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Abstract

One of the cardinal tasks in achieving robust medical question answering systems is textual en-
tailment. The existing approaches make use of an ensemble of pre-trained language models or
data augmentation, often to clock higher numbers on the validation metrics. However, two major
shortcomings impede higher success in identifying entailment: (1) understanding the focus/intent
of the question and (2) ability to utilize the real-world background knowledge to capture the con-
text beyond the sentence. In this paper, we present a novel Medical Knowledge-Enriched Textual
Entailment framework that allows the model to acquire a semantic and global representation of
the input medical text with the help of a relevant domain-specific knowledge graph. We evaluate
our framework on the benchmark MEDIQA-RQE dataset and manifest that the use of knowledge-
enriched dual-encoding mechanism help in achieving an absolute improvement of 8.27% over
SOTA language models. We have made the source code available here.1

1 Introduction

The entailment task is similar with natural language inference (NLI), involves identifying the semantic
similarity between two natural language texts, premise (P ) and hypothesis (H). The NLI task’s effective-
ness is crucial for developing a robust natural language understanding system that functions at a human
level (Ben Abacha et al., 2019; Abacha and Demner-Fushman, 2016; Romanov and Shivade, 2018).
Recent literature suggests the use of contemporary language models (LMs) (Devlin et al., 2018; Beltagy
et al., 2019), often ensembled, to achieve better performance (Zhu et al., 2019; Bhaskar et al., 2019; Xu
et al., 2019) on the NLI task. However, our qualitative interpretation of the dataset and results suggests
that LMs fails when it comes to textual entailment (TE), despite being the on-demand language model.
The limitations belong to two major categories:
• Multiple word form: Medical text offers high degree of variability in the form of synonym and

abbreviated words. The same can be witnessed in Table-1, where BERT (Devlin et al., 2018) is
unable to predict the entailment between P and H as they have different terms - ‘Kartagener’s
Syndrome’ and ‘Primary Ciliary Dyskinesia’, while both are synonym.
• Focus/Intent understanding: Given P and H , LMs often fails to capture the focus/intent of both

the sentences. Table-1 shows an example, where the focus of P and H are misunderstood. It can
be seen that P emphasizes the possibility of ‘atypical pneumonia’ occurring within a month after
treatment, whereas H talks about the possible treatments for the disease.

These findings indicate that existing LMs lack semantic interpretation of the input, which is crucial in
the inferencing tasks. In this paper, we deal with the question:

Does the medical textual entailment task benefit from the external domain knowledge to distinguish
semantically identical medical sentences to recognize entailment?

To address this question and above-mentioned limitations, this paper presents a novel framework for
1https://github.com/VishalPallagani/Medical-Knowledge-enriched-Textual-Entailment
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en
tai

ls Premise: I am suffering from Kartagener’s syndrome and wanted information from you
or from Dr. [NAME] for this syndrome. (About fertility) and if possible other symptoms.
Hypothesis: What is primary ciliary dyskinesia?

not
en

tai
ls Premise: What is the possibility of atypical pneumonia occurring again less than a month

after treatment?
Hypothesis: What are the possible treatments for atypical pneumonia?

Table 1: Examples from the MedQA-RQE dataset, where the text highlighted in blue are semantically
similar words and red represents the lexically similar but semantically dissimilar words.

recognizing textual entailment, Sem-KGN: Semantic Knowledge-enriched Graph Network that explores
the domain-specific knowledge to enhance the semantic interpretability in the LMs. The proposed
method devise a dual-encoding mechanism to enrich the classical document encoding (obtained from
BERT) with the knowledge-enriched graph encoder. Specifically, our method builds a heterogeneous
dictionary graph of the given P and H to encode the global context, while BERT’s proficiency lies in
capturing the local contextual information. Rather than constructing graphs solely based on the triples
(subject, object, predicate), more semantic units are introduced into the graph as additional nodes to
enrich the relations between the entities. These additional nodes add medical-entities centered factual
information which are generated by expanding the medical knowledge graphs (KGs) such as UMLS
(Bodenreider, 2004), SNOMED-CT (Donnelly, 2006) and ICD10 (Quan et al., 2005). The medical
entities present in P and H are used to query the related information, ‘diseases/syndromes’, dosage,
‘side-effects’, and ‘drug-interaction’ from the mentioned KGs. Finally, Graph Convolutional Network
(GCN) (Kipf and Welling, 2017) is employed to generate the graph encoding, augmented with the regu-
lar document encoder, and later fused through a multi-headed attention layer to support entailment.
Contributions: (i) Proposed medical-TE framework, by utilizing domain-specific medical KGs to en-
code the global and semantic information of the premise and hypothesis, (ii) Exploited the capabilities of
semantic units in a graph network to encode medical-entities centered factual information for recogniz-
ing textual entailment, and (iii) Evaluated the effectiveness of the proposed method over state-of-the-art
language models and knowledge-infused baseline methods on the benchmark MEDIQA-RQE dataset.

Related Work : The development of annotated TE and NLI medical datasets (Abacha et al., 2015; Ben
Abacha et al., 2019; Abacha and Demner-Fushman, 2016; Romanov and Shivade, 2018) and a variety of
pre-trained language models has led to a rise of extensive ongoing research in this field. Majority of the
systems developed for the TE task adopts the multi-task learning (MTL) framework (Zhu et al., 2019;
Bhaskar et al., 2019; Kumar et al., 2019; Zhou et al., 2019; Xu et al., 2019), ensemble method (Sharma
and Roychowdhury, 2019), and transfer learning (Bhaskar et al., 2019) for achieving better accuracy. Xu
et al. (2019) employed the MTL approach (Liu et al., 2019; Yadav et al., 2018; Yadav et al., 2019; Yadav
et al., 2020) in TE task to learn from the auxiliary tasks of question answering (QA) and NLI. The best
performing system at MedQA 2019-RQE shared task (Zhu et al., 2019) utilized the MTL approach to
learn from intermediate NLI task. Further they used knowledge distillation approach to condense the
information obtained from various models and transfer it into an single model. Few of the works (Wang
et al., 2019; Khot et al., 2018) have explored the usage of the background knowledge or medical KGs
(Kumar et al., 2019; Bhaskar et al., 2019) in extracting information for the entailment task. However, the
consideration of building a vocabulary graph from the textual and later enriching them with information
from the medical KGs is still an unexplored territory.

2 Proposed Approach

The overall architecture of the proposed Sem-KGN is illustrated in Fig.-1. The rest of the section elabo-
rates Sem-KGN in detail.

2.1 Document Encoder

Given a nP words premise P = {wP
1 , w

P
2 , . . . , w

P
nP
} and nH words hypothesis H =

{wH
1 , wH

2 , . . . , wH
nH
}. The document encoder is responsible to capture basic lexical and syntactic in-
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Figure 1: Architecture of proposed methodology

formation from the premise and hypothesis in the form of local context information. We employed the
BERT model to serve as the document encoder in our proposed Sem-KGN framework. Formally, the
local context features are computed as d1, d2, . . . , dn = Document-Encoder(w1, w2, . . . , wn).

2.2 Knowledge-enriched Graph Encoder

Vocabulary Graph Construction: We first construct a dictionary based on all the unique words in the
training dataset. Thereafter, we build a graph G = (V,E) based on the word co-occurrence information
in the dictionary. Instead of building graph based on a given P and H , we were motivated by the work
of (Lu et al., 2020) to build graph by considering all the lexicon in the dataset, which aims at encoding
the global information of the particular domain (in our case medical domain). The nodes of the graph
G are words in the dictionary, the edge between two nodes wi and wj is determine by the normalized
point-wise mutual information (NPMI) (Bouma, 2009).

NPMI(wi, wj) = −ln
p(wi, wj)

p(wi)p(wj)

1

ln p(wi, wj)
(1)

where p(wi, wj) =
#s(wi,wj)

#W , p(i) = #s(wi)
#W , #s(.) is the number of sliding windows containing a word

or a pair of words, and #W is the total number of sliding windows. We make an edge between the nodes
if the value of NPMI(wi, wj) exceed a particular threshold value.

Graph-expansion with Medical Knowledge: We expand the existing graph G with the additional
nodes and corresponding edges to form a graph G∗ = (V ∪ V ,E ∪ E). Towards this, first we ex-
tracted the medical entities by exploiting the entity recognition model2 trained on MedMentions dataset
(Mohan and Li, 2019), from a given pair P and H . Once the medical entities are identified, KGs
such as SNOMED-CT, ICD-10, UMLS and Clinical Trials are exploited to extract the information of
two-hop connected ‘diseases/syndromes’, ‘dosage’, ‘side effects’, and ‘drug-interaction’ type medical-
concepts. The final expanded entities are the additional nodes V which act as the semantic unit to capture
the domain-specific relationship (e.g., treats, caused by) and hierarchical relations (e.g., is a) between
medical-concepts.
Graph-expanded Knowledge Encoding: The Graph-expanded Knowledge Encoder (GxK
Encoder) computes the representation of each node from graph G∗. We are interested to compute
the representation for each extracted entities (e1, e2 . . . em) for given pair of P and H . Formally, we get
h1, h2, . . . , hm = GxK-Encoder(G∗, e1, e2, . . . , em)

We model it using the 2-layer GCN architecture. For the entities, we first make a input matrix
M ∈ Rm×|V |, where row of the matrix M is the one-hot vector of length of |V | (size of dictionary).
Given the adjacency matrix D of expanded graph G∗ a and input matrix M , a single layer of graph
convolution is computed as follows:

H(1) = relu(MDW (1)), where D ∈ R|V |×|V | and W (1) ∈ R|V |×d (2)

2https://go.aws/37SD7ae
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where H(1) ∈ Rm×d is matrix which rows are the node features in. For a given input M , we are interested
to captures the part of the graph from D by multiplying them together as MD. The feature at a given node
wi computed by the interaction between all the neighbouring nodes as h(l+1)

wi = relu
(∑

j
1
cij

h
(l)
wjW

(l)
)

where cij is the normalization constant (Kipf and Welling, 2017). The second layer convolution is
obtained as H(2) = relu(H(1)W (2)), where W (2) ∈ Rd×d

2.3 Multi-headed Aggregator

We fuse the information from Document-Encoder and GxK-Encoder using the multi-headed self-
attention (Vaswani et al., 2017). Our aims to utilize the best of both the worlds. We form a single feature
sequence by augmenting both the encoder representations obtained from both the encoders, with addi-
tional [CLS] token representation. By applying the self-attention on the augmented encoding sequence,
we facilitate the network to attend the useful information across the individual encoding. We model
our Multi-Headed Aggregator (MH-Aggregator) using the 12 layers of Transformer-block with 16
heads. We use the last layer output of the aggregator and consider the [CLS] token representation as the
final representation F ∈ Rd of given P and H pair. We employ a feed-forward layer to classify a pair of
premise P and hypothesis H into the corresponding ‘entail’ or ‘non-entail’ classes.

f1, f2, . . . , fn+m = MH-Aggregator(d1, d2, . . . , dn, h1, h2, . . . , hm)

prob(class = entail|P,H, θ) = exp(WT
entailF + b)/

∑
j

exp(WT
j F + b) (3)

Models Accuracy Precision Recall F1-Score

Baseline 1
BERT 47.90 46.16 48.26 47.18
BioBERT 50.14 46.28 48.97 47.58
ClinicalBERT 49.60 48.79 49.56 49.17

Baseline 2
BERT + KI 49.56 46.06 48.69 47.33
BioBERT + KI 51.15 48.56 49.56 49.05
ClinicalBERT + KI 50.14 50.00 50.00 50.00

(Zhu et al., 2019) BERT + linear projection 51.30 51.53 51.30 49.45

Proposed Model Sem-KGN 56.17 63.18 56.18 59.47

Table 2: Experimental results of our proposed model
(Sem-KGN) and the baseline methods on the official
test set.

Models Components Accuracy Precision Recall F1-Score
Sem-KGN 56.17 63.18 56.18 59.47

(-) Knowledge-enriched
Graph Encoder

47.90 (8.27 ↓) 46.16 (17.02 ↓) 48.26 (7.90 ↓) 47.18 (12.29 ↓)

(-) Medical
Knowledge-graph

50.65 (5.52 ↓) 62.27 (0.91 ↓) 50.66 (5.52 ↓) 55.86 (3.61 ↓)

Table 3: Ablation study showing the role of
each component in the model. The values
within the bracket show the absolute decre-
ments by removing the component.

3 Experimental Results and Analysis

Dataset and Metrics: We used widely adopted benchmark entailment dataset, MEDIQA-RQE created
by (Abacha and Demner-Fushman, 2016), released in the BioNLP 2019 shared task. The dataset is
derived from consumer health questions (CHQs) and frequently asked questions (FAQs) from the U.S.
National Library of Medicine and National Institute of Health respectively. The training and validation
set consists of total 8890 CHQ and FAQ pairs with the entail label of 4784 instances. The test set consist
of 230 pairs with 115 entail labels. We used official evaluation metrics (Accuracy) to evaluate our model.
Additionally, we also provided the Precision, Recall, and F1-Scores for the evaluation.

Implementation Details: We have chosen models’ hyper-parameters empirically on the validation set.
The base-uncased version of BERT3 of hidden size 768 with a max sequence length of 200 (160 for
P and 40 for H) is used in all experiments reported in the paper. The size of dictionary to create the
dictionary matrix was 30000. The dimension of The threshold of NPMI is set to 0.3 to obtain meaningful
relation between words. The last layer’s hidden size of the graph-expanded knowledge encoder is set to
16. We use the Adam optimiser (Kingma and Ba, 2014) for parameters update after every epoch of
training. We set the standard batch size of 16, and trained for 5 epochs with a dropout rate of 0.2 and
2e− 5 learning rate in all the experimental results reported in this work.
Baseline Models: To show the effectiveness of Sem-KGN, we adopted following competitive baseline
models:
1. Language Models (LMs): We utilized the SOTA LMs (BERT) as well as the LMs adapted for the

3https://bit.ly/2ZajZR1
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Sample Examples and Error Type Premise Hypothesis True Label BioBERT+ KI Sem-KGN

Example 1 Can you mail me patient information about Glaucoma, I was recently
diagnosed and want to learn all I can about the disease.

How is glaucoma diagnosed ? Non-entailed Non-entailed Non-entailed

Example 2

I was writing to inquire about more information regarding the
diagnosis of OI. We have family members who are in the process of
waiting for genetic testing to come back but are under allegations of
child abuse. Is there any information that may be helpful to us?

How to diagnose Osteogenesis Imperfecta ? Entailed Non-entailed Entailed

Error Type 1:
Complex and Long Question

Hello, my dad, 68 years old, has gastritis, it did ache occasionally
over the last several years. The other day, he went to hospital to have
medical check-up with endoscopic ultrasonography, and found GIST
with about 1cm in size. Dr. told him that he may consider surgery or
not, it is up to him. What are we supposed to do?

How is an endoscopic ultrasound performed ? Non-entailed Entailed Non-entailed

Error Type 2:
Ambiguous Question

Can you please send me as much information as possible on “hypo-
thyroidism”. I was recently diagnosed with the disease and I am
struggling to figure out what it is and how I got it.

How is Hypothyroidism diagnosed ? Non-entailed Entailed Non-entailed

Table 4: Qualitative and error analysis of our proposed model (Sem-KGN) with the best baseline model.

clinical (ClinicalBERT) and medical domain (BioBERT), fine-tuned for MEDIQA-RQE task.
2. Knowledge-Infused Language Models (+KI): These baselines model works on the principle of
shallow knowledge infused learning, where we provided the knowledge about the medical entities at
the token level to the LMs. The intuition behind using this baseline was to understand at what layer if
knowledge is integrated into the LMs, it is going to be beneficial.

Results: Table-2 provides an overview of the results, which demonstrates that Sem-KGN, equipped
with KGs enriched graph encoding performs the best over all the baselines model. A considerable in-
crease in the accuracy of 8.27% can be observed over vanilla BERT model in comparison to proposed
Sem-KGN. The similar set of improvement (over 6%) can be observed with BioBERT and Clinical-
BERT. We also observed the power of basic shallow (+KI) over the vanilla LMs showing the absolute
improvement of 1.5%. Further, in comparison to baseline 2, Sem-KGN achieved the average increment
of 6% over all the knowledge-infused LMs. Finally, from our ablation study (c.f. Table-3), it can be
noticed that enriching the graph encoder with the domain knowledge assists in the entailment task. The
results conclude two important claims: (1) the modularity of the knowledge infusion process that can be
combined with any LMs is witnessed, and (2) Sem-KGN proves its effectiveness in having a local as well
global understanding of the premise and hypothesis. We also compare the results against the best system
(Zhu et al., 2019) at MEDIQA-RQE task that was based on the ensemble of LMs. However, to have a
fair comparison and understand the role of our Knowledge-enriched graph encoder, we only utilize their
model that have introduced “linear projection” over BERT. The proposed Sem-KGN has outperform the
“linear projection” mechanism described in Zhu et al. (2019).
Analysis: Table-4 depicts the qualitative analysis of Sem-KGN, w.r.t baseline models on 50 randomly
sampled DEV set. The first entry shows the effectiveness of Sem-KGN in being able to understand the
focus of the premise and the hypothesis which is achieved by the dual encoding mechanism. The second
entry in the table affirms the importance of domain-specific KGs in assimilating medical information.
Error Analysis: Table-4 entry 3 and 4 shows the leading cause of the error in the proposed model. We
found that major misclassification occurred when the premise was complex and have a multiple ques-
tions. We also observed in some cases when there is high ambiguity between premise and hypothesis,
model fail to recognize the correct label. For e.g., in the Table-4 entry 4, with the presence of term ‘hy-
perthyroidism’ and ‘diagnosed’ both in premise and hypothesis it is very difficult to recognize the true
label: not-entailed.

4 Conclusion

In this paper, we proposed a framework Sem-KGN to recognize medical textual entailment. Our frame-
work utilized the local context from BERT based document encoder and global context by expanding
the vocabulary graph with the medical entities obtained from the medical knowledge-bases. We present
an efficient aggregator scheme to fuse the multiple encoding. The proposed Sem-KGN framework out-
performed the competent pre-trained language model and knowledge-graph enabled language model
architectures with fair margin. In future, we plan to explore multi-domain knowledge-graph and efficient
graph embedding based techniques for medical textual entailment.
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