
Proceedings of the 28th International Conference on Computational Linguistics, pages 2202–2212
Barcelona, Spain (Online), December 8-13, 2020

2202

Improving Grammatical Error Correction with Data Augmentation by
Editing Latent Representation

Zhaohong Wan1,2 and Xiaojun Wan1,2 and Wenguang Wang3

1Wangxuan Institute of Computer Technology, Peking University
2The MOE Key Laboratory of Computational Linguistics, Peking University

3DataGrand Tech Inc.
{xmwzh,wanxiaojun}@pku.edu.cn

Abstract

The incorporation of data augmentation method in grammatical error correction task has attracted
much attention. However, existing data augmentation methods mainly apply noise to tokens,
which leads to the lack of diversity of generated errors. In view of this, we propose a new data
augmentation method that can apply noise to the latent representation of a sentence. By editing
the latent representations of grammatical sentences, we can generate synthetic samples with var-
ious error types. Combining with some pre-defined rules, our method can greatly improve the
performance and robustness of existing grammatical error correction models. We evaluate our
method on public benchmarks of GEC task and it achieves the state-of-the-art performance on
CoNLL-2014 and FCE benchmarks.

1 Introduction

Grammatical Error Correction (GEC) is a task of detecting and correcting grammatical errors in a sen-
tence. Due to the growing number of language learners of English, there has been increasing attention to
the English GEC in the past few years.

Considering the outstanding performance of neural network models in machine translation tasks, many
studies have tackled GEC as a machine translation task. They regard ungrammatical sentences as the
source language and grammatical sentences as the target language. This approach allows cutting-edge
neural machine translation models to be applied to GEC. Many encoder-decoder models, such as recur-
rent neural network (RNN)(Graves et al., 2013), convolutional neural networks (CNN)(Kim, 2014), have
been widely applied to GEC.

A challenge in applying neural machine translation models to GEC is the requirement of a large
amount of training data, i.e., the source-target pairs. To address this problem, many data augmentation
methods have been proposed. Existing methods, however, are often only able to generate sentences with
limited error types, and can only improve the performance of GEC model on these few error types, while
it is still hard for the model to correct the sentences with other types of errors.

To address the above problem, we propose a new data augmentation method to generate synthetic
samples by editing the latent representations of grammatical sentences. Given a target grammatical
error type and the corresponding grammatical error type classifier, we can get a perturbation vector in
latent space. Then we add the perturbation vector to the latent representation of input sentence, and
use a decoder to generate a sentence with target grammatical error type. In this way, diverse errors can
be generated by assigning different target error types. To further improve the performance, we adopt
some rules to assist the generation of some local grammatical errors, such as spelling errors, wrong
punctuation, etc.

We apply this data augmentation method to the existing GEC model Copy-transformer (Zhao et al.,
2019) to evaluate the results. Experiments are conducted on the following widely used benchmarks:
CoNLL-2014 (Ng et al., 2014), FCE (Yannakoudakis et al., 2011), BEA-2019 (Bryant et al., 2019). Ex-
perimental results show the efficacy of our proposed method which outperforms several existing models.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

2203

Our contributions are summarized as follows:
1. We propose a new data augmentation method to generate synthetic samples by editing latent repre-

sentations of grammatical sentences, which is able to generate errors with high quality and diversity.
2. Additional synthetic training samples enable training neural GEC model to detect and correct most

error types, and improving the performance and robustness of the model.
3. Our method achieves the state-of-the-art performance on CoNLL-2014 and FCE benchmarks. It

outperforms not only all previous single models but also all ensemble models. On BEA-2019 benchmark,
our method achieves very competitive performance as well.

2 Related Work

Early GEC models are mainly based on manually designed grammar rules(Murata and Nagao, 1994;
Bond et al., 1996; Siegel, 1996). Han et al. (2006) pointed out the limitation of rule-based method and
proposed a statistical model. Later, some researchers proposed solutions based on statistical machine
learning method(Knight and Chander, 1994; Minnen et al., 2000; Izumi et al., 2003).

With the development of deep learning, recent works proposed a variety of neural network models to
deal with GEC task. Some treated the GEC task as a translation problem and applied neural machine
translation model to detect and correct grammatical errors. Yuan and Briscoe (2016) used a classical
bidirectional recurrent neural network (Graves et al., 2013) with attention. Chollampatt and Ng (2018)
proposed a convolution neural network (Kim, 2014) to capture the local context. Many recent works
(Junczys-Dowmunt et al., 2018) made use of the powerful machine translation architecture Transformer
(Vaswani et al., 2017). Zhao et al. (2019) further applied copying mechanism(Gu et al., 2016; Jia
and Liang, 2016) to Transformer. Considering the tremendous performance of pre-trained methods, pre-
trained language model, such as BERT(Devlin et al., 2019), can be incorporated into the encoder-decoder
model (Kaneko et al., 2020).

An encoder-decoder GEC model requires a large amount of training data, and the available training
corpora usually failed to train a good GEC model. To address this problem, many data augmentation
methods have been proposed (Ge et al., 2018). Many works adopted pre-defined rules to generate local
grammatical errors. Grundkiewicz et al. (2019) applied a confusion set built by spellchecker to the
corpus. Choe et al.(2019) extracted some common text editing operations from human writing habits
and got synthetic samples by these extracted operations. Lichtarge et al.(Lichtarge et al., 2018) made use
of models trained on large amounts of weakly supervised text. Inspired by back-translation procedure for
machine translation (Sennrich et al., 2015) , Xie et al.(2018) proposed a model that can learn to generate
erroneous sentences from correct ones. Based on this work, Kiyono et al. (2019) further studied the data
augmentation methods and got some empirical conclusions.

3 Our Data Augmentation Method

Our data augmentation method applies noise to the latent space and it can generate sentences with vari-
ous error types by editing latent representations of grammatical sentences. To further improve the perfor-
mance, we adopt some rules to assist the generation of some local grammatical errors. Synthetic training
samples generated from our method are used to train neural GEC model and enable the model to detect
and correct most error types and improve its performance and robustness.

3.1 Editing Latent Representation
Inspired by the adversarial sample generation procedure (Goodfellow et al., 2015), we propose a data
augmentation method that applies the noise by editing latent representations. Firstly, we train an encoder,
a decoder and an error type classifier. Given the trained models, we can generate synthetic training
samples by adding a perturbation vector to the latent representations of sentences. The overall framework
of our method is shown in Figure 1.

3.1.1 Training Encoder, Decoder and Classifier
Firstly, we train an encoder and a classifier to deal with the grammatical error classification task. Given
a ungrammatical sentence x and its corresponding error type z, we use the encoder φE to encode x to

2204

its latent representation hx. Then we use the classifier C to get the prediction z′. This process can be
formulated as following:

hx = φE(x) (1)

z′ = C(hx) (2)

We denote the classification loss as L(hx, z, z′), where hx is the latent representation, z′ is the pre-
diction label and z is the gold label. In our model, we choose the cross entropy loss as classification
loss.

Figure 1: The overall framework of our proposed data augmentation method. It contains an encoder,
a classifier, and a decoder. Given a source sentence x, we first use the encoder to obtain the latent
representation hx of x. We then pass hx and specified error type z to the classifier to compute the
classification loss and the direction in which the loss descends the most. Finally, we project hx to this
direction to get h′x and decode h′x into text to get the synthetic sample x′.

With the encoder φE trained in previous process , we train decoder φD in an auto-encoder way. The
goal is to minimize the negative log-likelihood between input x and output x̃:

x̃ = φD(hx) (3)

J (hx) = −
L∑
t=1

logP (xt|x̃<t,hx) (4)

We choose the powerful Transformer(Vaswani et al., 2017) as encoder and decoder. Both the encoder
and the decoder consist of Transformer blocks with multi-head self-attention layer followed by feed-
forward layer.

As for the classifier, it has several feed-forward layers as the classification layers. The classifier
will determine whether the sentence is correct. If not, it will predict the specific type of grammat-
ical errors. We define six types of grammatical errors based on the 25 main types defined in auto-
matic annotation tool ERRANT(Bryant et al., 2017): ADJ/ADV(ADJ, ADJ:FORM and ADV), DET,
PREP, NOUN(NOUN, NOUN:INFL, NOUN:NUM and NOUN:POSS), VERB(VERB, VERB:FORM,
VERB:INFL, VERB:SVA and VERB:TENSE), OTHER(Errors that do not fall into above categories).
These error types are common in human writing and more difficult to be corrected by GEC model.

3.1.2 Generating Synthetic Training Samples
We want to add a perturbation vector r to the latent representation hx of input sentence x, and use
decoder φD to generate additional training samples from hx+ r. The algorithm for generating synthetic
samples is summarized in Algorithm 1.

Given a correct sentence x and a target grammatical error type z, we can get an optimal perturbation
vector r̂ by minimizing the classification loss L(hx + r, z, z′). Besides, in order to prevent the outputs

2205

Algorithm 1 Generating synthetic training samples
Input: Latent representation hx, target error type z, similarity discriminator ψ, classifier C,decoder
φD, hyper parameter ε0, εmax, λ, t
Output: Synthetic erroneous sample x′ (paired with input x)
Function: Gen(hx, z, ε0, εmax, λ, t):
1: Initialization: ε←− ε0, r̂ ←− 0.
2: Compute gradient: g ←− ∇hxL (hx, z, C (hx))
3: while ε ≤ εmax do
4: if C(hx + r̂) = z then
5: break
6: r̂ ←− −εg/||g||
7: ε←− λε
8: x′ = φD(hx + r̂).
9: p←− ψ(x,x′)

10: if p ≥ t then
11: return x′

12: else
13: return null

from changing too much, we restrict the L2 norm of perturbation r. This problem can be formulated as
the following:

r̂ = argmin
r,‖r‖≤ε

{
L(hx + r, z, z′)

}
(5)

However, it is almost impossible to exactly estimate r̂ in Eq5 for a deep neural network model. Fol-
lowing the method of Goodfellow et al. (2015), we apply the linearization technique by linearizing loss
function L(hx + r, z, z′) around hx, and get the solution as follows:

r̂ = −εg/‖g‖2 (6)

where g = ∇hxL (hx, z, z
′).

The hyper-parameter ε determines the degree of semantic change in the latent space. A small value
can better maintain the semantic, while a large value can make it easier to generate a sample with gram-
matical errors. We use a heuristic algorithm to select the most appropriate value. We initialize ε with a
small value, and gradually increase it until the sentence with target grammatical error is produced or the
threshold is reached.

Finally, we use decoder φD to decode from hx+ r̂ and generate the corresponding erroneous sentence
x′:

x′ = φD(hx + r̂) (7)

In order to filter sentence pairs with low similarity, we use a model proposed by Parikh et al. (2016) as
the similarity discriminator. Given an synthetic sample x′ with its original sentence x, we use similarity
discriminator ψ to get a score p ∈ [0, 1] which reflects the degree of semantic similarity between x and
x′. We set a threshold t that if p is greater than this threshold, x′ can be selected as the augmented
sample.

Our method can generate more natural sentences compared to methods that directly apply noise to
tokens. Since we edit latent representations of sentences, we can get more diverse samples with different
errors which can not be obtained by only applying noise to tokens.

3.2 Pre-defined Rules
Based on previous works(Choe et al., 2019; Lichtarge et al., 2018), the rule-based method can generate
local grammatical errors with high quality. We propose five rules to assist in generating synthetic training
data.

2206

Delete. Randomly delete a token with a probability of 0.15.
Add. Firstly, randomly select a word from a word list (Google-10000-English1), and then add the

selected word to random position with a probability of 0.15.
Replace. Randomly replace a token with its possible forms with a probability of 0.5. If the picked

token is a word, we use Word forms2 to generate all possible forms (adverb, adjective, noun and verb).
If not, we select replacements from a punctuation set.

Shuffle. Shuffle the tokens by adding a normal distribution bias to the positions of the words with
a probability of 0.1. Particularly, let x = (p1, ..., pL) represent the positions of words, where L is the
length of sentence and pi is the position of the i-th word. At the beginning, pi = i. Then, add the normal
distribution bias,

p′i = pi + ei (8)

where ei subjects to normal distribution ei ∼ N(0, σ2). Finally, re-sort the words by the rectified
positions p′i and get the new sequence x′.

Spell Error. Randomly apply spell error to a word with a probability of 0.1. We randomly perturb
characters using the same operations as above for the word level operations, i.e. substitution, deletion,
insertion or transposition of characters.

Using above data augmentation methods, we can get synthetic training samples with various gram-
matical errors. These synthetic training samples can further improve the performance and robustness of
the GEC system.

4 GEC Model

In this study, we choose copy-augmented Transformer (Zhao et al., 2019) as GEC model to test our
data augmentation method. Copy-augmented Transformer is a kind of Transformer that incorporates an
attention-based copy mechanism in the decoder. It can generate word from a fixed vocabulary and the
source input tokens. Considering the similarity between input and output, this copy mechanism leads to
great performance of models in GEC task.

5 Experiment Setup

5.1 Datasets
Training data. We use the following GEC datasets as original training corpus: National University
of Singapore Corpus of Learner English (NUCLE)(Dahlmeier et al., 2013), Lang-8 Corpus of Learner
English (Lang-8)(Tajiri et al., 2012), FCE dataset(Yannakoudakis et al., 2011), and Write & Improve +
LOCNESS Corpus(W&I+LOCNESS)(Bryant et al., 2019).

NUCLE is a collection of essays written by students who are non-native English speakers. Professional
English instructors were invited to correct the grammatical errors in these essays. There are 28 common
grammatical error types.

The Lang-8 corpus is a cleaned English subset of the language learning websites.
FCE and W&I+LOCNESS are public GEC datasets. Bryant et al.(2019) use an automatic annotation

tool ERRANT to annotate the types of grammatical errors. There are 25 main grammatical error types.
Evaluation data. We report results on CoNLL-2014 benchmark evaluated by official M2

scorer(Dahlmeier and Ng, 2012), and on BEA-2019 and FCE benchmarks evaluated by ERRANT.
Seed Corpus Following the Kiyono et al.(2019), we choose the large English corpus Gigaword as

seed corpus for data augmentation.
The datasets used in the experiments are summarized in Table 1.

5.2 Pre-processing
We first tokenize the data by NLTK (Bird et al., 2009). Then we apply byte-pair encoding (BPE) (Sen-
nrich et al., 2016b) to sentences using subword-nmt(Sennrich et al., 2016b) before feeding the texts into

1https://github.com/first20hours/google-10000-english
2https://github.com/gutfeeling/word forms

2207

Dataset #Sentences Parallel Annotated
Gigaword 131.8M no -
NUCLE 57.2K yes yes
Lang-8 1.04M yes no
FCE 33.2K yes yes
W&I+LOCNESS 34.3K yes yes

Table 1: Summary of datasets. ’Parallel’ means if the dataset has parallel GEC pairs. ’Annotated’ means
if the types of grammatical errors are annotated.

models. It allows us to avoid < unk > tokens in most datasets. Following Choe et al. (2019), we use
spellcheck Enchant3 to assist the correction of spelling errors. Besides, we use ERRANT to annotate the
types of grammatical errors in Lang-8 dataset. In this way, we can get a large amount of annotated data
for the training of the grammatical error type classifier.

5.3 Model Training Details

In this paper, we use the Transformer implementation in the public Fairseq Toolkit (Ott et al., 2019). For
the Transformer model, the hidden size of embedding is 512. The encoder and decoder have 6 layers and
8 attention heads. For the inner layer in the feed-forward network, the size of is 4096. The number of
feed-forward layers in classifier is 3.

The classifier model is trained using the Adam optimization method (Kingma and Ba, 2015). The
learning rate is initially set as 0.001 ,the decay factor is set as 0.99 for every epoch. To avoid overfitting,
we adopt dropout mechanism (Srivastava et al., 2014). The dropout rate is 0.1.

During decoding, models are optimized with Nesterovs Accelerated Gradient (Nesterov, 1983). We
set the dropout to 0.2, the learning rate with 0.002, the weight decay 0.5, the patience 0, the momentum
0.99, minimum learning rate 10-4, and beam-size 5.

From the seed corpus, we generate 16 million training samples in all. Half of training samples are
generated by editing latent representations and the other half are generated by pre-defined rules. The
probability of five error types (ADJ/ADV, DET, PREP, NOUN, VERB) is equal.

For the GEC model, we follow the default configuration of the copy-augmented Transformer from
Zhao et al. (2019). Following Omelianchuk et al.(2020), we train the GEC model in three stages. Firstly,
we pre-train the model on synthetic sentences that generated by data augmentation method. Then, we
extract sentence pairs containing grammatical errors from four training datasets (NUCLE, Lang-8, FCE
and W&I+LOCNESS) and fine-tune the model on these sentence pairs. Finally, we fine-tune the model
on respective entire training dataset corresponding to each test set.

5.4 Post-processing

To further improve the performance, we incorporate the following techniques that are widely used in
GEC task:

Features Re-scoring (FR). Following Chollampatt and Ng(2018), we use edit operation (EO) features
and language model (LM) features to re-score the final beam candidates. EO features denote three
features about token-level edit operation. LM features include the score of a language model which is
trained on the web-scale Common Crawl corpus (Chollampatt and Ng, 2017; Junczys-Dowmunt and
Grundkiewicz, 2016), and the length of the output sequences.

Right-to-left Re-ranking (R2L). Following Sennrich et al. (2016a; 2017), we use the right-to-left
re-ranking method to build the ensemble of independently trained models. We pass n-best candidates
generated from four left-to-right models to four right-to-left models, and re-rank the n-best candidates
based on their corresponding scores.

3https://github.com/pyenchant/pyenchant

2208

6 Results and Analysis

6.1 Compared with Existing Methods
We evaluate the performance of our method on public benchmarks and compare the scores with the
current top models which adopt data augmentation methods. Table 2 shows the results. Our method
achieves the best F-scores on CoNLL-2014 and FCE benchmarks. It outperforms not only all previ-
ous single models but also all ensemble models. On BEA-2019 benchmark, our method achieves very
competitive performance as well.

Method Augmented
Data Size

CoNLL-2014 BEA-2019 FCE-test
P R F0.5 P R F0.5 P R F0.5

Single Model
Lichtarge et al.(2018) 170M 65.5 37.1 56.8 - - - - - -
Kiyono et al.(2019) 70M 67.9 44.1 61.3 65.5 59.4 64.2 - - -
Kaneko et al.(2020) 70M 69.2 45.6 62.6 67.1 60.1 65.6 59.8 46.9 56.7

Our method without R2L 16M 69.5 47.3 63.5 66.9 60.6 65.5 63.0 51.4 60.3
Ensemble Model
Zhao et al.(2019) 30M 71.6 38.7 61.2 - - - - - -

Grundkiewicz et al.(2019) 100M - - 64.2 72.3 60.1 69.5 - - -
Kiyono et al.(2019) 70M 72.4 46.1 65.0 74.7 56.7 70.2 - - -
Kaneko et al.(2020) 70M 72.6 46.4 65.2 72.3 61.4 69.8 62.8 48.8 59.4

Our method 16M 72.3 48.8 65.9 72.6 61.3 70.0 65.4 53.6 62.6

Table 2: Comparison results of GEC methods. The top group shows the results of the single models.
The second group shows the results of the ensemble models. Augmented data sizes show the amounts of
additional training sentences used in each method. Bold indicates the highest score in each column.

6.2 Analysis of Data Augmentation Method
We evaluate the performance of our different data augmentation methods on benchmarks. Results are
shown in Table 3. ’None’ means no use of data augmentation method and ’Both’ means using both
representation editing based method and rule-based method.

Method CoNLL-2014 BEA-test FCE-test
P R F0.5 P R F0.5 P R F0.5

None 65.2 33.1 54.6 61.5 49.0 58.5 57.9 31.1 49.4
Editing Latent Representation 69.3 45.6 62.8 69.6 57.0 66.7 62.4 48.1 58.9

Both 72.3 48.8 65.9 72.6 61.3 70.0 65.4 53.6 62.6

Table 3: Results of our different data augmentation methods.

As we can see, our data augmentation methods can improve the performance of the GEC model,
especially the recall. A large amount of synthetic training samples enable the model to detect and correct
more errors.

CoNLL-2014 is a typical benchmark, widely used for evaluating GEC models. Besides, this dataset
has been hand-corrected by professional English instructors. In view of these, we use CoNLL-2014
dataset as example to do the following experiments.

We investigate the influence of the amount of synthetic training samples on the performance. We
pre-train the ensemble model with different amounts of synthetic samples. Considering the limitation of
computing resources, we set amounts of synthetic samples as {1M, 2M, 4M, 8M, 16M}. As mentioned
above, we use pre-defined rules and editing latent representation method to generate half of the synthetic
samples respectively in this experiment. The results in Figure 2 show that the increase of synthetic
samples can improve the performance of GEC model, but the growth rate is on the decline.

2209

Figure 2: Performance on CoNLL-2014 for different amounts of synthetic samples.

Augmentation Method None Pre-defined
Rules

Editing Latent
Representation

Both

Error Type % Recall Recall Recall Recall
Article Or Determiner 14.31 47.52 55.90 54.51 55.21
Wrong Collocation/Idiom 12.75 9.41 14.11 15.69 17.10
Spelling, Punctuation, etc. 12.47 48.11 64.15 52.13 60.14
Preposition 10.38 48.17 67.43 65.51 68.40
Noun number 9.38 53.30 74.63 72.49 75.69
Verb Tense 5.41 22.18 42.51 51.71 50.83
Subject-Verb Agreement 4.93 30.43 40.57 42.60 53.30
Verb form 4.69 31.98 52.24 59.70 57.57
Redundancy 4.65 18.92 23.01 17.20 23.66
Others 20.99 19.53 23.82 34.30 38.11
All 100.00 33.18 44.62 45.60 48.83

Table 4: Recall of our augmentation methods on different error types. Evaluation dataset is CoNLL-
2014. Bold indicates the highest recall in each type.

We further analyze the results on different error types. Note that due to the definition of precision on
CoNLL-2014 dataset, we cannot calculate the precision for each error type. So we use recall to evaluate
the performance of our different data augmentation methods. In CoNLL-2014 dataset, 28 error types are
defined, and we list the recall on the top 9 error types. The other 19 types are summarized in the ’others’
type. Results are shown in Table 4.

As can be seen from the table, the correction abilities of model on different error types are quite
different. For example, model without synthetic data corrects 53.3% errors on the ’Noun number’ type,
but only corrects 9.41% errors on the ’Wrong Collocation/Idiom’ type. Data augmentation methods can
address this problem in some degree. The recall of local errors, such as ‘Spelling, Punctuation, etc’ and
‘Noun number’, is improved by rule-based method. Representation editing based method improves the
performance of model on other error types, such as ‘Verb tense’ and ‘verb form’. With the assistance
of pre-defined rules, our method achieves the highest recall on most error types. Our proposed method
not only performs well in overall evaluation score, but also greatly improves the performance on most
error types. The two data augmentation methods can complement each other and the use of both of them
can cover most error types and generate samples with high quality and diversity. It enables the model to
detect and correct various errors, which meets the needs in practical application.

6.3 Case Study

In this section, we use specific cases to analyze influence of different data augmentation methods.
In Table 5, we present an example of the synthetic samples generated by our different data augmenta-

tion methods. In this case, rule-based method generates an ungrammatical sentence with verb tense error
by replacing the verb ‘crashed’ with its present tense. The editing latent representation based method

2210

Grammatical Sentence An Israeli military helicopter crashed near the northern town of
Afula, army radio said

Augmentation Method Example
Pre-defined Rules An Israeli military helicopter crashes near the northern town of

Afula, army radio said.
Editing Latent Representation An Israeli military helicopter has been crashed near the northern

town of Afula, army radio said.

Table 5: Example of the synthetic samples. Bold indicates the grammatical errors generated by augmen-
tation methods.

also generates a sample with verb tense error. However, this error cannot be generated by using simple
pre-defined rules. What’s more, the error is more complicated than a simple verb tense error. In fact, it
is a grammatical error related to reported speech. Therefore, editing latent representation based method
can generate errors which could not be generated by rules. With the help of editing latent representation,
we can generate grammatical errors with high quality and diversity.

In Table 6, we present an example of corrections generated by GEC model with different augmentation
methods. The performance of GEC model without data augmentation is poor. It cannot detect the error
of ‘would’. The model with rule-based augmentation method can detect the error, but it fails to correct it
by only changing the form of the word. The model with representation editing based method successfully
corrects the error. However, it is hard for our proposed method to correct sentences with multiple errors.
This problem needs to be solved in future works.

Standard Correction Although the problem [would → may] not be serious, people
[would → might] still be afraid.

Augmentation Method Example
None Although the [problem → problems] would not be serious,

people would still be afraid.
Pre-defined Rules Although the problem [would → will] not be serious, people

[would → will] still be afraid.
Editing Latent Representation Although the problem [would → may] not be serious, people

would still be afraid.
Both Although the problem [would → may] not be serious, people

would still be afraid.

Table 6: Example of corrections. Brackets mark the spans of errors. The text on the right of arrow is the
correction of the error on the left.

7 Conclusion

In this paper, we propose a data augmentation method to apply noise to latent space. By editing latent
representations of grammatical sentences, we can generate synthetic samples with diverse error types.
These synthetic training samples can further improve the performance and robustness of the GEC model
and it enables the model to detect and correct most errors. We evaluate our method on public benchmarks
of GEC task and it achieves the state-of-the-art performances on CoNLL-2014 and FCE datasets.

Acknowledgments

This work was supported by National Natural Science Foundation of China (61772036), Beijing
Academy of Artificial Intelligence (BAAI) and Key Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent Press Media Technology). We appreciate the anony-
mous reviewers for their helpful comments. Xiaojun Wan is the corresponding author.

2211

References
Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with python.

Francis Bond, Kentaro Ogura, and Tsukasa Kawaoka. 1996. Noun phrase reference in japanese-to-english ma-
chine translation. ArXiv, cmp-lg/9601008.

Christopher Bryant, Mariano Felice, and Ted Briscoe. 2017. Automatic annotation and evaluation of error types
for grammatical error correction. In ACL.

Christopher Bryant, Mariano Felice, Øistein E. Andersen, and Ted Briscoe. 2019. The bea-2019 shared task on
grammatical error correction. In BEA@ACL.

Yo Joong Choe, Jiyeon Ham, Kyubyong Park, and Yeoil Yoon. 2019. A neural grammatical error correction
system built on better pre-training and sequential transfer learning. In BEA@ACL.

Shamil Chollampatt and Hwee Tou Ng. 2017. Connecting the dots: Towards human-level grammatical error
correction. In BEA@EMNLP.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multilayer convolutional encoder-decoder neural network for
grammatical error correction. ArXiv, abs/1801.08831.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better evaluation for grammatical error correction. In HLT-NAACL.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. 2013. Building a large annotated corpus of learner english:
The nus corpus of learner english. In BEA@NAACL-HLT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. ArXiv, abs/1810.04805.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching human-level performance in automatic grammatical error
correction: An empirical study. ArXiv, abs/1807.01270.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial exam-
ples. CoRR, abs/1412.6572.

Alex Graves, Abdel Rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent
neural networks.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and Kenneth Heafield. 2019. Neural grammatical error correc-
tion systems with unsupervised pre-training on synthetic data. In BEA@ACL.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating copying mechanism in sequence-to-
sequence learning. ArXiv, abs/1603.06393.

Na-Rae Han, Martin Chodorow, and Claudia Leacock. 2006. Detecting errors in english article usage by non-
native speakers. Nat. Lang. Eng., 12:115–129.

Emi Izumi, Kiyotaka Uchimoto, Toyomi Saiga, Thepchai Supnithi, and Hitoshi Isahara. 2003. Automatic error
detection in the japanese learners’ english spoken data. In ACL.

Robin Jia and Percy Liang. 2016. Data recombination for neural semantic parsing. ArXiv, abs/1606.03622.

Marcin Junczys-Dowmunt and Roman Grundkiewicz. 2016. Phrase-based machine translation is state-of-the-art
for automatic grammatical error correction. ArXiv, abs/1605.06353.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha, and Kenneth Heafield. 2018. Approaching
neural grammatical error correction as a low-resource machine translation task. In NAACL-HLT.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun Suzuki, and Kentaro Inui. 2020. Encoder-decoder models can
benefit from pre-trained masked language models in grammatical error correction. ArXiv, abs/2005.00987.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. Eprint Arxiv.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizumoto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error correction. In EMNLP/IJCNLP.

2212

Kevin Knight and Ishwar Chander. 1994. Automated postediting of documents. ArXiv, abs/cmp-lg/9407028.

Jared Lichtarge, Christopher Alberti, Shankar Kumar, Noam Shazeer, and Niki Parmar. 2018. Weakly supervised
grammatical error correction using iterative decoding. ArXiv, abs/1811.01710.

Guido Minnen, Francis Bond, and Ann A. Copestake. 2000. Memory-based learning for article generation. In
CoNLL/LLL.

Masaki Murata and Makoto Nagao. 1994. Determination of referential property and number of nouns in japanese
sentences for machine translation into english. ArXiv, abs/cmp-lg/9405019.

Yurii Nesterov. 1983. A method for solving the convex programming problem with convergence rate o(1/k2).

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, and Christopher Bryant. 2014. The conll-2014
shared task on grammatical error correction. In Proceedings of the Eighteenth Conference on Computational
Natural Language Learning: Shared Task.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem N. Chernodub, and Oleksandr Skurzhanskyi. 2020. Gector -
grammatical error correction: Tag, not rewrite. In BEA@ACL.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli.
2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019: Demon-
strations.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A decomposable attention model for
natural language inference. ArXiv, abs/1606.01933.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Improving neural machine translation models with
monolingual data. Computer Science.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Edinburgh neural machine translation systems for wmt
16. In WMT.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural machine translation of rare words with subword
units. ArXiv, abs/1508.07909.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich Germann, Barry Haddow, Kenneth Heafield, Antonio Vale-
rio Miceli Barone, and Philip Williams. 2017. The university of edinburgh’s neural mt systems for wmt17. ArXiv,
abs/1708.00726.

Melanie Siegel. 1996. Preferences and defaults for definiteness and number in japanese to german machine trans-
lation. In Proceedings of the 11th Pacific Asia Conference on Language, Information and Computation, pages
43–52.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:1929–1958.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Matsumoto. 2012. Tense and aspect error correction for esl learners
using global context. In ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. ArXiv, abs/1706.03762.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y. Ng, and Dan Jurafsky. 2018. Noising and denoising natural
language: Diverse backtranslation for grammar correction. In NAACL-HLT.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. 2011. A new dataset and method for automatically grading
esol texts. In ACL.

Zheng Yuan and Ted Briscoe. 2016. Grammatical error correction using neural machine translation. In HLT-NAACL.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and Jingming Liu. 2019. Improving grammatical error correction
via pre-training a copy-augmented architecture with unlabeled data. In NAACL-HLT.

