Unequal Representations: Analyzing Intersectional Biases in Word
Embeddings Using Representational Similarity Analysis

Michael A. Lepori
Department of Computer Science
Johns Hopkins University
mleporil9@gmail.com

Abstract

We present a new approach for detecting human-like social biases in word embeddings using rep-
resentational similarity analysis. Specifically, we probe contextualized and non-contextualized
embeddings for evidence of intersectional biases against Black women. We show that these em-
beddings represent Black women as simultaneously less feminine than White women, and less
Black than Black men. This finding aligns with intersectionality theory, which argues that mul-
tiple identity categories (such as race or sex) layer on top of each other in order to create unique
modes of discrimination that are not shared by any individual category.

1 Introduction

Word embeddings are ubiquitous components of modern natural language processing systems, and have
enabled performance increases on a wide variety of NLP tasks (Devlin et al., 2019; Peters et al., 2018;
Pennington et al., 2014). They provide vector representations of words, and are trained on a large cor-
pus of text in order to capture the distributional semantics of lexical items. Many studies have shown
that these embeddings also encode a variety of dangerous social biases, as these biases are present in
naturally-occurring English text (see Mehrabi et al. (2019) for a survey of such work).

The present work studies infersectional biases in both contextualized and non-contextualized word
embeddings. The theory of intersectionality states that multiple different aspects of a person’s identity
often combine to create unique modes of discrimination (Crenshaw, 1989; Crenshaw, 1990). For exam-
ple, specific biases against Black women are not necessarily shared by either White women or Black
men. Furthermore, discourses on discrimination and public health typically focus on sexism or racism,
each implicitly excluding the other (Crenshaw, 1989; Bowleg, 2012).

It is further argued that these discourses are focused on the most privileged members of a group (Cren-
shaw, 1989). Thus, we might expect that the ostensibly race-neutral category ‘Woman’ is implicitly
White, and that the ostensibly non-gendered category ‘Black’ is implicitly male. Using representational
similarity analysis (RSA; Kriegeskorte et al. (2008)), we find that both non-contextualized GloVe em-
beddings (Pennington et al., 2014) and contextualized BERT embeddings (Devlin et al., 2019) display
exactly these biases. We also find that the BERT embeddings of the names of Black women are seman-
tically impoverished, compared to the embeddings of the names of White women.

Related Work: Many recent studies have sought to understand social biases in NLP systems. Notably,
Caliskan et al. (2017) showed that the human biases revealed through the Implicit Association Test
(Greenwald et al., 1998) are also present in word embeddings, prompting other studies that seek to detect
bias in word embeddings (Kurita et al., 2019; Garg et al., 2018). Other studies have attempted to detect
bias in other NLP systems (Rudinger et al., 2018), to automatically discover and measure intersectional
biases in word embeddings (Guo and Caliskan, 2020), to analyze the distributions of gendered words in
training sets (Zhao et al., 2019; Rudinger et al., 2017), and to automatically mitigate the effects of social
biases on NLP systems (Sun et al., 2019). Another study has produced empirical evidence for the claims
of intersectionality theory by leveraging distributional representations (Herbelot et al., 2012).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Perhaps most relevant, some prior work has attempted to understand whether intersectional differences
are present in contextualized word embeddings by trying to detect whether these embeddings encoded
intersectional stereotypes (May et al., 2019; Tan and Celis, 2019). However, detecting these stereotypes
is only a proxy for detecting intersectional biases in embeddings: An embedding might encode inter-
sectional differences without encoding more complex interesectional stereotypes. This work presents a
method that leverages representational similarity analysis to directly probe word embeddings for inter-
sectional biases. !

2 Methods: Representational Similarity Analysis

Representational similarity analysis (RSA) is a technique first used in cognitive neuroscience for ana-
lyzing distributed activity patterns in the brain (Kriegeskorte et al., 2008), but recent work has used it
to analyze artificial neural systems (Lepori and McCoy, 2020; Chrupata, 2019; Chrupata and Alishahi,
2019; Abnar et al., 2019; Bouchacourt and Baroni, 2018). RSA analyzes the representational geometry
of a system, which is defined by the pairwise dissimilarities between representations of a set of stimuli.
Specifically, we use RSA to compare the representational geometry of the word embeddings under study
to the representational geometries of well-understood hypothesis models. If the representational geome-
tries are similar, you can infer that the word embeddings represent the particular information expressed
by a hypothesis model.

Applying RSA: The approach proceeds as follows: First, we create a corpus that consists of three types
of items: group 1 items, G1, group 2 items, G2, and concept items, C'. Next, we define a reference model
MRy, which consists of the set of embeddings that we are interested in. Then, we define two hypothesis
models, Mpyp, and Myy,,. Mpyy,, instantiates the hypothesis that: ‘Group 1 is associated with the
concept under study, while Group 2 is not’. Likewise M, instantiates the hypothesis that ‘Group 2 is
associated with the concept under study, while Group 1 is not’. We then draw a sample ¢, consisting of n;
items from G1, ny items from G, and n3 items from C, and calculate the (n; +ng+mn3) X (n1+ng+n3)
representational geometries R of each model using a dissimilarity metric D. In all analyses, n1 = no =
ng = 10.

Rpey = D(MEgey, c) (1)
RHypl = D(MH?JPNC) ()
Reyp, = D(MHym»C) 3)

We define D = 1 — Spearman’s p for Mg ¢. For My, , the dissimilarity metric is equal to 1 if one
item is from (G5 and the other item is from G or C, and 0 otherwise. Likewise, the dissimilarity metric
for My, is equal to 1 is one item is from G and the other item is from G2 or C, and 0 otherwise.
Clearly, these hypothesis models are not expected to provide a very good fit to the representational
geometry of a set of word embeddings. However, if one hypothesis model exhibits a significantly better
fit than the other, then there is evidence for a problematic bias.

Finally, we calculate the similarity, s, between the representational geometries of our hypothesis mod-
els and our reference model using a similarity metric, sim. Because the R matrices are symmetric, sim
only operates on the upper triangle of each R matrix. We define sim = Spearman’s p.

SHyp) = SIM(RRef, Riyp,) “4)

SHypy = SIM(RRef, Riyp,) (5

We then repeat the process on 100 samples from our corpus in order to create two 100-length vec-
tors of representational similarities, Sy, and Sp,,,. We can then apply a nonparametric sign test
to the difference of these vectors, Stryp, — SHyp,, in order to test for a consistent difference between
measurements of sg,,, and sgy,,. See Figure 1 for a visual summary of this approach.

'Code and data found at https://github.com/mleporil/Unequal_Representations.
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(1) Sample of Stimuli (3) Calculate representational dissimilarity matrices
on this sample of stimuli
Group 1: (A) This is a Black female Reference Black + Female White + Female
Group 2: (B) This is a White female A A A
Female Concept: (C) This is a female B B B
B C B C B C
(2) Define the Reference Model for this sample (4) Calculate representational similarities, and repeat
(A) (B) (©) 100 times to form distributions
Black + Female White + Female
| “black” (BERT) | | “white” (BERT) | | “female” (BERT) | Ref. Ref.
o W Nl .. - H
Similarity Similarity

Figure 1: A summary of our approach, applied to BERT embeddings.

3 Data

In order to perform the analyses described in Section 2, we need to create sets of group items for all of the
groups under study, as well as concept items for the identity concepts under study. For analyses involving
GloVe embeddings, these glossaries can only contain single-word entries. For analyses involving BERT
embeddings, these entries can be full sentences. See Appendix A for more details about all of the
following datasets.

3.1 Single-Word Sets

Group Items: For our single-word group items for the Black women, Black men, White women, and
White men groups, we use the dataset curated in Sweeney (2013). This dataset includes names commonly
associated with all of these identity groups. We rely on name data because identity categories like Black
woman do not have single word terms (May et al., 2019). See Section 5 for a discussion of the limitations
of using name data.

Concept Items: For our single-word, ostensibly race-neutral concept items that are associated with the
female identity category, we combine the datasets from Nosek et al. (2002a) and Nosek et al. (2002b).
The United States Census Bureau defines the Black/African American identity category as “all individ-
uals who identify with one or more nationalities or ethnic groups originating in any of the black racial
groups of Africa” (Census Bureau, 2020). They proceed to non-exhaustively list several nationalities
that meet this definition. All 10 single-word country names that correspond to the nationalities listed are
included in our set of single-word, ostensibly gender-neutral concept items that are associated with the
Black identity category. We also include the word Black, as well as the word Africa, in keeping with the
Census Bureau’s definition. See Section 5 for a discussion of the limitations of this approach.

3.2 Multi-Word Sets

We leverage the semantically bleached sentence templates introduced by May et al. (2019) in order to
generate our sentence data. These sentences “make heavy use of deixis and are designed to convey
little specific meaning beyond that of the terms inserted into them”. Some examples include: “This is a
<word/phrase>"" and “The <word/phrase> is here”.

Group Items: For the Black female group, we fill in the semantically-bleached templates with either
the word Black concatenated with either woman, women, female, females, girl, or girls (such that the
template sentence exhibits proper number agreement). For example, the dataset contains the sentence:
The Black woman is here. Similarly for the White female group. These sentences are also used by May
et al. (2019). Finally, for the Black male group, we fill in the template with the word Black and either
man, men, male, males, boy, or boys.

Concept Items: Our female concept items are chosen to be ostensibly race-neutral. Thus, we fill in the
template sentences with one of the following words: woman, women, female, females, girl, or girls. Our
Black concept items are chosen to be ostensibly gender-neutral. Thus we fill in the template sentences
with either Black person or Black people.
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4 Experiments and Results

4.1 GloVe Experiments

GloVe embeddings are non-contextualized word embeddings, and so they represent information from one
word, ignoring the specific context in which they are found. These experiments seek to test whether RSA
can be used to identify intersectional biases in GloVe embeddings. We use 300-dimensional embeddings
trained on the Wikipedia 2014 + Gigaword 5 corpus throughout this study.

Black Female Name Embedding Check First, we ensure that the GloVe embeddings of the names of
Black women contain sufficient semantic detail, such that more in-depth experiments can be performed.
Our concept items are a set of words associated with the female identity category. Our Group 1 items
are a set of proper names associated with Black women, and our Group 2 items are a set of proper
names associated with Black men. See Section 3 for details about these sets. We would expect that the
reference model will display greater representational similarity to the hypothesis model that associates
female attributes to Black female names. From Table 1 we see that this happens.

Female Concept We investigate whether the GloVe embeddings of the names of Black women encode
the ‘female’ concept less than the embeddings of the names of White women. Our concept items are a
set of words associated with the female identity category. Our Group 1 items are a set of proper names
associated with Black women, and our Group 2 items are a set of proper names associated with White
women. See Section 3 for details about these sets. From Table 1, we see that the reference model
exhibits greater representational similarity to the hypothesis model that associates the concept items to
White female names.

Black Concept We investigate whether the GloVe embeddings of the names of Black women encode
the ‘Black’ concept less than the embeddings of the names of Black men. Our concept items are a set
of words associated with the Black identity category. Our Group 1 items are a set of proper names
associated with Black women, and our Group 2 items are a set of proper names associated with Black
men. From Table 1, we see that the reference model exhibits greater representational similarity to the
hypothesis model that associates the concept items with Black male names.

4.2 BERT Experiments

BERT embeddings are contextualized word embeddings, and so they represent information from a word
in context. This allows us to analyze group terms, using the semantically-bleached sentence data from
May et al. (2019), which are designed to convey little meaning beyond that of the group term that we
insert into them. We also attempt to reproduce our findings using the single-word proper name data used
in Section 4.1. We use the pretrained BERT-base-uncased model for all multi-word studies.

Black Female Name Embedding Check: First, we use the pretrained BERT-base-cased model to
attempt to reproduce our results from Section 4.1. However, we see from Table 1 that the reference model
displays greater representational similarity to the hypothesis model that associates the female concept
items to Black male names. This indicates that the BERT’s embeddings for Black female names are
quite semantically impoverished, and do not reliably encode information about identity categories. Thus,
we do not attempt to replicate our investigations of intersectional biases using BERT’s embeddings of
proper names. Notably, this effect is not reproduced when analyzing White names, and thus demonstrates
a problematic asymmetry between the BERT representations of White and Black female names.

Female Concept: We investigate whether the BERT embeddings of the word Black encode the ‘fe-
male’ concept less than the embeddings of the word White. Our concept items are a set of sentences
containing words associated with the female identity category. Our Group 1 items are as a set of sen-
tences referencing Black women, our Group 2 items are a set of sentences referencing White women.
For each sentence in the Group sets, we extract the BERT embedding of the word Black or White, and
for each sentence in the Concept set, we extract the embedding of the word associated with the female
identity category (woman, female, etc.). See Section 3 for more details. From Table 1, we see that the
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reference model exhibits greater representational similarity to the hypothesis model that associates the
female concept items with White women.

Black Concept: We investigate whether the BERT embeddings of words associated with the female
identity category encode the ‘Black’ concept less than the embeddings of words associated with the male
identity category. Our concept items are a set of sentences containing the phrase Black person or Black
people. Our Group 1 items are a set of sentences referencing Black women, our Group 2 items are a set of
sentences referencing Black men. For each sentence in the Group sets, we extract the BERT embedding
of the word associated with either the female or male identity category, and for each sentence in the
Concept set, we extract the embedding of the word Black. See Section 3 for more details. From Table 1,
we see that the reference model exhibits greater representational similarity to the hypothesis model that
associates the Black concept items with Black men.

Embedding Group 1 Group 2 Concept Group 1 + Con  Group 2 + Con
GloVe B FNames B M Names Female 373 .189
GloVe B FNames W FNames Female .093 .666
GloVe B FNames B M Names Black 174 .298
BERT B FNames B M Names Female .119 307
BERT W F Names W M Names Female 368 .021
BERT B F Sent W F Sent Female .050 110
BERT B F Sent B M Sent Black 253 289

Table 1: Results for all experiments. All differences statistically significant (p < .001)

5 Limitations

One notable limitation of this work is that we study artificial binary gender and race distinctions. Un-
fortunately, these binary distinctions exclude many individuals from our analysis. Future work should
expand upon the methodological framework presented here in order to assess biases against groups that
are not represented by these distinctions. Furthermore, Gaddis (2017) describes several limitations of re-
lying on name data to represent racial categories. Perhaps most importantly, that work demonstrates that
‘Black names’ are not one monolithic category, that perceptions of the Blackness of names are correlated
with other confounding variables (such as education status), and that the associations between identity
categories and proper names are only loosely reflected in real-world naming practices. Furthermore, we
rely on an incomplete set of country names provided by the Census Bureau to generate concept sets for
the Black identity category. We acknowledge that this excludes many nationalities from our analysis, and
also acknowledge that any attempt to exhaustively list nations associated with the Black identity category
is destined to fail. We hope that our results inspire future work that aspires to more robust coverage of the
Black identity group. Finally, it is important to note that this method can only provide positive evidence:
If this method does not detect intersectional biases for a particular system, that does not provide evidence
that the system does not contain such biases.

6 Conclusion

Both contextualized and non-contextualized word embeddings learn to represent human-like biases. We
apply RSA to the task of detecting these biases, and find that both GloVe embeddings and BERT em-
beddings reproduce (and thus perpetuate) the dual marginalization of Black women within both the
Black community and female community, as predicted by the theory of intersectionality. Specifically,
we showed that word embeddings represent the female identity category as implicitly White, and the
Black identity category as implicitly masculine. To our knowledge, this is the first method that can probe
word embeddings for these intersectional biases directly. Aside from addressing the issues discussed
in Section 5, future work should investigate whether this method can be used to detect other sorts of
intersectional biases, particularly those facing the LGBTQ community.
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A Data

A.1 Proper Names

We use the proper name data found in Sweeney (2013). That work largely compiles these proper names
from two previous studies, which rely on correlations between race and child names in birth records
from the years 1974-1979 in Massachusetts (Bertrand and Mullainathan, 2004), and in birth records
from 1961-2000 in California (Fryer Jr and Levitt, 2004). We omit names that are polysemous. This
occurs for four of the Black female names: Diamond, Precious, Kenya, and Ebony. One name (Trevon)
did not occur in the Wikipedia 2014 + Gigaword 5 corpus, and so it was also excluded from our analysis.
We randomly omit names from the Black male, White female, and White male proper name sets so
that all identity categories are represented by an equal number (13) of names. The list of names from
Sweeney (2013) is found below. Italicized names were omitted.

Black Female: Aisha, Keisha, Latonya, Lakisha, Latoya, Tamika, Imani, Shanice, Aaliyah, Nia, La-
tanya, Latisha, Deja, Diamond, Precious, Kenya, Ebony

Black Male: Darnell, Hakim, Jermaine, Kareem, Jamal, Leroy, Rasheed, DeShawn, DeAndre, Mar-
quis, Terrell, Malik, Tyrone, Tremayne, Trevon

White Female: Allison, Anne, Carrie, Emily, Jill, Laurie, Kristen, Meredith, Molly, Amy, Claire,
Madeline, Emma, Katie

White Male: Brad, Brendan, Geoffrey, Greg, Brett, Jay, Matthew, Jake, Connor, Tanner, Wyatt, Cody,
Dustin, Neil

A.2 Female Concept Words

We combine the datasets of words associated with the female identity category from Nosek et al. (2002a)
and Nosek et al. (2002b), which are two often-cited studies that leverage the implicit association test
(Greenwald et al., 1998). The list is as follows:

Female Concept Words: female, woman, girl, sister, she, her, hers, daughter, aunt, mother, grand-
mother

A.3 Black Concept Words

Our Black concept words are derived from the definitions given by the United States Census Bureau
(Census Bureau, 2020). The list is as follows:

Black Concept Words: Africa, Black, Jamaica, Haiti, Nigeria, Ethiopia, Somalia, Ghana, Barbados,
Kenya, Liberia, Bahamas

A.4 Multi-Word Group Items

Our group items leverage the semantically-bleached sentence templates of May et al. (2019). We list
some examples of group items for all identity groups studies.

Black Female This is a Black female.; The Black woman is here.; They are Black girls.
White Female This is a White female.; The White woman is here.; They are White girls.
Black Male This is a Black male.; The Black man is here.; They are Black boys.

White Male This is a White male.; The White man is here.; They are White boys.

A.5 Multi-Word Female Concept Items

Our multi-word female concept items leverage the semantically-bleached sentence templates of May et
al. (2019). We list some examples of Female concept items.

Female Concept Items Females are people.; The girl is there.; Here is a woman.
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A.6 Multi-Word Black Concept Items

Our multi-word Black concept items leverage the semantically-bleached sentence templates of May et
al. (2019). We list some examples of Black concept items.

Black Concept Items Here is a Black person.; These are Black people.; Black people are people.
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