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Abstract

In formal semantics, there are two well-developed semantic frameworks: event semantics, which
treats verbs and adverbial modifiers using the notion of event, and degree semantics, which ana-
lyzes adjectives and comparatives using the notion of degree. However, it is not obvious whether
these frameworks can be combined to handle cases in which the phenomena in question are inter-
acting with each other. Here, we study this issue by focusing on natural language inference (NLI).
We implement a logic-based NLI system that combines event semantics and degree semantics
and their interaction with lexical knowledge. We evaluate the system on various NLI datasets
containing linguistically challenging problems. The results show that the system achieves high
accuracies on these datasets in comparison with previous logic-based systems and deep-learning-
based systems. This suggests that the two semantic frameworks can be combined consistently
to handle various combinations of linguistic phenomena without compromising the advantage of
either framework.

1 Introduction

Since Montague (1970), formal compositional semantics has provided successful accounts of linguistic
phenomena using logical expressions along with syntactic structures. In recent years, with the devel-
opment of wide-coverage parsers such as Combinatory Categorial Grammar (CCG) parsers (Clark and
Curran, 2007), some of the formal theories have been implemented as robust computational seman-
tics (Bos, 2008; Mineshima et al., 2015; Abzianidze, 2016) and have been applied to natural language
inference (NLI), which is the task of determining whether a text entails a hypothesis. This paper attempts
to push forward this paradigm by focusing on the interaction of two semantic frameworks, namely, event
semantics and degree semantics.

Generally speaking, research in linguistic formal semantics has tended to focus on creating an in-
depth theory for a variety of linguistic phenomena, such as quantifiers, adjectives, comparatives, and
tense. However, it is often not obvious whether these independent theories can be combined and ex-
tended to cases in which the phenomena in question interact. Thus, event semantics has been developed
largely to account for the semantics of verb phrases and adverbial modifiers (Davidson, 1967; Parsons,
1990). In contrast, degree semantics provides an analysis of gradable expressions such as adjectives and
comparatives, using the notion of degree (Cresswell, 1976; Stechow, 1984; Kennedy, 1997). Although
each theory has been elaborated for its own sake, it is not clear how to combine these two and handle
expressions that require the application of both theories, such as the comparative form of adverbs, though
it is a necessary step for analyzing real texts.

The computational modeling of compositional semantic theories mentioned above enables us to pre-
cisely compute the predictions of each theory. In addition, their application to NLI tasks provides a
systematic way of evaluating a formal semantic theory. Building on the previous logic-based approaches
to NLI, we present a logic-based NLI system that combines event semantics and degree semantics, and
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Example Logical form
John shouted loudly. ∃e(shout(e) ∧ (subj(e) = john) ∧ loud(e, θloud))

Ann studied English very hard. ∃e(study(e) ∧ (subj(e) = ann) ∧ (obj(e) = english) ∧ ∃δ(hard(e, δ) ∧ (θhard < δ)))

Jim sings better than Mary. ∃e1∃e2(sing(e1) ∧ (subj(e1) = jim) ∧ sing(e2) ∧ (subj(e2) = mary) ∧ ∃δ(good(e1, δ) ∧ ¬good(e2, δ)))
Bob drives as carefully as John. ∃e1∃e2(drive(e1) ∧ (subj(e1) = bob) ∧ drive(e2) ∧ (subj(e2) = john) ∧ ∀δ(careful(e2, δ)→ careful(e1, δ)))

Table 1: Logical forms of adverbs and their comparative and equative forms

evaluate the system on various datasets to check whether the system can perform linguistically challeng-
ing inferences without compromising the accuracy of each basic theory.

More specifically, we build on the system presented in Haruta et al. (2020), which implements degree
semantics for comparatives and generalized quantifiers. The system is limited, however, in that it does not
implement event semantics, and hence does not handle inferences with adverbs and related constructions.
Also, it only covers a small portion of the generalized quantifiers discussed in the linguistics literature and
does not handle inferences requiring lexical knowledge, thus being confined to purely logical inferences.
To test the compatibility of event semantics and degree semantics, we add a layer of event semantics and
lexical knowledge to that system and attempt to broaden its empirical coverage consistently.

To evaluate the system, we assess its capacity to handle (i) a set of logical compositional inferences
and (ii) their interaction with lexical knowledge. For (i), we use FraCaS (Cooper et al., 1994), which
contains various semantically complex inferences and CAD (Haruta et al., 2020), which contains com-
plex inferences with adjectives and comparatives. To our knowledge, there is no linguistically controlled
dataset that contains inferences with adverbs, so we create a set of logical inferences with adverbs and
related constructions and use it to evaluate the system. For (ii), we use MED (Yanaka et al., 2019), which
contains problems with monotonicity inferences and lexical knowledge, and SICK (Marelli et al., 2014),
which focuses on lexical inferences combined with linguistic phenomena such as negation and quanti-
fiers. In addition, we use HANS (McCoy et al., 2019), which is designed to probe the capacity of NLI
models based on deep learning (DL) and contains structural inferences, including those concerning ad-
jectives and adverbs. The results show that our system achieves high accuracies across various datasets,
supporting our claim that event semantics and degree semantics can be effectively combined for NLI.

2 System architecture

For the implementation of an NLI system1, we follow the basic architecture of Haruta et al. (2020). Input
sentences (i.e., a set of premises P1, . . . , Pn and a hypothesis H) are mapped to CCG derivation trees
using off-the-shelf CCG parsers. To accommodate output derivation trees in formal semantic analysis,
various tree transformations are applied. Then, using a set of semantic templates that assign lambda-
expressions to CCG categories (Steedman, 2000), the output trees are mapped to logical forms, which
are formulas of first-order logic (FOL) with equality and arithmetic operations. This provides a set of
formulas P ′

1, . . . , P
′
n for the premises and H ′ for the hypothesis. Then, an FOL theorem prover tries to

prove P ′
1∧· · ·∧P ′

n → H ′. If it is successful, the system outputs yes (entailment). Otherwise, the system
tries to prove P ′

1 ∧ · · · ∧ P ′
n → ¬H ′ and outputs no (contradiction). If both attempts fail, the system

outputs unknown (neutral). For our purposes, we add two components to this basic architecture: (i) we
extend the set of the semantic template to accommodate event semantics and various types of generalized
quantifiers, and (ii) we add a mechanism to insert lexical knowledge before theorem proving.

Combining event semantics and degree semantics We use standard neo-Davidsonian event seman-
tics (Parsons, 1990), which analyzes sentences as involving quantification over events. For instance, the
sentence John ran is analyzed as ∃e(run(e) ∧ (subj(e) = john)), where subj is a function term that
associates an event to its participant (subject). A sentence containing an adverb, for example, John ran
slowly, is analyzed as ∃e(run(e) ∧ (subj(e) = john) ∧ slowly(e)), where the adverb slowly acts as a
predicate of an event. This allows us to derive an inference from John ran slowly to John ran, that is, an
inference to drop adverbial phrases.

1GitHub repository with code and data: https://github.com/izumi-h/ccgcomp
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Type Example Logical form
upward Many people cried. ∃x(people(x) ∧many(x, θmany(person)) ∧ ∃e(cry(e) ∧ (subj(e) = x)))

downward Less than five students laughed. ¬∃x(student(x) ∧many(x, 5) ∧ ∃e(laugh(e) ∧ (subj(e) = x)))

non-monotone Exactly eleven boys play soccer. ∃x(boy(x) ∧many(x, 11) ∧ ∃e(play(e) ∧ (subj(e) = x) ∧ (obj(e) = soccer)))

∧∀x∀δ(boy(x) ∧many(x, δ) ∧ ∃e(play(e) ∧ (subj(e) = x) ∧ (obj(e) = soccer))→ (δ < 12))

Table 2: Logical forms of upward, downward, and non-monotonic generalized quantifiers

Lexical relationship antonym hypernym hyponym synonym, similar, inflection, derivation
Axiom ∀x(F (x)→ ¬G(x)) ∀x(F (x)→ G(x)) ∀x(G(x)→ F (x)) ∀x(F (x)↔ G(x))

Table 3: Correspondence between the lexical relationships and the forms of inserted axioms

For degree semantics, we use the one presented in Haruta et al. (2020). It analyzes a gradable adjective
tall as a binary predicate tall(x, δ) holding of an entity x and a degree δ (Cresswell, 1976). Thus, the
sentence Chris is 5 feet tall is mapped to the logical form tall(chris, 5 feet). When a degree expression
like 5 feet is absent, δ is set to a default value (for which we use a fixed constant); e.g., Chris is tall
is mapped to tall(chris, θtall). Comparative expressions are analyzed in terms of first-order logic, using
the so-called A-not-A analysis (Seuren, 1973; Klein, 1982; Schwarzschild, 2008); for example, Chris is
taller than Alex is analyzed as ∃δ(tall(chris, δ) ∧ ¬tall(alex, δ)), which asserts that there is a degree δ of
tallness that Chris satisfies but Alex does not. See Haruta et al. (2020) for more detail. This analysis can
be naturally extended to adverbial phrases and their comparative forms. Table 1 shows logical forms of
basic constructions, where adverbs like slowly are treated as binary predicates of an event and a degree.

Monotonicity and generalized quantifiers In degree semantics, generalized quantifiers such as many
can be analyzed not as higher-order expressions (as in Montague’s tradition) but as two-place predicates
such as many(x, n), which reads “a composite entity x consists of at least n individuals” (Hackl, 2000;
Rett, 2018). Haruta et al. (2020) implements this semantics in their system but does not deal with
downward quantifiers (e.g., few and less than five) or non-monotonic quantifiers (e.g., exactly five). It is
known that these two types of quantifiers pose a problem for the compositional treatment of quantifiers
as predicates (van Benthem, 1986; Buccola and Spector, 2016). The problem is that downward and non-
monotonic quantifiers need to take scope over the entire clause. For example, in the case of the downward
quantifier less than in Less than five students laughed, the negation needs to take scope over the entire
clause, as shown in Table 2. To solve this problem, we add syntactic features to CCG categories in the
derivation trees in the post-processing process. Downward quantifiers such as few and less than five are
assigned the category N/N (which is the same as an adjective like tall) in CCG parsers. We modify this
to Ndown/N , which triggers the derivation in which the negation takes the outermost scope. Similarly,
we assign syntactic categories like Nnm/N to non-monotonic quantifiers such as exactly and only. This
enables us to derive the desired logical forms as in Table 2.

Insertion of lexical knowledge To test the compatibility of logical inferences and inferences involv-
ing lexical knowledge, we implement a mechanism to search for useful axioms drawn from knowl-
edge bases before the process of theorem proving. The strategy is similar to the one used in previous
studies (Martı́nez-Gómez et al., 2017) in which the system searches for lexical relations from Word-
Net (Miller, 1995) and VerbOcean (Chklovski and Pantel, 2004). More specifically, for each predicate F
appearing in the set of formulas for given premises, if there is a predicate G appearing in the formula for
the hypothesis such that (i) F and G have the same semantic type (e.g., the type of predicate of events)
and (ii) F has a lexical relationship with G, then we add an axiom of the relevant form depending on the
type of lexical relation. Following Martı́nez-Gómez et al. (2017), we use a total of seven relationships
and add the corresponding axioms, as shown in Table 3.

3 Experiments

Experimental settings We use three CCG parsers, namely, C&C (Clark and Curran, 2007), Easy-
CCG (Lewis and Steedman, 2014), and depccg (Yoshikawa et al., 2017), for CCG parsing, and we use
Tsurgeon (Levy and Andrew, 2006) for tree transformation. For CCG parsing and tree transformation,



1761

Dataset Label ID Example (premises and hypothesis) Gold label

FraCaS Com
P1: ITEL won more orders than APCOM lost.

241 P2: APCOM lost ten orders. Yes
H: ITEL won at least eleven orders.

MED
gq 485

P1: Exactly 12 aliens threw some tennis balls.
Unknown

H: Exactly 12 aliens threw some balls.

gqlex 176
P1: Few aliens saw birds.

Yes
H: Few aliens saw doves.

SICK – 1357
P1: A puppy is repeatedly rolling from side to side on its back.

Yes
H: A dog is rolling from side to side.

HANS constituent 23991
P1: The actors contacted the president, or the lawyers recommended the managers.

Unknown
H: The lawyers recommended the managers.

CAD+ MA

115
P1: Exactly seven students smiled.

Yes
H: At most nine students smiled.

157
P1: Ann runs as fast as Luis does.
P2: Ann runs slowly. No
H: Luis runs fast.

Table 4: Examples of entailment problems from the FraCaS, MED, SICK, HANS, and CAD+ datasets

FraCaS
Section GQ Adj Com Att
#All 73 22 31 13
Maj .49 .41 .61 .62
RB .73 .45 .52 .69
MN .77 .68 .48 .77
LP .93 .73 – .92
HR .95 .95 .84 –
Ours .97 .82 .90 .92
+rule .99 .95 .90 .92

MED
Label gq gqlex
#All 498 691
Maj .58 .63
BERT .56 .58
BERT+ .54 .68
RB .57 .55
HR .84 –
Ours .96 .92

SICK
#All 4927
Maj .57
RB .56
LP .81
MG .83
Ours .82

HANS
Gold yes unknown
#All 501 501
Maj .50 .50
RB 1.0 .56
Ours .97 .78

CAD+
Label CAD MA
#All 105 134
Maj .48 .43
RB .58 .59
HR .77 –
Ours .83 .89

Table 5: Accuracy on the FraCaS, MED, SICK, HANS, and CAD+ datasets

we use the same setting as in Haruta et al. (2020). We use a set of semantic templates for mapping
CCG trees to logical forms. The templates are specified for 528 categories and 138 lemmas in total. The
Tsurgeon script has 126 clauses for tree mapping. For POS tagging, we use the C&C POS tagger for
C&C and spaCy2 for EasyCCG and depccg. We use the FOL prover Vampire3 for theorem proving.

Datasets For evaluation, we use five datasets. Table 4 shows some examples. (1) FraCaS has nine
sections, of which we use four: Generalized Quantifiers (GQ ), Adjectives (Adj ), Comparatives (Com),
and Attitudes (Att). (2) MED collects inferences with generalized quantifiers. We use a portion of
the dataset taken from linguistics papers, which are divided into non-lexical inferences (gq: 498 prob-
lems) and inferences involving lexical knowledge (gqlex: 691 problems). (3) For SICK, we use the
2014 version of SemEval (Marelli et al., 2014). (4) For HANS, we randomly choose 1002 problems
labelled as constituent, lexical overlap, and subsequence from the entire test set (30,000 problems),
which are divided into entailment (yes) and non-entailment (unknown) problems. (5) CAD+ has two
sections. CAD (Haruta et al., 2020) contains 105 inference problems concerning adjectives and com-
paratives, which are linguistically challenging but missing from FraCaS. We also create a new set of
problems, called MA for monotonicity and adverbial phrases, which follows the patterns in CAD. It has
134 problems in total. Of these 134 problems, 69 are single-premise problems, and 65 are multi-premise
problems. The distribution of gold answer labels is (yes/no/unknown) = (57/36/41).

3.1 Results and discussion
Table 5 shows the experimental results on all datasets. Maj is the accuracy of the majority baseline and
Ours is the accuracy of our system. For FraCaS, +rule shows the accuracy achieved by the addition of
hand-coded rules, which correct the errors in POS tagging and lemmatization, as described in Haruta et
al. (2020). Given that MED and HANS use binary labels (yes and unknown), for these two datasets we
modify the system so that it outputs yes if the hypothesis can be proved from the premise; otherwise, the
output is unknown. We compare our system with previous logic-based systems and DL-based systems.

FraCaS We use three logic-based systems: MN (Mineshima et al., 2015), LP (Abzianidze, 2016), and
HR (Haruta et al., 2020). These are systems based on CCG parsing and theorem proving. For a DL-based

2https://github.com/explosion/spaCy
3https://github.com/vprover/vampire
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system, we use a state-of-the-art model, RoBERTa (RB) (Liu et al., 2019), trained on MultiNLI (Williams
et al., 2018), using the implementation provided in AllenNLP (Gardner et al., 2018). Our system
achieved nearly 100% accuracy and outperformed the DL-system by a large margin. FraCaS-241 in
Table 4 is a complex inference with numerical expressions; this problem is solved by our system but
neither by the other logic-based systems nor by the DL-based system (RB). Our system also improved its
predecessor (HR) in that it can handle inferences involving clausal comparatives (FraCaS 239–241).

MED For the results on MED in Table 5, BERT shows the performance of a BERT model fine-tuned
with MultiNLI and BERT+ shows that of a BERT model with data augmentation for monotonicity in-
ferences in addition to the MultiNLI training set. Both models were tested in Yanaka et al. (2019). Our
system outperformed both the logic-based system (HR) and the DL-based systems. MED-176 and MED-
485 in Table 4, which involve a downward quantifier (few) and a non-monotonic quantifier (exactly 12),
respectively, are examples that our system correctly solved while the DL-models did not.

SICK For SICK, MG (Martı́nez-Gómez et al., 2017) is a system based on CCG parsing with composi-
tional event semantics and theorem proving. Our system outperformed the DL-based system (RB) and
achieved comparable results with the logic-based systems (LP and MG), showing that the combination of
event semantics and degree semantics is compatible with the insertion of lexical knowledge. For exam-
ple, SICK-1357 in Table 4 is an example involving the lexical inference from puppy to dog; our system
correctly predicted the yes label for this problem, while the DL-based system (RB) predicted the no label.

HANS McCoy et al. (2019) reported that DL-based systems tend to erroneously output yes for cases in
which the hypothesis was a constituent or a sub-string of the premise, such as disjunctive sentences (e.g.,
HANS-23991 in Table 4). To see how a system performs on these cases, we present the accuracy for each
gold answer label (yes and unknown). While the accuracy when the gold label was yes was close to 100%
in both our system and the DL-based system (RB), the accuracy of our system was higher than that of
RB when the label is unknown (78% vs. 56%). One of the reasons for the relatively low accuracy (78%)
of our system in comparison with the performance on the other datasets is parse error; HANS contains
syntactically complex sentences such as The actor paid in the library recognized the lawyers (HANS-
13628, subsequence), for which the current CCG parsers output incorrect parses. Another reasons is
inference involving a modal adverb, e.g., the inference from Probably the secretary admired the athlete
to The secretary admired the athlete (HANS-24034). The gold label is unknown, but our system predicts
yes, because any adverb can be dropped in the current implementation. A more fine-grained classification
of adverbs will be needed to handle this type of inference.

CAD+ For CAD+, our system outperformed the previous logic-based system (HR) and the DL-based
system (RB). Our system was able to solve the inference involving numerical computation (CAD-115)
and antonym conversion for adverbs (CAD-157) in Table 4, while RB incorrectly predicted no for CAD-
115 and yes for CAD-157. However, some problems with adverbial expressions remain. For example,
the sentence Jones drives more carefully today than yesterday (MA -183) conjoins two adverbs today and
yesterday by than. The current system does not derive the correct logical form for this type of complex
coordinate structure formed by than-clauses. A further improvement of CCG parsing would be needed
to handle such complex coordinate constructions.

4 Conclusion

We have presented a logic-based NLI system that combines event semantics and degree semantics and
evaluated the system on various datasets containing semantically challenging inferences. The results
showed that the combination of event semantics and degree semantics is viable and works well on the
type of complex logical inferences for which standard DL-based systems show poor performance. This
study contributes to the study of computational modeling and the evaluation of formal semantic theories,
as well as to the creation of challenging NLI problems that DL-based models need to address.
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