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Abstract

We demonstrate TrainX, a system for Named Entity Linking for medical experts. It combines
state-of-the-art entity recognition and linking architectures, such as Flair and fine-tuned Bi-
Encoders based on BERT, with an easy-to-use interface for healthcare professionals. We support
medical experts in annotating training data by using active sampling strategies to forward infor-
mative samples to the annotator. We demonstrate that our model is capable of linking against
large knowledge bases, such as UMLS (3.6 million entities), and supporting zero-shot cases,
where the linker has never seen the entity before. Those zero-shot capabilities help to mitigate
the problem of rare and expensive training data that is a common issue in the medical domain.

1 Introduction

Named Entity Linking is a well-studied task for decades (Ling et al., 2015). It includes recognizing
and disambiguating mentions of entities in text against a catalogue or a knowledge base. However,
training data is often missing and requires additional expensive labeling, especially in domains like
medicine, where the availability of domain experts for rare diseases is limited. Moreover, novel as well
as uncommon entities such as rare diseases might not have been part of the training data; in that case, the
linker must solve a zero-shot scenario by disambiguating a mention never seen before. Existing easy-
to-use annotation interfaces like prodigy1 either fail to support entity linking annotations or have limited
support for an end-user to find the correct entity in a large knowledge base. Further, they do not support
the annotator by actively sampling relevant documents to save annotation time. Active-learning-enabled
annotation tools, like INCEpTION (Klie et al., 2018), overcome this problem, but they are optimized
for annotating multiple layers of linguistic features, which makes their user interfaces very complex and
crowded. Using such tools leads to additional training costs for medical professionals.

Contribution We present TrainX, a system that consists of state-of-the-art entity recognition and link-
ing architectures combined with an easy-to-use interface for healthcare professionals. Our system sup-
ports medical experts in annotating data and training models for medical named entity linking based on
UMLS (Bodenreider, 2004) with more than 3.6 million entities. By using active sampling, we minimize
labeling efforts. TrainX uses transfer learning by leveraging Bi-Encoders (Gillick et al., 2019; Wu et
al., 2019; Logeswaran et al., 2019; Humeau et al., 2020) for disambiguation and a kNN-index to re-
trieve candidate entities within milliseconds. We mitigate issues caused by sparse training data by using
zero-shot optimized techniques that can generalize beyond the labels seen in training. To our knowledge,
this is the first named entity linking approach that combines an easy-to-use frontend with the transfer
learning capabilities of recent BERT models. The system is licensed under Apache 2.0 and is available
on GitHub2.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1https://prodi.gy/
2https://github.com/DATEXIS/TrainX



65

2 Demonstrating Medical Named Entity Linking

In this section, we demonstrate the usage of TrainX for a medical entity linking scenario. Although we
show a domain-specific task, TrainX is not limited to the medical domain but can be easily adapted to
any entity linking use case with a knowledge base that contains names and short descriptions for every
entity. Figure 1 shows the usage of TrainX in an example scenario where existing GOLD annotations are
available. First, the annotator begins a new session or resumes an existing one (1). In the case of a new
session, she uploads a new dataset (2). After the upload, she obtains sampled documents from the dataset,
in order to annotate them (3). The samples view (4) allows her to add new USER annotations (green)
or to view/edit GOLD annotations provided in the dataset (yellow). By clicking on an annotation, she
can examine details of the linked entity and make a correction if needed by using the annotation helper
(5); the modified samples are henceforth USER annotations and marked in green. A full-text search on
the UMLS supports the annotator to interactively explore the knowledge base in order to speed up the
annotation/examination/correction workflow. By clicking on the checkmark (6), she can mark the entire
sample as correct, or she can use the arrows above to request as many further samples as she likes. When
one round of annotation is finished, she uploads the annotated samples (7) and starts the training phase
(8), while the system will apply the model to the newly adjusted data. She can query the training status
at any time (9). When training is finished, she retrieves the newly processed samples (10) and is returned
to the samples view, where the predictions of the newly trained model are shown as PRED annotations
in blue (11). Now, she can further correct and/or add annotations and iterate the process. A video of this
demonstration is available under https://youtu.be/XAt94UNEEQ4.
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Figure 1: Usage of the TrainX system to train and evaluate the entity linker on a mixture of given GOLD
and added USER labels. The screenshots show the menu, where a user requests samples or starts the
training and the sample view where she can edit annotations.

3 Named Entity Linking with Active Sampling and Bi-Encoders

A system component overview is shown in Figure 2. Prior to training, the system needs to be initialized
with the knowledge base (UMLS in our case) and an optional set of pre-training documents (1). After
the initialization, the user can upload her documents (2) and annotate (3) them using the support of
the annotation helper (4). The user is supported by an active sampling of further samples to annotate
and correct. Next, the updated annotations and the current model are sent to training component where
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the named entity recognizer and linker are now (re-)trained on the supplied data (5). After the training
succeeded, the newly trained model is used to recognize and link mentions in the uploaded documents to
provide feedback to the user (6).
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Figure 2: Workflow of the TrainX system.

Named Entity Recognition and Linking with Bi-Encoders The recognition step is the first step of
an entity-linking pipeline. A high recall is crucial because the linker will not be able to disambiguate
mentions that have not been found by the recognizer in the first place. We chose the Flair-framework
(Akbik et al., 2018) because it has proven to achieve state-of-the-art results (Devlin et al., 2018). We
implemented a Bi-Encoder based on the work by Wu et al. (2019) and Humeau et al. (2020). The
Bi-Encoder uses fine-tuned BERT models to project mentions and entities in a common dense vector
space to allow retrieval based on vector similarity. The projection is enforced using a cross-entropy loss
function on both encoders’ output that rewards a high similarity between the mention and the matching
entity representation. In contrast to other entity linking architectures such as the entity linker from
the “ScispaCy” framework (Neumann et al., 2019), the Bi-Encoder approach is fully focused on solving
zero-shot problems (Wu et al., 2019). Also, it allows us to apply confidence measurements needed for our
active sampling mechanisms. We chose not to implement an additional cross-encoder as proposed by Wu
et al. (2019), Logeswaran et al. (2019) and Humeau et al. (2020) due to computational efficiency (Kurz
et al., 2020). The Bi-Encoder consists a mention encoder ym = (pool(T1(m)) and an entity encoder
ye = (pool(T2(e)). T1 and T2 are BERT models, and m and e are sequences of WordPiece tokens that
encode mention and entity, respectively. The pooling method pool() aggregates the resulting tensor into
single vector representations ym and ye by using the vector of the [CLS] token as a representation of
the whole token sequence.

Training the Bi-Encoder Our system works with three types of labels: GOLD for labels from (op-
tional) pre-training data, USER labels that have been created or updated by the user, and PRED labels that
were predicted from the entity linker. We train on GOLD and USER labels. For the mention encoder T1,
the mention and its context are encoded by using two special tokens to mark the beginning and end of a
mention i.e. [CLS] context left [MS] mention [ME] context right [SEP]. The in-
put of the entity encoder T2 is the name of the entity, followed by a textual description, i.e. [CLS] name
[ENT] description [SEP]. The description for every entity is generated by concatenation of all
English descriptions within the UMLS for that concept, starting with the longest one. The maximum
number of WordPiece tokens is a hyper-parameter of the model (Wu et al., 2019). Following Humeau et
al. (2020), we fine-tune all BERT layers except the embeddings to minimize the cross-entropy loss for a
vector of the logits ymi ·ye1 , . . . , ymi ·yei , . . . , ymi ·yen for every (mi, ei) in the batch B where |B| = n.

Candidate Retrieval For a given mention embedding, the system retrieves an entity by performing a
kNN-search based on a normalized dot product between that embedding and all of the concept embed-
dings. Because an exact kNN search will be too slow in practice for large amounts of data, we will not
only examine retrieval performance based on exact kNN, but also on an approximate kNN approach,
namely “Hierarchical Navigable Small World graphs” (HNSW) (Malkov and Yashunin, 2020) using the
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implementation of Facebook AI Similarity Search (Faiss) (Johnson et al., 2017). HNSW outperforms
other approximate kNN approaches in terms of quality/speed trade-off (Aumüller et al., 2017).

Hyperparameters Our Bi-Encoder fine-tunes BERT-base models with a learning rate of 5-e5, as sug-
gested by Devlin et al. (2018). As further hyperparameters, we chose a maximum input length of 50
WordPiece tokens for both encoders, a batch size of 128 samples and 100 learning-rate warmup steps.
The HNSW indexes are initialized with m = 16, efConstruction = 100 and efSearch = 100.

Active Sampling The goal of our human-in-the-loop process is two-fold: First, the user should become
familiar with the quality of the model and second, the system should support the user to improve the
performance of the model quickly. The system applies the model to the data after the training and enables
the user to approve or correct results. Thereby it selects samples based on the confidence of the named
entity recognizer and named entity linker. For each annotation, we calculate the confidence conf ann
by aggregating the confidence of the NER conf NER(ann), as provided by the Flair framework, and the
confidence of the entity linker based on margin sampling (Scheffer et al., 2001) by taking into account the
difference between the retrieved candidate entities at first and second places (eann1 , eann2) with respect
to the query vector q = T1(ann): conf ann = conf NER(ann) + (cos(q, eann1) − cos(q, eann2)). The
documents are sampled based on their least confident annotations.

4 Evaluation and Discussion

Evaluation on MedMentions We chose the publicly available “MedMentions-ST21pv” dataset (Mo-
han and Li, 2019) containing 4,392 annotated abstracts of PubMed articles with 203,282 annotations of
25,419 unique concepts. We use the pre-defined train/test/dev split. The test set contains annotations
for 3,590 concepts that have not been in the training set which allows us to evaluate zero-shot capabil-
ities. As named entity recognizer, we selected the Flair framework (Akbik et al., 2018) and trained it
on BIOES tagging until the early-stop mechanism of Flair stopped the training process. The scores of
this model resulted in a precision of 69.2, a recall of 69.0 and an F1 of 69.1. In Table 1, we report the
retrieval scores of the isolated entity linking component in comparison to a BM25-based Elasticsearch3

full-text index baseline. Table 1 also provides an end-to-end evaluation of the whole pipeline using the
micro-averaged A2W weak annotation match metric proposed by Cornolti et al. (2013).

UMLS concepts ∈ MedMentions full English UMLS
full test set only zero-shot full test set only zero-shot

BM25 exact HNSW exact HNSW BM25 exact HNSW exact HNSW

R@1 40.9 63.2 63.2 50.3 50.0 21.7 44.4 43.4 26.5 25.3
R@20 73.7 86.2 86.1 76.3 76.0 50.7 73.6 71.7 55.6 53.1

End-to-End (NER + NEL)

Precision - 47.4 47.4 - - - 32.1 31.1 - -
Recall - 45.7 45.7 - - - 30.9 30.0 - -
F1 - 46.5 46.5 - - - 31.5 30.6 - -

Table 1: Retrieval Performance – The upper half shows the the recall@k performance of the entity linker
compared to the BM25 baseline for exact kNN and HNSW indexes of all the UMLS concepts that can
be found within the MedMentions dataset (25,419) or the full English UMLS (3.6 Million). A separate
zero-shot evaluation shows the performance of the linker on concepts that it has not seen during training.
The lower half provides an end-to-end evaluation of the whole pipeline.

Discussion The Bi-Encoder outperforms the BM25 based approach by a margin of more than 20 per-
centage points. With respect to the size of the concept database of 3.6 million concepts and given that
UMLS still contains many ambiguities (Shooshan et al., 2009), the Bi-Encoder is still able to link to the
correct concept 26.5 percent of the times even though it has never seen it during training (zero-shot). On
the full test set, which contains a mixture of seen data and zero-shot, the Bi-Encoder was able to link to

3https://www.elastic.co/
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the exact entity in 44.4% of all cases. HNSW reduces the retrieval performance about one percentage
point at worse but speeds up the query process to 3ms instead of 600ms per query. The inclusion of
the named entity recognizer reduces the recall to 30.9% and results in an overall F1 score 31.5% for
exact kNN and 30.6% for HNSW. The zero-shot performance indicates that the underlying Bi-Encoder
is able to generalize beyond concepts seen in training to mitigate problems caused by sparse training
data. Therefore, our further work will focus on the optimization of the Bi-Encoder and the named entity
recognition step in order to better adapt to sparse-training data situations.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity search with GPUs. arXiv preprint
arXiv:1702.08734.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa, Richard Eckart de Castilho, and Iryna Gurevych. 2018. The
INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation. In Dongyan Zhao,
editor, COLING 2018, The 27th International Conference on Computational Linguistics: System Demonstra-
tions, Santa Fe, New Mexico, August 20-26, 2018, pages 5–9. Association for Computational Linguistics.

Nadja Kurz, Felix Hamann, and Adrian Ulges. 2020. Neural Entity Linking on Technical Service Tickets. arXiv
preprint arXiv:2005.07604.

Xiao Ling, Sameer Singh, and Daniel S Weld. 2015. Design Challenges for Entity Linking. Transactions of the
Association for Computational Linguistics, 3:315–328.

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, Jacob Devlin, and Honglak Lee. 2019.
Zero-Shot Entity Linking by Reading Entity Descriptions. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3449–3460.

Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate Nearest Neighbor Search Using
Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(4):824–836, Apr.

Sunil Mohan and Donghui Li. 2019. MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts.
In Automated Knowledge Base Construction (AKBC).



69

Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. 2019. ScispaCy: Fast and Robust Models for
Biomedical Natural Language Processing. In Proceedings of the 18th BioNLP Workshop and Shared Task,
pages 319–327, Florence, Italy, August. Association for Computational Linguistics.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. 2001. Active Hidden Markov Models for Information
Extraction. In Proceedings of the 4th International Conference on Advances in Intelligent Data Analysis, IDA
’01, page 309–318, Berlin, Heidelberg. Springer-Verlag.

Sonya E Shooshan, James G Mork, and A Aronson. 2009. Ambiguity in the UMLS Metathesaurus. In Tech rep,
US National Library of Medicine.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. 2019. Zero-shot Entity
Linking with Dense Entity Retrieval. arXiv preprint arXiv:1911.03814.


