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Abstract

We release ManyNames v2 (MN v2), a verified version of an object naming dataset that contains
dozens of valid names per object for 25K images. We analyze issues in the data collection method
originally employed, standard in Language & Vision (L&V), and find that the main source of
noise in the data comes from simulating a naming context solely from an image with a target
object marked with a bounding box, which causes subjects to sometimes disagree regarding which
object is the target. We also find that both the degree of this uncertainty in the original data and
the amount of true naming variation in MN v2 differs substantially across object domains.
We use MN v2 to analyze a popular L&V model and demonstrate its effectiveness on the task of
object naming. However, our fine-grained analysis reveals that what appears to be human-like
model behavior is not stable across domains, e.g., the model confuses people and clothing objects
much more frequently than humans do. We also find that standard evaluations underestimate the
actual effectiveness of the naming model: on the single-label names of the original dataset (Visual
Genome), it obtains −27% accuracy points than on MN v2, that includes all valid object names.

1 Introduction

Research on object naming (Ordonez et al., 2016; Graf et al., 2016; Eisape et al., 2020), such as the
linguistic analysis of the naming behavior of humans and computational models, requires natural and
reliable object naming data. Such data should contain naturally occurring naming variation, i.e., that the
same object can very often be called by different names. For instance, a duck can be called duck, bird,
animal, etc. At the same time, in cases where a naming dataset provides multiple names for a given object,
it is important to verify that this apparent naming variation is not a mere consequence of, for instance,
lexical errors or different people naming different objects in the same scene. In this work, we assess the
factors that affect the collection of object naming data in the typical Language & Vision (L&V) setup, and
test whether these factors impact the accuracy or apparent accuracy of a L&V object labeling model.

Existing work in L&V has relied on data collection methods that prompt natural language users to freely
talk about or refer to particular objects in an image (Kazemzadeh et al., 2014; Yu et al., 2016; Silberer et
al., 2020). Common to these methods is the use of images as a proxy for the actual context of language
use (i.e., the real world), and the use of bounding boxes drawn onto the image to indicate the target object
that is to be named. These two common aspects, essentially simulating real-world linguistic reference,
have enabled large-scale data collection leveraging existing Computer Vision datasets. However, both
aspects also introduce potential confounding factors, such as referential uncertainty, where a bounding
box may fail to uniquely identify the target object, or visual uncertainty, i.e., an object may be more
difficult to recognize from a still image than in a real-world scenario.

In this work we analyze, after expansion with new meta-annotations, an existing dataset that was
created using the method just described, namely ManyNames (Silberer et al., 2020).1 It builds upon object
annotations in Visual Genome (Krishna et al., 2016), and provides up to 36 name annotations for each of

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0.

1The ManyNames data is available at https://github.com/amore-upf/manynames
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25K objects in images, where the objects belong to 7 different domains (e.g., animals, people, food). To
crowdsource the names, Silberer et al. presented subjects with an image and asked them to freely name
the target object that was marked by a bounding box. The resulting dataset appeared to exhibit naming
variation, with an average of roughly 3 distinct names per object, but, as mentioned in Silberer et al., the
presence of naming errors in the data prevent one from drawing conclusions about naming behavior, in
humans and in computational models. Indeed, upon manual inspection we found errors of the kinds we
mentioned above: some subjects named a different object from the one highlighted by the bounding box,
or intended to name the correct object but used a clearly incorrect name (see Figure 1 for examples).

Our first contribution is to assess the factors that affect the collection of valid naming data in the
typical L&V setup. To this end, we collect and analyze verification annotations for ManyNames via
crowdsourcing. Our analysis shows a) that the predominant type of error in ManyNames is a referential
mistake (where subjects name an object other than the target); b) that naming variation in ManyNames is
still substantial after correcting for errors and uncertainty, with objects having an average of 2.2 distinct
names; and c) that there are differences between domains in the confounding factors, and in the degree of
genuine naming variation. We publish a verified version of ManyNames (called ManyNames v2) that we
derived through our analysis, to serve as a reliable, verified object naming dataset for future work.1

As our second contribution, we assess if the confounders identified by means of our analysis impact the
accuracy of a L&V object labeling model. We introduce a diagnostic evaluation based on ManyNames v2.
It moves beyond the single-label setup that is common in computer vision and L&V while avoiding the
aforementioned confounds. That is, the verification annotations of ManyNames v2 enable us to establish
whether a name predicted by the model coincides with the most frequent human response, a less frequent
but still valid name, or a mistake (and, in the latter case, of which kind). To the best of our knowledge,
to date there exists no work in L&V that performs a systematic investigation of the kind we do here for
object naming. We showcase the potential of this evaluation method by analyzing the performance of a
popular L&V model, Bottom-up (Anderson et al., 2018). We show a) that a single-label evaluation greatly
underestimates the naming capabilities of Bottom-Up, which actually come close to our estimated human
upper bound; and b) that, however, its effectiveness varies across domains. We furthermore find c) that
the model is confused by the same aspects that confuse humans (as categorized in ManyNames v2), but
not always to the same degree, which suggests that the gap between humans and models regarding actual
human object naming is still larger than the overall accuracy on its own would suggest.

2 Related Work

Object Naming Objects are members of many categories and can be called by many names (e.g., a
duck can be called duck, bird, animal, etc.). The task of object naming—generating a formally correct and
also appropriate, natural name for an object—has been studied in psycholinguisticsand L&V research,
and is related to object recognition tasks in Computer Vision. We briefly discuss each area.

Psycholinguistic studies have traditionally focused on object categories instead of individual objects,
e.g., the category duck as opposed to a particular duck, and have typically used prototypical or schematic
depictions to represent a category (e.g., Rossion and Pourtois, 2004). Such studies have found that humans,
when naturally naming an object, have a preference towards a particular name, defined as the entry-level
name (Rosch et al., 1976; Rosch, 1978; Jolicoeur et al., 1984).

In contrast, work in L&V is mostly concerned with naming particular object instances situated in
naturalistic images. In such a setting, naming preferences are more nuanced: humans may prefer different
names for instances of the same class (e.g., Fig. 1a-b), and even disagree in their choice for the same
instance (Graf et al., 2016; Silberer et al., 2020).

While Graf et al. (2016) modeled object naming in a controlled setting, Ordonez et al. (2016) and
Mathews et al. (2015) used ImageNet data (Deng et al., 2009), where images show more realistic, yet still
isolated objects annotated with WordNet synsets (Fellbaum, 1998). Zarrieß and Schlangen (2017) train a
classification-based model for names produced in referring expressions in the RefCOCO data (Yu et al.,
2016), where objects are situated in complex scenes and names might be affected by context. In contrast
to our work, existing approaches did not have access to name annotations from many different annotators
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(a) (b) (c) (d) (e)
C bird 27/duck 8 duck 33/bird 3 bear 16/polar bear 6/animal 3 table 23/counter 5 dog 24/dalmatian 2
I chicken — ball 5 | dog 3 food 6 | tabletop;desk wheel 4 | ornament;toy;statue
E singleton — other-obj | inadequate other-objs | singletons other-obj | singletons

(f) (g) (h) (i)
C cake 13/pie 3/cheesecake 2 suit 13/jacket 12/tuxedo 4 cake 24/food 5/bread 2 motorcycle 12/scooter 8/moped 7
I berry;dessert car;coat;hand;phone;tails plate 4 | dessert wheel 2 | trike
E singletons singletons other-obj | singleton other-obj | singleton
n̂ board (/∈) man (/∈) bread (same-obj) scooter (same-obj)

Figure 1: Example instances of ManyNames: target objects, marked by the red boxes, together with their
response sets (names and their counts, i.e., the number of MN annotators giving the name; no counts
are shown for singletons (where count= 1), which are separated by ;). Sets are separated into (C)orrect
(adequate) and (I)ncorrect names, and (E)rror types of incorrect names. Names of different objects are
separated by |. The gray-shaded row contains predictions of Anderson et al.’s (2018) model (n̂).

(as in ManyNames, Silberer et al. 2020) or to the verification data we present here (i.e., ManyNames v2),
which enable a more fine-grained evaluation. Beyond diagnostic testing, clean, natural and variable
object naming data could also support model development: e.g., Peterson et al. (2019) suggest that object
classifiers trained on distributions over object labels are more robust and generalize better.

Finally, object recognition tasks in Computer Vision have been agnostic about phenomena intrinsic
to human object naming, such as naming variation. In these tasks the goal is usually to assign a single
supposed ground-truth label from a pre-defined vocabulary, varying from 20 categories (Everingham et al.,
2015) to a few thousand synsets (Russakovsky et al., 2015) or words (Kuznetsova et al., 2020). Although
previous work considered effects of object/image characteristics on model effectiveness (Hoiem et al.,
2012), a comparison to a human upper bound of the kind we conduct has thus far been missing.

Uncertainty in Bounding Box Annotations Bounding boxes are by far the most common way to
annotate objects in images, despite the fact that they are well-known to cause problems for annotation
efficiency and quality (Papadopoulos et al., 2017; Kuznetsova et al., 2018; Hoiem et al., 2012). In
Computer Vision, the standard protocol to obtain box annotations is the one established by Russakovsky
et al. (2015), which asks annotators to draw a tight box around each object, namely, the smallest box
containing all visible parts of the object. Kuznetsova et al. (2018) point out, however, that this criterion
can still trigger uncertainty (e.g., is water part of a fountain?). Moreover, the protocol itself has proven
difficult to strictly adhere to. In the collection of Visual Genome (Krishna et al., 2016), annotators
produced region descriptions and corresponding bounding boxes for objects. Even though these boxes
were additionally verified and linked in a separate verification round, Silberer et al. (2020) observe that
the resulting annotations still do not fully comply with the bounding box annotation protocol (e.g., the
same object can have multiple distinct boxes), in some cases leading to referential uncertainty.

Other L&V datasets have relied on predefined box annotations to prompt new annotators or speakers
with a specific target (Kazemzadeh et al., 2014; Yu et al., 2016; De Vries et al., 2017). These approaches
assume that verification of the data is ensured by the interactive protocol, in which a second participant is
listening and must identify the target object. However, it does not overcome the problem that the initial
speaker may already face referential uncertainty in their box prompt (e.g., water or fountain). To the best
of our knowledge, no prior work in L&V systematically investigates this, as we do here for object naming.
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3 Free Object Naming: Verification Collection and Analysis of ManyNames v2

3.1 Obtaining Consistent Response Sets from ManyNames v1

Silberer et al. (2020) created the dataset of object names, ManyNames, by collecting on Amazon Mechan-
ical Turk (AMT) approximately 36 names each for 25k target objects o. Each object oj was presented
visually by a picture containing a single bounding box bj to delineate the target object, see Figure 1 for
examples. The ManyNames annotations are structured as follows: for a box bi that delineates an object oi
in image i ∈ I , we have a response set Ri := {(n1, p1), ..., (nk, pk)} of k name–frequency pairs. Unless
otherwise stated, by name–object pairs we refer to name types given an individual object (i.e., there are
k names). For each object, there are M name tokens, with M :=

∑k
l=1 count(nl). For each name nj

in the response set, pj is the relative frequency of that name in the response set: pj :=
count(nj)

M . This
means that p can be interpreted as the estimated probability distribution over names nj for box bi. Let
ntop denote the preferred or top name, i.e., the most frequent name the AMT workers gave for bi. Let
nalt denote the remaining, less preferred or alternative names.2

Due to visual and referential uncertainty in the images (see Section 1), or plain annotation errors,
ManyNames 19 provides no guarantee that a name in a response set is in fact an adequate name for the
target object, or that two names which occur in the same response set were even intended for the same
object. For instance, annotators might have entered an inadequate name, such as dog for the bear in
Figure 1c; or named different objects in the box, such as the bear or the ball in the same image. Our
goal is to obtain consistent response sets Ri which only contain adequate names nj ∈ Ri for the same
object oi that is delineated by bi. Hence, we must identify errors in ManyNames along two dimensions: (i)
the adequacy which verifies each individual name–box pair (nj , bi) and (ii) same-object/other-object
which verifies each name–name–box triple (nl, nj , bi) with respect to object identity, i.e., whether the
annotators who provided nl and nj for the box bi likely intended to name the same object. Fig. 1d shows
that, because of referential uncertainty of boxes, adequacy alone is not enough to identify consistent
response sets: food was judged fully adequate given the box, but also as naming a different object from
the (likewise adequate) top name table. Given both adequacy and same-object annotations, we will be
able to compute a consistent response set for each box as follows: given its top name ntop, exclude an
alternative name nalt from the response set if it does not refer to the same object, or if it has low adequacy.

3.2 Collection of the Verification Annotations: ADEQUACY, INADEQUACYTYPE, SAMEOBJECT

We recruited annotators via crowdsourcing using Amazon Mechanical Turk (AMT)3. Workers were
asked to conduct exactly the two types of annotations mentioned above: adequacy and same-object.4 For
adequacy, workers could choose between “perfectly adequate” (which we encoded with score 1 for the
analysis below), “there may be a (slight) inadequacy” (score 0.5) and “totally inadequate” (score 0). In
addition, if a worker selected a slight or total inadequacy they had to specify the type of inadequacy from a
pre-defined list (based on our prior data inspection): referential (paraphrased as “named object not tightly
in bounding box”; e.g., bear–ball in Fig. 1c), visual recognition (“named object mistaken for something
it’s not”; as in bear-dog), linguistic (such as dear for deer), and “something else” (other).5

In this way we collected verification annotations for the entire ManyNames data, except for objects
where all annotators gave the same name, which we assumed were reliable, and names with a count of 1,
which we assumed were unreliable. The remaining 19, 427 images had on average around 4 names per
object, totalling 69, 356 name–object pairs to be verified. Each image, with the target object marked by a
box, was presented to 3 workers, along with its ManyNames response set (minus names that were given
only once). In total, 255 participants contributed annotations.

2Note that ManyNames uses only images and boxes from Visual Genome, not the names; the name that Visual Genome
originally assigned to an object oi is not necessarily an element of the ManyNames response set Ri.

3https://mturk.com
4For adequacy, we provided the definition that “a name is adequate if there is an object in the image, whose visible parts are

tightly circumscribed by the red bounding box, that one could reasonably call by that name”.
5Below, we report the results for linguistic mistakes as part of the other causes, because it was very infrequent (less than

1% of all name–object pairs), possibly because Silberer et al. (2020) did automatic spelling correction.

https://mturk.com
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(a) Distribution of ADEQUACY scores for name–object pairs,
divided into 7 bins, each bin further subdivided into top
names (orange) and alternative names (green) for each object.

(b) Distribution of SAMEOBJECT scores for pairs of top
names and their alternative names (weighed by the name
counts in the original ManyNames response set), divided into
4 (uneven) bins, each bin further subdivided by inadequacy
type (colors).

Figure 2: Distribution of ADEQUACY and SAMEOBJECT scores in ManyNames.

Given the annotations, we compute for each name nj its mean adequacy score among its 3 collected
annotations, which we denote by ADEQUACY(nj). Let INADEQUACYTYPE(t|nj) denote the score of
name nj for each inadequacy type t, computed as the proportion of annotators who judged nj to have
inadequacy type t (representing t as ‘none’ when the annotator selected ‘perfectly adequate’). Likewise,
let SAMEOBJECT(nj |nl) denote the proportion of annotators who judged nj to be intended to name the
same object as nl.

3.3 Analysis: Errors, their Causes, and Effects

Figure 2a shows the histogram (in 7 bins) of ADEQUACY (mean adequacy scores), each bin further
subdivided into top names (ntop, orange) and alternative names (nalt, green) for each object. The figure
shows that most names are fully or largely adequate, with 68% of name–object pairs judged as ‘perfectly
adequate’ by all respective annotators (ADEQUACY = 1). In contrast, only few name–object pairs were
judged as ‘completely inadequate’ by all annotators (0.03% of top names and 2.4% of alternative names).
There is a clear division between the top names ntop in orange, which are overwhelmingly perfectly
adequate, and the alternative names nalt in green, of which half (52%) are judged as perfectly adequate
and the other half spread along the full range of mean adequacy scores. The former reflects that a name
that was produced by many different humans (for 96% of all ManyNames objects, the ntop was given by
at least 10 people) is very likely to be a perfectly adequate name for the target object. Overall, most names
are fully or largely adequate. As we will show next, most inadequacies correspond to referential issues.

Mostly Referential Errors We will next show that most inadequacies correspond to referential issues,
and that these names, however, have a low response frequency, by looking at both, name–object pair types
(as in Fig. 2a) and tokens. Table 1 (row ManyNames v1) represents our verification annotations for the
full ManyNames dataset. It shows the distribution of inadequacy types across name–object pairs, jointly
considering slight and total inadequacies; with an average INADEQUACYTYPE of 21%, most naming
issues are indeed referential (i.e., cases where names do not exactly correspond to the object delimited by
the bounding box). However, Table 1 reports name–object pair types; if we consider tokens (individual
responses) instead, we find referential errors in 7% of the cases. That is, names with referential issues have
a low response frequency. A less prominent but still noticeable issue are visual recognition errors (4%),
while other errors occur rarely. We will explain the remaining rows of Table 1 in Section 3.4.

The fact that most INADEQUACYTYPEs are referential has the effect that the most prevalent cause of
noise in the data is subjects naming other objects than the one that, according to most annotators, was
the one marked by the box. Figure 2b illustrates this with the SAMEOBJECT scores (i.e., proportion
of annotators judging two names to be the same object); it shows the token-based distribution of the
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SAMEOBJECT scores between all name responses and their corresponding top names ntop, divided into 4
(uneven) bins, each bin further subdivided by INADEQUACYTYPE (colors). We consider name tokens—the
name that was given by each individual ManyNames annotator for a given object—, not name types—the
name that was given by at least 2 annotators (recall that we discarded names with count 1)—in order
to better reflect the distribution of actual naming behavior. To obtain the token-based distribution, we
multiplied the SAMEOBJECT scores by the name counts in the original ManyNames response sets (see
Appendix A for details). Note the strong agreement in the same-object judgments: 91% of all name tokens
were judged to name the same object as ntop by all our annotators (SAMEOBJECT = 1), and 6% to not
(SAMEOBJECT = 0). Only in 3% of cases (the middle two bins) did our annotators disagree on whether a
given token and ntop are co-referring. Also note the expected correspondence between the error types and
the SAMEOBJECT judgments: when SAMEOBJECT = 0, most pairs are deemed to be referential errors.
This shows that the task of deciding whether two ManyNames annotators, who entered different names,
were likely intending to name the same object elicits robust judgments.

Discussion of Causes We have shown that there is a non-negligible number of cases in which subjects
named an object different from the target. Part of the reason may be annotators not doing their task
faithfully; recall that the initial data collection was a generation task in which it is difficult to put quality
control mechanisms. However, the high amount of perfectly adequate names suggests that this is unlikely
to be the sole or even main cause, pointing perhaps to the experimental setup itself as a culprit: the real-
world context of naming behavior is imperfectly approximated by an image and a potentially ambiguous
box. Qualitative analysis is consistent with this hypothesis. On the one extreme, we find plain annotator
errors, such as ball for a bear in Figure 1c, and on the other, cases of genuine bounding box ambiguity, as
in Figure 1d, where it is not possible to determine whether the box marks the table or the food it contains.6

Most cases fall in between these extremes, with effects like object salience clearly playing a role. For
instance, in Figure 1e, the box marks the dog, but the wheel occupies almost the whole box and is more
visually salient, even occluding the target object. Most people correctly identified the dog, but four named
the wheel instead. These effects are partially domain-dependent, as we will discuss in Section 3.5.

3.4 Defining ManyNames v2

For the analyses that follow, here and in Section 4, we define a new version of ManyNames containing
only consistent response sets (see Sect. 3.1). Names in a consistent response set must name the same
object as the top name in the set, which we define in terms of SAMEOBJECT > 0, and must be sufficiently
adequate, which we define as ADEQUACY > 0.4. Thus, consistent response sets are obtained by removing
from the original ManyNames (henceforth ManyNames v1) all names that do not meet these two criteria.
The set of excluded names corresponds to row 3 of Table 1, and row 4 shows the dataset obtained by
excluding them, which we refer to (and publicly release) as ManyNames v2. Accordant with the fact that
most issues are referential, there is a large overlap between the two criteria: only 10% of the removed
names are discarded by the addition of the adequacy threshold.

We chose the thresholds of our two criteria based on the foregoing analysis, and with the aim of exclud-
ing clear errors while leaving room for borderline cases or genuine disagreements between annotators.
One of our research interests being naming variation, we did not want to exclude a potential variant just
because, e.g., a single annotator considered it inadequate. However, for different tasks it may make sense
to choose these thresholds differently, and to facilitate this we will publicly release the raw verification
annotations in addition to the consistent response sets as we computed them. Our analysis below (Sect. 3.5)
will focus on the consistent response sets as defined, i.e., ManyNames v2. For model analysis in Section 4
we will also rely on the different inadequacy types.

3.5 Analysis of Naming Variation per Domain: ManyNames v1 vs. v2

The consistent response sets of ManyNames v2 give us a more reliable empirical window on genuine
naming variation, i.e., the existence of multiple adequate names for the same object. Table 2 compares

6Using segmentation masks instead of boxes could partially remedy referential ambiguity, but Computer Vision datasets
providing masks are much smaller than those with boxes, and some issues (like highly overlapping objects) would still remain.
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inadequacy type (%) # name-
ref. vis. oth. none obj pairs

ManyNames v1 21 4 1 73 72,476
SAMEOBJECT(nalt|ntop)=0 87 2 3 8 14,338
. . .∪ ADEQUACY(nalt)≤0.4 81 7 4 8 15,948

ManyNames v2 4 4 1 92 56,528

Table 1: Distribution of inadequacy types for Many-
Names (first row) and different subsets: cases
where SAMEOBJECT score is 0 (second row), cases
where either that holds or ADEQUACY ≤ 0.4 (third
row), and ManyNames v2, obtained from Many-
Names v1 by removing all cases in the third row.

ManyNames v1 ManyNames v2
domain N %ntop ±std N %ntop ±std

all 2.9 75.2 ±21.9 2.2 80.2 ±20.7

people 4.3 59.0 ±20.4 3.3 65.1 ±21.8
clothing 3.2 70.1 ±18.5 2.4 76.7 ±18.1
home 3.1 72.6 ±20.7 2.1 81.2 ±19.1
buildings 3.0 74.7 ±20.7 2.1 82.7 ±19.3
food 2.9 76.4 ±20.7 2.4 79.7 ±19.3
vehicles 2.4 76.6 ±19.8 2.1 78.9 ±19.6
animals/plants 1.5 94.5 ±12.1 1.3 95.4 ±11.4

Table 2: Naming variation in ManyNames
v1 vs. v2, with mean number of distinct names
per object (columns N) and mean percentage of
ntop responses (%ntop).

(apparent) naming variation in ManyNames v1 and v2, overall and by domain (rows), by listing both
the mean number of names per object (columns N ) and the mean percentage of original ManyNames
annotators who entered the top name. The table shows a 25% reduction in mean number of names
per object (from 2.9 for ManyNames v1 to 2.2 for ManyNames v2 on average), and an increase in the
percentage of entered names being the top name (75% to 80%). Thus, inevitably, noise in the data led
to overestimating naming variation; however, even after noise removal, substantial variation remains.
This suggests that free object naming cannot be adequately modeled with a single-label approach, as is
common in Computer Vision—we return to this in Section 4.

ManyNames v1 on its own already suggests that variation is domain-dependent, a picture that is
maintained in ManyNames v2: people trigger the most variation (3.3 names on average in ManyNames v2),
and animals the least (1.3 names). Moreover, by comparing across domains also the reduction in variation
of ManyNames v2 compared to v1 we can see that the susceptibility to factors that inflate true variation,
primarily referential and visual inadequacies, is domain-dependent too. People, home, and buildings are
the most susceptible to these factors (−1 in N for ManyNames v2); vehicles and animals/plants the least
(+0.3 and−0.2). In the former, most discarded items involved referential errors or uncertainty (about 85%,
in contrast to, e.g., food with 67%), typical example errors being the confusion of clothes and the wearer
of them, a background target with a foreground object (e.g., Fig. 1e), or ambiguous bounding boxes
(e.g., Fig. 1d). In contrast, the animals/plants domain has the most non-referential inadequacies (43.6%;
clothing the least with 3.2%), which are predominantly visual errors, likely reflecting the visual similarity
of different types of animals, especially as seen on pictures. In these domains humans seem to have a
strong tendency towards the ‘basic-level’ category (e.g., bear is preferred over the hyponym polar bear
and the hypernym animal ), explaining their lower naming variation. Interestingly, this preference holds
even in the face of visual uncertainty, i.e., cases where a hypernym would have been safer, such as animal
in the case where two subjects entered goat, one entered horse and another dear (for ‘deer’).

Finally, we remark that ensuring consistent response sets (filtering incorrect names) proved the
most difficult for the food domain. In ManyNames v2, the food domain has the largest proportion
of name tokens (7.6%) for which it is still unclear if they name the same object as the top name
(i.e., 0 < SAMEOBJECT < 1), followed by clothing (4.9%). The associated inadequacies are primarily
referential, but also visual (e.g., uncertainty about what the picture is showing) and linguistic (termi-
nology). The food domain in particular seems to be susceptible to variation between the annotators in
categorization/terminology. For example, bread in Fig. 1h survived into ManyNames v2 as an adequate
alternative for cake, even though it was given by only 2 original ManyNames v1 annotators.

4 Diagnosing Model Effectiveness in Human-Like Object Naming

In Section 3.4 we obtained ManyNames v2, which provides a reliable categorization of object names: the
top name, alternative names for the same object (i.e., in the consistent response set), adequate names for
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other objects (i.e., outside the consistent response set), and inadequate names of various types. We now
use it to define a diagnostic evaluation method for object naming models, one which is more fine-grained
than the predominant single-label evaluation. It also allows to assess whether models are affected by the
same issues as humans, in particular referential and visual uncertainty.

We apply our evaluation to Bottom-Up (Anderson et al., 2018) as a representative L&V object naming
model, which has been widely used for transfer learning in L&V (Lu et al., 2019; Gao et al., 2019; Chen
et al., 2019; Cadene et al., 2019; Tan and Bansal, 2019, inter alia). In contrast to existing works in
Computer Vision research (Hoiem et al., 2012) on diagnosing the effects of object or image characteristics
on model performance, ManyNames allows us to compare the model against an upper bound of the human
performance in object naming, estimated via the verification annotations.

Our analysis focuses on two questions: First, can an object detector that was trained in a single-label
setting (i.e., towards predicting unique ground truth names) account for the naming variation inherent in
human object naming behavior? Second, does the model exhibit a similar sensitivity as humans to the
interaction between domains (humans, clothes, etc.) as well as the visual characteristics of target objects?

4.1 Experimental setup
As for the diagnostic evaluation method, let n̂ be the name that is predicted by Bottom-Up for a given
image with a bounding box indicating a target object oi for this image. The method checks whether n̂
is in the object’s consistent response set according to ManyNames v2, further subdividing the positive
cases by whether n̂ matches the top name ntop (correct.ntop) or one of its adequate alternative names
(correct.same-object). We treat cases where the predicted name n̂ is not in the consistent response
set as incorrect (although this rests on assumptions, see below), which we subdivide with the help of
the verification data we collected, distinguishing cases in which (i) n̂ must have been intended for a
different object (i.e., SAMEOBJECT(n̂|ntop) = 0, henceforth incorrect.other-obj), (ii) n̂ was intended
for the target object but is inadequate (SAMEOBJECT(n̂|ntop) > 0 ∧ ADEQUACY(n̂) ≤ 0.4), (iii) a
name that was given by only a single annotator (incorrect.singleton), and (iv) a name that did not occur
in the ManyNames v1 response set (incorrect.unobserved). Our treatment of categories (iii) and (iv) as
incorrect is a simplifying assumption to facilitate analysis.7 Among the incorrect cases we treat (i)-(iii)
as human-like errors, because at least one ManyNames v1 annotator produced the name, and (iv) as a
non-human-like error, assuming a human would not give that name.

We use the object labeling model Bottom-Up (Anderson et al., 2018)8, which builds upon the Faster
R-CNN architecture (Ren et al., 2015), and which was initialized with features pre-trained on 1K ImageNet
classes (Deng et al., 2009; Russakovsky et al., 2015) with the ResNet-101 classification model (He et al.,
2016). The model was originally optimized for a set of 1, 600 frequent names in Visual Genome (VG).

For evaluation we use those names in the Bottom-Up vocabulary which also occur among the
7, 970 names in ManyNames v2, resulting in a target vocabulary of 1, 253 names. We test on the
subset of ManyNames images that are included in the VG test split that was used by Anderson et al.
(2018), and whose top ManyNames name is covered by the evaluation vocabulary (1, 145 images in total).
We compare model effectiveness against the human upper bound, which is computed by taking all name
tokens of an object’s response set in MN v1 as name predictions of a ‘human model‘, and applying our
evaluation methodology to them.

4.2 Results
Table 3 shows the main results of Bottom-Up and the human upper bound. Bottom-Up achieves an
accuracy of 73.4% on the top names (first column), but when taking all correct names into account its
accuracy is +14.5% points higher (87.9%, third column). This shows that the standard single-label
evaluation of recognition models in Computer Vision substantially underestimates model effectiveness,
punishing models for what are actually valid alternatives. It also illustrates, especially for the evaluation
of L&V methods, the importance of taking into account linguistic variation when assessing model

7Recall that we excluded singletons from the verification phase (even if some may be correct, see Fig. 1).
8We used the code and model available at github.com/peteanderson80/bottom-up-attention The model is

trained with an additional output over attributes, but we only use the object/instance class prediction layer.

github.com/peteanderson80/bottom-up-attention
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Model correct incorrect
ntop same-object all other-object inadequate singleton unobserved

Human 75.9 15.2 91.1 1.8 3.1 3.9 –
Bottom-Up 73.4 14.5 87.9 2.5 1.5 1.0 7.1

Table 3: Results of the human upper bound vs. Bottom-Up: numbers represent the proportion (in %) of
predicted names that fall under each category (see text for details on the splits).

Model Domain correct incorrect total #
ntop same-object all other-object inadequate singleton unobs.

Human people 59.6 28.2 87.8 2.1 4.1 5.9 – 224
Bottom-Up people 70.1 18.8 88.9 1.3 0.0 3.6 6.2 224

Human clothing 74.2 17.5 91.7 2.4 1.6 4.2 – 97
Bottom-Up clothing 59.8 16.5 76.3 2.1 0.0 9.3 12.4 97

Human food 73.0 18.6 91.6 1.0 3.0 4.4 – 98
Bottom-Up food 69.4 12.2 81.6 2.0 0.0 2.0 14.3 98

Human buildings 77.3 9.5 86.8 3.1 4.6 5.5 – 50
Bottom-Up buildings 68.0 14.0 82.0 2.0 2.0 4.0 10.0 50

Human vehicles 76.5 18.1 94.6 0.8 1.7 2.9 – 182
Bottom-Up vehicles 68.1 25.3 93.4 0.5 0.0 1.6 4.4 182

Human home 74.7 12.3 87.0 3.0 5.8 4.1 – 279
Bottom-Up home 71.3 13.3 84.6 2.9 3.6 1.8 7.2 279

Human animals plants 95.1 2.2 97.3 0.4 0.4 1.9 – 215
Bottom-Up animals plants 93.5 2.8 96.3 0.0 0.0 0.0 3.7 215

Table 4: Results per domain, again as % of predicted names that fall under each category. Column ‘total #’
gives the number of test instances per domain.

effectiveness on human language in visual scenes (Vedantam et al., 2015; Jedoui et al., 2019). Not shown
in the table, we found that evaluating Bottom-Up using the supposed ground-truth name nvg from Visual
Genome (the dataset upon which ManyNames is built), instead of ntop from ManyNames, underestimates
model effectiveness even further (down to 61.2% accuracy, not in the table). This demonstrates that many
annotations are needed (such as the 36 of ManyNames) for the top name to accurately reflect naming
preferences. We refer to Appendix B for a more detailed analysis of this.

As for the human upper bound, Bottom-Up comes close in general (87.9% accuracy, compared to
91.1% for humans), and even has a similar distribution across correct top and correct alternative names of
around 74% and 15%, respectively (columns 1 and 2). Among Bottom-Up’s incorrect predictions, almost
half are human-like according to our categorization, i.e., cases where Bottom-Up predicted a name for
another object, an inadequate name, or a singleton (2.5 + 1.5 + 1.0 vs. 7.1, i.e., 41% vs. 59%). Overall,
we conclude that Bottom-Up can accurately simulate human object naming in images, and, like humans,
is affected by visual and referential uncertainty caused by the task setup, foremost, by relying on bounding
boxes in images to delineate a target object.

However, a closer look per domain, given in Table 4, reveals that confounding factors do affect Bottom-
Up and humans differently. Bottom-Up has a higher overall accuracy (third column) than humans on
the people domain (88.9% vs. 87.8%), but 15% points worse on the clothing domain (76.3% vs. 91.7%).
Qualitative analysis shows that the model is, as humans, quite susceptible to referential issues in the
people and clothing domains, but with the effect of learning a bias towards people: it tends to recognize
the wearer rather than the clothing item (e.g., Bottom-Up predicted man for the clothing item in Fig. 1g).
Indeed, 45% of cases in other-object and singletons, and 75% of unobserved cases were due to the model
predicting a person instead of a clothing name.

The only other domain in which Bottom-Up falls short against the human bound by quite a margin is
food (81.6% accuracy, 10% points lower). Qualitative analysis revealed that 67% of its incorrect name
predictions (most of which are in unobserved) are related to referential and/or visual issues. This has
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the effect of confusing the depicted object with kitchenware (see the cake–board example in Fig. 1f)
or with visually similar objects. In some cases the model’s predictions (e.g., bread in Fig. 1h) are also
controversial for humans and subject to personal differences (see Section 3.5).

With respect to predicted naming variation, we find contrasts in the vehicles and people domains: In
vehicles, although the Bottom-up’s overall accuracy is human-like, it has a weaker preference for the
top name than humans, favoring alternative names. These alternatives often involve synonymy (e.g.,
airplane–plane) as well as difficult-to-name objects where the top and alternative names seem equally
plausible (e.g., Fig. 1i). We find the reverse in the people domain, where Bottom-Up predicts the top name
more often than humans, i.e., human responses are more varied.

In sum, we have shown that, when taking natural naming variation into account, a representative
labeling model performs close to humans, in two respects: its overall accuracy, and its tendency to predict
the top name around 74% of the time, alternative correct names around 15%, and incorrect names in the
remaining cases. At the same time, we found differences between model and human behavior, in particular
in the people, clothing and food domains, where the model exhibits less variation than humans, has learnt
a bias towards a competing domain, or generally performs worse. This highlights the importance of
fine-grained evaluation on the basis of reliable data that captures both natural naming variation and errors,
such as ManyNames v2.

5 Conclusions

Modeling how humans use language in the visual world is at the core of L&V research. We have focused
on object naming, the choice of a noun (or compound noun) to refer to an object which is marked with a
bounding box in a real-world image. This setup is typical of Computer Vision and L&V for tasks such
as object classification, referring expression interpretation/generation or visual dialogue. Our findings
underline the importance of modeling naming as a phenomenon of its own: A woman, for example, can be
named skier, person, or woman, in different images or by different people. At the same time, there are clear
preferences about how to name a particular object: overall naming agreement in humans is around 80%.
To boost research on object naming, we provide a high-quality naming resource, ManyNames v2, which
is a verified version of a previous dataset with 36 names for objects in 25K images.

For dataset collection, our analysis of the verification data strongly supports a collection methodology
that elicits names from many speakers, in order to capture the variation in possible naming choices, and to
reliably estimate the preferred name of an object. It furthermore suggests that referential issues, the main
cause of noise introduced through the collection setup, can be greatly reduced by a simple verification step
that assumes that the object named by the most frequent response is the target object, and asks subjects to
select the alternative names for this object.

For model development and evaluation, both naming variation and its domain dependence need to be
taken into account. We have shown that ManyNames provides a very different picture of the performance
of a state-of-the-art naming model, compared to a resource that only provides one single gold name per
object (Visual Genome). Our analysis also shows that the model’s naming behavior differs from that of
humans particularly in the people, clothing and food domains, that is, in domains that are very familiar
and relevant in human daily life, and in which we have found that humans exhibit the highest language
variation. This is based on a model that provides a single answer per object; future work should seek to
do even more justice to language variation, by predicting the whole probability distribution of names for
objects (Peterson et al., 2019). We hope that our work will spur further research on object naming and,
more generally, how humans use language to talk about the world.
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Christiane Fellbaum. 1998. WordNet. Wiley Online Library.

Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu, Steven C. H. Hoi, Xiaogang Wang, and Hongsheng Li. 2019.
Dynamic Fusion With Intra- and Inter-Modality Attention Flow for Visual Question Answering. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June.

Caroline Graf, Judith Degen, Robert XD Hawkins, and Noah D Goodman. 2016. Animal, dog, or dalmatian? level
of abstraction in nominal referring expressions. In Proceedings of the 38th annual conference of the Cognitive
Science Society. Cognitive Science Society.

Kenji Hata, Ranjay Krishna, Li Fei-Fei, and Michael S. Bernstein. 2017. A Glimpse Far into the Future: Un-
derstanding Long-Term Crowd Worker Quality. In Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing, CSCW â17, pages 889–901. Association for Computing
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A Computing the Token-Based SAMEOBJECT Distribution

To compute the token-based SAMEOBJECT distribution, we use the top names ntop as reference names, and
take into account the response frequency of each name type given for an individual object, including ntop,
from whose counts we subtract 1. Specifically, we count each occurrence of a name for an object i, but
ignore a single occurrence of the reference name ntop by setting count(ni,top) − 1. Overall, for each
object, we analyse M − 1 instances of name–object pairs, with M − 1 =

∑|Ri|
j=1 [count(ni,j>0)]− 1.
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B Adequacy and Causes of Error in Visual Genome

The Visual Genome dataset (Krishna et al., 2016, VG), upon which ManyNames (MN) is built, used a
different name collection methodology, which in principle should prevent referential uncertainty, because,
essentially, VG’s AMT workers grounded names in the image by drawing a box, such that they explicitly
chose the referent for the name. However, a comparison of MN and VG shows that incorrect name
annotations can also be found in VG, despite its collection setup. First, for 27% of the MN objects, the
VG name nvg does not match the top MN name ntop; i.e., nvg is not the name that most people would use
for the object. For instance, in Figure 2f, 13 subjects chose cake, and only 3 the name given in VG, pie.
Moreover, a quarter of the non-matching names do not even refer to the same object as ntop, and half of
them are inadequate. We refer to Hata et al. (2017) for a thorough analysis of worker quality.


	Introduction
	Related Work
	Free Object Naming: Verification Collection and Analysis of ManyNames v2
	Obtaining Consistent Response Sets from ManyNames v1
	Collection of the Verification Annotations: Adequacy, InadequacyType, SameObject
	Analysis: Errors, their Causes, and Effects
	Defining ManyNames v2
	Analysis of Naming Variation per Domain: ManyNames v1 vs. v2

	Diagnosing Model Effectiveness in Human-Like Object Naming
	Experimental setup
	Results

	Conclusions
	Acknowledgments
	Computing the Token-Based SameObject Distribution
	Adequacy and Causes of Error in Visual Genome

