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Abstract

The shared task of the CogALex-VI workshop focuses on the monolingual and multilingual
identification of semantic relations. We provided training and validation data for the following
languages: English, German and Chinese. Given a word pair, systems had to be trained to identify
which relation holds between them, with possible choices being synonymy, antonymy, hypernymy
and no relation at all.

Two test sets were released for evaluating the participating systems. One containing pairs for each
of the training languages (systems were evaluated in a monolingual fashion) and the other one
proposing a surprise language to test the crosslingual transfer capabilities of the systems.

Among the submitted systems, top performance was achieved by a transformer-based model in
both the monolingual and in the multilingual setting, for all the tested languages, proving the
potentials of this recently-introduced neural architecture.

The shared task description and the results are available at https://sites.google.com/site/
cogalexvisharedtask/.

1 Introduction

Determining whether two words are related and what kind of relations holds between them is an important
task in Natural Language Processing, and it has inspired a lot of research for more than one decade (Santus,
2016). Discovering relations between words is essential also for the creation of linguistic resources, such
as ontologies and thesauri (Grefenstette, 1994), and this is especially true for specialized domains.

Research on semantic relations benefited from the success of Distributional Semantic Models (Budanit-
sky and Hirst, 2006; Turney and Pantel, 2010), since they allow to easily generate semantic representations
for words from text, in the form of semantic vectors. However, the semantic similarity measured by vector
models is an underspecified relation, and it is not easy to tell, given two similar words, in which way they
are similar (Baroni and Lenci, 2011; Chersoni et al., 2016; Schulte Im Walde, 2020).

In the previous edition of the CogALex workshop, co-located with COLING 2016 in Osaka, the
organizers set up a shared task dedicated to the corpus-based identification of semantic relations for
English (Santus et al., 2016c). For the first time, systems were being evaluated in a shared task on the
classification of multiple relations at once and, not surprisingly, the task proved to be challenging for
computational models. For this new edition of the workshop, we have decided to launch a new version
of the same shared task, adding more languages to the evaluation and encouraging the participants to
evaluate their system also in a multilingual setting. Among the three teams that submitted their systems,
the top performance was achieved by a RoBERTa-based system, XLM-R, in all the four languages, and
both in the monolingual and in the multilingual setting.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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2 Related Work

The earlier methods for identifying semantic relations were based on patterns. Patterns are generally very
precise for identifying relations such as hypernymy-hyponymy (Hearst, 1992; Snow et al., 2004) and
meronymy (Berland and Charniak, 1999; Girju et al., 2006), or even multiple relations at once (Pantel and
Pennacchiotti, 2006), but their limit is that the two related words have to occur together in a corpus, and
thus their recall is limited (Shwartz et al., 2016).

Distributional Models, which do not suffer from such limitations, became then the first choice for
the NLP research on semantic relations. In a first phase, researchers focused on the similarity metric,
proposing alternatives to cosine that can be more efficient in setting apart a specific semantic relation from
the others, e.g. hypernymy (Weeds and Weir, 2003; Clarke, 2009; Lenci and Benotto, 2012; Santus et
al., 2014a), synonymy (Santus et al., 2016a) or antonymy (Santus et al., 2014b), or looked for specific
differences in their distributional contexts (Scheible et al., 2013). In parallel, the first large datasets
for evaluating the identification of semantic relations were being released, including relations such as
hypernymy, cohyponymy and antonymy (Baroni and Lenci, 2011; Lenci and Benotto, 2012; Scheible and
Schulte Im Walde, 2014; Weeds et al., 2014; Santus et al., 2015).

In a second phase, following the increasing popularity of publicly-available frameworks for training
word embeddings such as Word2Vec (Mikolov et al., 2013) and Glove (Pennington et al., 2014), the focus
quickly shifted on the usage of these vectors as features for supervised classifiers. Some of these methods
train classifiers directly on pairs of vectors (Baroni et al., 2012; Weeds et al., 2014), while others compute
DSMs-based metrics first and then use them as features (Santus et al., 2016b). Late attempts to conciliate
similarity metrics and word embeddings brought to proposals such as APSyn (Santus et al., 2018).

Some of the more recent contributions proposed even more sophisticated classification approaches.
(Shwartz et al., 2016; Roller and Erk, 2016) aim at integrating word embeddings with information coming
from lexical patterns, which proved to be extremely accurate for detecting relations. Other researchers
introduced modifications to the structure of the vector spaces with the goal of identifying a specific type
of semantic relation, for example by modifying the objective function of the Word2Vec training to inject
external knowledge from a lexical resource (e.g. WordNet) (Nguyen et al., 2016; Nguyen et al., 2017),
or by adding an extra postprocessing step that projects the word vectors into a new space, expressly
specialized for modeling the target relation (Vulić and Korhonen, 2018) or even more refined techniques
of vector space specialisation (e.g. adversarial specialisation) (Kamath et al., 2019).

However, these contributions mostly tried to address one relation at a time, with rare attempts of
tackling the problem in a multiclass setting. The shared task organized in coincidence with CogALex
2016 (Zock et al., 2016) was one of the few exceptions, and the low results achieved by most systems (the
top F-score being 0.44) showed the difficulty of distinguishing between multiple relations at once. For
this reason, we have decided to propose a similar challenge, yet including another factor of complexity:
multilingualism. Considering the recent approaches that have been introduced for semantic relations
in multilingual (Wang et al., 2019), crosslingual (Glavaš and Vulic, 2019) and meta learning (Yu et al.,
2020) settings, we provided datasets in multiple languages (English, German, Chinese and Italian) and
encouraged the participants to train their systems for both monolingual and multilingual evaluation.

3 Shared Task

The CogALex-VI shared task was organized as a friendly competition: participants had access to both
training and testing datasets, which were respectively released on August 1 and September 1, 2020. The
scores of the participating systems were evaluated with the official scripts, and each team had to submit a
short paper containing the system description. Among the three participants that submitted their systems,
one only submitted results for the English data.

3.1 Task Description
The shared task was split into two main subtasks. In subtask 1, training and validation data are provided
for the following languages: English, German and Chinese. Participants are required to use the given
datasets to train their model and then, utilize it to identify which relation – among synonymy, antonymy,
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hypernymy and no relation at all – holds between two words in a testing set. Predictions are evaluated
separately for each language. Subtask 2 aims at evaluating the crosslingual transfer capabilities of the
participating systems by testing the already trained models on a surprise language, for which no training
data was provided. The chosen evaluation language was Italian.

3.2 Datasets and Tasks

In order to build the CogALex-VI multilingual dataset, four data collections have been adopted: English
(Santus et al., 2015), German (Scheible and Schulte Im Walde, 2014), Chinese (Liu et al., 2019) and
Italian (Sucameli and Lenci, 2017). Data format was standardized across languages to obtain a word pair
per line, followed by the semantic relation holding between the words. A description of the four semantic
relations of the shared task is provided in Table 1.

Relation (label) Description Example
Synonymy (SYN) w1 can be used with the same meaning of w1 new-novel
Antonymy (ANT) w1 can be used as the opposite of w2 big-small
Hypernymy (HYP) w1 is a kind of w2 cat-animal

Random (RANDOM) w1 and w2 are not related dog-fruit

Table 1: Description of the semantic relations

For each language, we tried to obtain a balanced distribution of pairs across classes. A stratified
sampling is adopted for English, German and Chinese. 60% of the whole dataset is provided as training
dataset, and 20% is used as validation set for above languages. Participants are expected to use the above
data for model and parameter tuning. The remaining 20% is given as a test set, with no ground truth.
Detailed class statistics can be found in Table 2 (no training and validation data was provided for Italian).

English German Chinese Italian
train valid test train valid test train valid test test

SYN 842 259 266 782 272 265 402 129 122 187
ANT 916 308 306 829 275 281 361 136 142 144
HYP 898 292 279 841 294 286 421 145 129 153
RANDOM 2554 877 887 2430 786 796 1330 428 445 523
TOTAL 5210 1736 1738 4882 1627 1628 2514 838 838 1007

Table 2: Dataset Statistics

3.3 Participating Teams

Three participants submitted their system to CogALex-VI shared task: HSemID (Colson, 2020), Text2CS
(Wachowiak et al., 2020) and TransDNN (Karmakar and McCrae, 2020). All teams took part in subtask 1,
while only two of them participated in subtask 2.

Text2TCS exploited a multilingual language model based on XLM-RoBERTa (Conneau et al., 2020),
which is pretrained on 100 different languages using CommonCrawl data. To adapt the system to the task,
the authors appended a linear layer to XLM-R, followed by a softmax for the classification. This system
was fine-tuned on the three training set from different languages simultaneously.

TransDNN proposed an architecture combining BERT (Devlin et al., 2018), LSTM and CNN, in which
the BERT embeddings are passed to an LSTM that helps to represent terms having multiple words, and
finally reach a convolutional layer followed by a dense layer and a softmax, devised for the classification.
This system was trained on the given English dataset and participated only in the first subtask.

HSemID proposed a multilayer perceptron combining 1st and 2nd order representations of semantic
associations. The system was trained with default parameters and the representations were built on WaCky
corpora for English, German, Italian and a translated WaCky corpus (Baroni et al., 2009) for Chinese.

The methods and corpora used are summarized in Table 3.
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Team Method Corpus

Text2TCS
multilingual language model XLM-RoBERTa,
multilingual training for English, German
and Chinese simultaneously

XLM-RoBERTa is trained on 100 different
languages using CommonCrawl data

TransDNN BERT, LSTM, CNN BERT is trained on 3.3 billion tokens using
BookCorpus and English Wikipedia Data

HSemID
combination of 1st-order and 2nd-order
representations of semantic associations,
multilayer perceptron

WaCky corpora for English, German, Italian
and a translated WaCky corpus based on
similar seed words of Chinese.

Table 3: Description of the participating systems

4 Evaluation

For the evaluation, participants had to submit their predictions. The output files were expected to contain
exactly the same pairs, in the same order, and using the same annotation labels of the gold standard.

Given the gold standard and the system output, our script calculates precision, recall and F1 score. The
weighted performance average across the classes was calculated ignoring the RANDOM pairs, as our
focus is on the system’s capability of detecting actual semantic relations. To this end, only SYN, ANT
and HYP were averaged in the final score. The overall ranking was based on such a weighted average.

4.1 Subtask 1
Table 4 summarizes the performance of the systems in the three languages. 1 With the only exception of
Text2TCS in Chinese, the relatively low F1 scores indicate that the task of identifying semantic relations
is still hard to solve and that performance would benefit from more attention by the research community.
Another interesting fact is that all participating systems show a similar pattern with regard to precision
and recall. These systems tend to result in higher precision, while recall remains relatively low.

System Overall Precision Overall Recall Overall F1
English
Text2TCS 0.602 0.455 0.517
TransDNN 0.563 0.355 0.428
HSemID 0.400 0.276 0.320
German
Text2TCS 0.592 0.435 0.500
HSemID 0.395 0.258 0.312
Chinese
Text2TCS 0.904 0.860 0.881
HSemID 0.501 0.331 0.377

Table 4: Performance of participating systems for subtask 1

The best performing system is Text2TCS. It outperforms the others in every metric for three languages,
achieving 0.52 F1 score for English, 0.50 for German, and 0.88 for Chinese. Due to the lack of non-English
pre-trained models, TransDNN only provided results for English, ranking second with 0.43 F1 score.
The gap between Text2TCS and TransDNN is lower for precision (0.039) than for recall (0.1). HSemID
performs worse in subtask 1, lagging behind the other systems by a large margin.

As described in Table 3, all the systems utilize neural networks, although they differ in the architecture
complexity and corpus size. In particular, transformer-based architectures demonstrate to outperform
simpler approaches, such as the HSemID one.

As for the different languages, it is unexpected that systems perform best in Chinese. In order to gain
insights into this surprising result, we investigated misclassification for both English and Chinese. In
English, 287 pairs out of 1738 were misclassified by all the systems. Errors concerned 79 SYN, 76 ANT
and 90 HYP, which were in most cases misclassified as RANDOM. This indicates that recall still needs to

1The detailed scores by class can be found in the system description papers.
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be improved. As it is shown in Table 5, RANDOM represents an important interference factor in every
relation type. On the contrary, we did not find any RANDOM instance which was incorrectly classified
as SYN. Another common confusion of the system was between SYN and HYP, because of the similar
nature of these semantic relations (see for example the pairs "gauge-test" and "confine-constrain").

English Chinese
W1 W2 Gold Pred W1 W2 Gold Pred
fan blow on SYN RANDOM 私人(private) 公立(public) ANT RANDOM
workforce loiterers ANT RANDOM 花(diverse) 眼花繚亂(dazed) SYN RANDOM
zone reguale HYP RANDOM 打氣(cheer) 勉(encourage) HYP RANDOM
swat hit SYN RANDOM 哪裏(where) 今(now) RANDOM SYN
misconstrue gesture RANDOM HYP 貼(stick) 黏(sticky) HYP SYN
maze path ANT HYP 狹隘(narrow) 窄(narrow) HYP ANT
guage test SYN HYP 輕聲(whisper) 低聲(low voice) SYN ANT
confine constrain HYP SYN 斥(blame) 使(enable) HYP SYN
chap dude SYN ANT 醫學(medicine) 學術(academy) HYP SYN
arrive rest RANDOM ANT 糕(cake) 糕點(cake) HYP SYN

Table 5: Sample of pairs that were misclassified by all systems

The common misclassified pairs for Chinese were less than for English. Only 47 instances out of 838
were wrongly classified by both Text2TCS and HSemID. It can be found in Table 5 that most errors
are related to SYN and HYP. The Chinese dataset seems to show a neater distinction between semantic
relations, compared to other tested languages. Moreover, it was not possible to identify any evidence for
regular errors in the Chinese dataset (i.e. no relation types were more prone to be confused).

4.2 Subtask 2
Table 6 summarizes the results for the subtask 2, that is in the identification of semantic relations in Italian,
proposed in the test as the surprise language. Both systems obtain metrics that are comparable to those
obtained in subtask 1 for English and German. The small gap between trained models in subtask 1 and
zero-shot learning approaches subtask 2 implies a certain degree of commonalities between European
languages. Also in this case, Text2TCS largely outperforms HSemID. Once more, both systems retain
higher precision than recall. Interestingly, however, the gap between the systems is this time higher for
precision (0.192) than for recall (0.133).

System Overall Precision Overall Recall Overall F1
Text2TCS 0.557 0.429 0.477
HSemID 0.365 0.296 0.325

Table 6: Performance of participating systems for subtask 2 (Italian)

5 Conclusions

In this paper, we have described the CogALex-VI shared task, which focused on monolingual and
multilingual identification of semantic relations. Three teams have submitted their system. All of them
have addressed subtask 1 (i.e. identifying relations in languages for which a training set was released:
English, German and Chinese), while only two teams addressed subtask 2 (i.e. identifying relations in a
surprise language: Italian). All the submitted systems utilized neural networks, but with different level
of complexity. The evaluation shows that transformer-based approaches obtain better performance than
other neural methods. These approaches, in particular, are also behind the recent developments in natural
language processing, showing incredible capabilities in a large set of domains and applications. Probably
because of such capabilities, traditional NLP tasks, such as the identification of semantic relations, are
gradually losing traction in the community. This shared task meant to show how such core NLP tasks
remain a big challenge, which would require more attention by the community to possibly generate even
more powerful and robust semantic representations.
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