we conducted a
supplementary evaluation with human judges.

Method Two applied linguists were recruited to rate the texts. They are proficient in English and have
over 20 years’ expertise as translators and language advisers.

We selected 75 instances of the delexicalized version of the WebNLG corpus, considering a unique
occurrence for each combination between the number of triples (ranging from 1 to 7) and domain (10
seen and 5 unseen ones). After selecting the set of triples, we collected the corresponding produced
versions of each investigated model introduced in this study (our proposal and three baselines). Finally,
we randomly ordered the final trial set of (4 × 75 =) 300 sentences to decrease the bias of having the 4
generated texts together during the evaluation.

The performed evaluation followed the best practices suggested by Van der Lee et al. (2019) and the
guidelines in Novikova et al. (2018) regarding human evaluations of NLG systems. For instance, we
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Metric Model All Seen Unseen

Fluency OnlyNames 4.03 ±0.16 4.05 ±0.18 3.95 ±0.36
NeuralREG 3.31 ±0.30 3.91 ±0.21 1.53 ±0.40
NeuralREG+Copy 4.00 ±0.16 4.05 ±0.17 3.84 ±0.39
ProfileREG 3.53 ±0.26 3.87 ±0.21 2.53 ±0.64

Grammaticality OnlyNames 3.99 ±0.14 4.05 ±0.16 3.79 ±0.28
NeuralREG 3.36 ±0.29 3.92 ±0.22 1.71 ±0.34
NeuralREG+Copy 4.02 ±0.16 4.05 ±0.18 3.92 ±0.32
ProfileREG 3.51 ±0.24 3.83 ±0.20 2.55 ±0.59

Semantic Adequacy OnlyNames 4.85 ±0.10 4.88 ±0.08 4.76 ±0.34
NeuralREG 3.70 ±0.37 4.50 ±0.24 1.34 ±0.25
NeuralREG+Copy 4.63 ±0.15 4.75 ±0.14 4.29 ±0.44
ProfileREG 3.89 ±0.32 4.46 ±0.24 2.18 ±0.55

Table 4: Mean and ±95% Confidence Intervals on Fluency, Grammaticality, and Semantic Adequacy
results for All, Seen, and Unseen entities of the Human Evaluation. Best results are bolded, whereas the
second best are underlined.

chose well-defined criteria to assess text quality and a well-established scale for assessment. The partici-
pants were asked to rate the automatically generated sentences with respect to three criteria: fluency, i.e.,
whether the text flow was acceptable; grammaticality, i.e., whether grammatical and lexical patterns were
close to human language patterns; and semantic adequacy, i.e., whether the information in the output text
matched that of the input representation. In addition, a 5 point Likert scale was used (1 – very low, 2 –
low, 3 – medium, 4 – high, and 5 – highly/fully adequate).

Results Table 4 summarizes the results of human evaluation regarding fluency, grammaticality, and
semantic adequacy for all, seen, and unseen entities. Our proposed model outperformed the previous
version of NeuralREG and presented competitive results compared to the current state-of-the-art
in the literature. Regarding grammaticality, our model presents the best results for all, seen, and
unseen entities considering the three baselines. Regarding fluency and semantic adequacy, human
evaluation showed similar scores for our proposal and OnlyNames. Despite its limitations in referring
expression generation, OnlyNames baseline performed very well, which can be accounted for by
the fact that WebNLG is a corpus made up of texts potentially used to yield encyclopedia entries,
which allow for repetition of proper nouns unlike other types of text. Hallucination and repetition
often present on neural models (Rohrbach et al., 2018; Moryossef et al., 2019; Holtzman et al., 2018)
can also account for OnlyNames good performance which does not suffer from this problem. An
example of this can be seen in the RDF triple set: [Alfa Romeo 164 | assembly |Milan.
Alfa Romeo 164 | relatedMeanOfTransportation | Saab 9000]. OnlyNames output
was “Alfa Romeo 164, which is assembled in Milan, is a related means
of transportation to Saab 9000, in that they are both cars”, whereas Neu-
ralREG+Copy produced the following output “Romeo Romeo 164, which is assembled in
Milan, is a related means of transportation to Saab, in that they are
both cars”. Despite eventual hallucination problems, human evaluation showed that our model has
more consistent performance, improving overall quality.

7 Ablation Study

We also performed an ablation study in order to analyze the performance of the different features used
by our proposal.

Method We evaluated the copy mechanism, pre- and post-contexts, as well as gender and type embed-
dings in order to determine which feature best influences the model. The performance of every single
feature was analyzed by running the model without it and measuring loss, according to the referring ex-
pression accuracy metric in the test part of the data, considering all entities as well as only seen and only
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unseen ones. When removing the copy mechanism, the model has a similar performance to the original
NeuralREG though with the target entity also represented by the entity embeddings for gender and type.

Accuracy
Model Setup All Seen Unseen

Proposal pre, copy, post, entity type and gender embeddings 0.59 0.73 0.46
Ablation 1 without copy 0.40 0.70 0.09
Ablation 2 without entity embeddings 0.50 0.71 0.28
Ablation 3 without post-context 0.54 0.77 0.42
Ablation 4 without pre-context 0.50 0.64 0.36

Table 5: Results of the Ablation Analysis. Best features (with the highest drop) are boldfaced, whereas
the second best are underlined.

Results Table 5 depicts the results of our ablation analysis. The removal of the copy mechanism feature
(Ablation 1) causes the highest decrease in the referring expression accuracy for all entities as well as
only seen and unseen ones, validating this feature as the most efficient within the model. In addition,
the copy mechanism relevance for generalizing to unseen entities is proved by a high accuracy drop
in the analysis. Furthermore, removing entity embeddings for the entities’ gender and type (Ablation
2) causes a negligible drop in all scores, particularly when generating referring expressions to unseen
entities. Regarding context, pre-context (Ablation 3) causes the second highest decrease, being validated
as the second best feature. Post-context (Ablation 4) does not yield the expected performance regarding
accuracy for seen entities, since the produced referring expressions to this type of entities proved better
without this feature. Nevertheless, we can stress the importance of post-context for unseen entities, since
referring expression accuracy for this kind of entity decreases with the removal of this feature.

8 Discussion

This study set out to address a limitation of NeuralREG, a state-of-the-art encoder-decoder referring
expression generation system, which is its failure to generate references to entities not previously seen
during its training. To solve the problem, we proposed two extensions to the original approach: a copy
mechanism and using a multi-token representation for the referent as well as its gender and type.

Considering pre- and post-contexts where an entity should be referred to and information about the
entity’s gender and type, at each decoding step our model decides whether the next token of the refer-
ring expression should be generated from the output vocabulary or copied from the multi-token input
representation of the entity.

Although our approach set out to improve the generation of referring expressions to unseen entities
only, an automatic evaluation shows that it presents competitive results regarding all the models when
comparing overall performance and also for seen entities. Regarding generation of pronouns and ref-
erences to unseen entities, our model outperforms ProfileREG and OnlyNames. Furthermore, human
evaluation, conducted to rate the automatically generated sentences showed that our model achieved the
best results regarding grammaticality. Regarding fluency and semantic adequacy, NeuralREG+Copy and
OnlyNames presented similar results as shown in table 4. The similarities between both models are strik-
ing, which demonstrates that OnlyNames remains a competitive baseline in REG. In order to understand
these results and have a deeper insight on the performance of each feature, we also conducted an ablation
analysis, which showed different results in referring expression generation for seen and unseen entities.

Surrounding Context Pre- and post-contexts seem to perform different roles when used as input fea-
tures to generate referring expressions. Based on our ablation analysis, pre-context plays a crucial role,
being ranked the most important feature when generating referring expressions to seen entities and third
to unseen ones. On the other hand, post-context seems to have a slight contribution only for the genera-
tion of references to unseen entities. In fact, when not used, the approach performs better for generation
of referring expressions to seen entities.
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Copy Mechanism Among the input features, the copy mechanism proved an essential feature of the
model. Its importance was supported by the results in the ablation analysis, which pointed to this feature
as the most important for the generation of referring expressions to unseen entities. This confirms the
copy mechanism to be a productive addition to NeuralREG in order to make it able to work with entities
not seen during training.

Gender and Type Entity Representations Besides the copy mechanism, we sought to make Neural-
REG generalize to unseen entities by feeding it with embedding representations of the referent’s gender
and type. Among the motivations to use these features, we considered how easy it is to access this in-
formation in the Semantic Web, since entities in WebNLG are represented by their URIs. Second, we
hypothesized that such representations would allow the model to generate pronominal and descriptive re-
ferring expressions to unseen entities. To some extent, the pronominal reference his to the unseen entity
Adenan Satem produced by our approach and depicted in Table 3 shows that the representations may
indeed help. Ablation results also showed that they are the second most important feature in the referring
expression generation to unseen entities, only behind the copy mechanism (another extension proposed
by our study). Such result confirms our hypothesis.

Future Work Although our two proposed extensions allowed NeuralREG to perform better when com-
pared to its previous version and also generate superior referring expressions to unseen entities, Only-
Names performed slightly better than our approach in the generation of referring expressions to this kind
of entities as well as produced similar results to our model during human evaluation. We assume that part
of this result is related to known issues in semantic neural models, such as hallucination, which could
influence both automatic and human evaluation results, in particular for unseen entities. To fix this issue,
we aim to investigate the generation of synthetic referring expression data to augment the training data
and better tune our approaches.

Results also show that ProfileREG outperformed our model in the generation of pronouns. We hypoth-
esize this result as an impact of incorrect gender and type information for some entities extracted from
DBpedia. For instance, the entity BBC in DBpedia6 is also considered of the type Person, leading to the
generation of inaccurate descriptions (The person) and pronominal (She or He) outputs. In future work,
we aim to manually inspect all type and gender information extracted from DBpedia in order to avoid
errors. Additionally, to generate better pronominal referring expressions, we will enhance our approach
by using the “profile” computed by the ProfileREG model.

Conclusion We have proposed extensions to the NeuralREG model to overcome shortcomings in not
being able to generalize to entities not seen during the training process when generating referring expres-
sions. We can conclude that our proposal contributes to generating more significant referring expressions
to unseen entities, besides seen ones. Furthermore, our study provides a new version of a strong baseline
within the NLG area. A future direction in our work is to implement the improvements discussed in this
study in order to match OnlyNames performance for unseen entities.
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