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Abstract

Language users process utterances by segmenting them into many cognitive units, which vary
in their sizes and linguistic levels. Although we can do such unitization/segmentation eas-
ily, its cognitive mechanism is still not clear. This paper proposes an unsupervised model,
Less-is-Better (LiB), to simulate the human cognitive process with respect to language uniti-
zation/segmentation. LiB follows the principle of least effort and aims to build a lexicon which
minimizes the number of unit tokens (alleviating the effort of analysis) and number of unit types
(alleviating the effort of storage) at the same time on any given corpus. LiB’s workflow is inspired
by empirical cognitive phenomena. The design makes the mechanism of LiB cognitively plau-
sible and the computational requirement light-weight. The lexicon generated by LiB performs
the best among different types of lexicons (e.g. ground-truth words) both from an information-
theoretical view and a cognitive view, which suggests that the LiB lexicon may be a plausible
proxy of the mental lexicon.

1 Introduction

During language comprehension, we cannot always process an utterance instantly. Instead, we need
to segment all but the shortest pieces of text or speech into smaller chunks. Since these chunks are
likely the cognitive processing units for language understanding, we call them cognitive units in this
paper. A chunk may be any string of letters, characters, or phonemes that occurs in the language, but
which chunks serve as the cognitive units? Traditional studies (Chomsky, 1957; Taft, 2013, for example)
often use words as the units in sentence analysis. But speech, as well as some writing systems such as
Chinese, lack a clear word boundary. Even for written languages which use spaces as word boundaries,
psychological evidence indicates that the morphemes, which are sub-word units, in infrequent or opaque
compound words take priority over the whole word (Fiorentino et al., 2014; MacGregor and Shtyrov,
2013); at the same time, some supra-word units such as frequent phrases and idioms are also stored in
our long-term mental lexicon (Arnon and Snider, 2010; Bannard and Matthews, 2008; Jackendoff, 2002).
The evidence suggests that the cognitive units can be of different sizes; they can be words, or smaller
than words, or multi-word expressions.

Despite the flexible size of the cognitive units, and the lack of overt segmentation clues, infants are able
to implicitly learn the units in their caregivers’ speech, and then generate their own utterances. Arguably,
children’s language intelligence allows them to build their own lexicons from zero knowledge about the
basic (cognitive) units in the particular language the child is learning, and then use the lexicon to segment
language sequences. Can we mimic this ability of a human language learner in a computer model? This
question is often phrased as the task of unsupervised segmentation. Several types of computational
models or NLP algorithms have been proposed for segmentation, taking different approaches:
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• Model the lexicon: A straightforward basis for segmentation is to build a lexicon. One of the
lexicon-building algorithms, Byte pair encoding (BPE) (Sennrich et al., 2016), is popular for NLP
preprocessing. It iteratively searches for the most common n-gram pairs and adds them into the n-
gram lexicon. Some other models such as the Chunk-Based Learner (McCauley and Christiansen,
2019) and PARSER (Perruchet and Vinter, 1998) are also based on the local statistics of tokens
(e.g., token frequency, mutual information, or transitional probability).

• Model the grammar: Some studies attempted to analyze the grammar patterns of sentences and
then parse/segment the sentences based on these patterns. To find the optimal grammar, de Marcken
(1996) used Minimum Description Length, and Johnson and Goldwater (2009) used the Hierarchi-
cal Dirichlet Process.

• Model the sequences: Recurrent neural networks and its variations are able to learn the sequential
patterns in language and to perform text segmentation (Chung et al., 2017; Kawakami et al., 2019;
Sun and Deng, 2018; Zhikov et al., 2013).

In general, lexicon models capture only the local statistics of the tokens so they tend to be short-sighted
at the global level (e.g. long-distance dependencies). The other two types of models, in contrast, learn
how the tokens co-occur globally. Yet, the ways grammar models and sequence models learn the global
information makes them more complicated and computing-intensive than the lexicon models.

In this paper we propose a model that builds a lexicon, but does so by using both local and global
information. Our model is not only a computational model but also a cognitive model: it is inspired by
cognitive phenomena, and it needs only basic and light-weight computations which makes it cognitively
more plausible than the grammar- and sequence-learning models mentioned above. We show that our
model can effectively detect the cognitive units in language with an efficient procedure. We also show
that our model can detect linguistically meaningful units. We further evaluate our model on traditional
word segmentation tasks.

2 The Less-is-better Model

2.1 Cognitive principles

We want our system to mimic human cognitive processes of language unitization/segmentation by sim-
ulating not only the behavioral output, but also the cognitive mechanism. We designed such a computa-
tional model by emulating three cognitive phenomena: the principle of least effort, larger-first processing,
and passive and active forgetting.

The principle of least effort: The essence of the model is a simple and natural cognitive principle:
the principle of least effort (Zipf, 1949), which says human cognition and behavior are economic; they
prefer to spend the least effort or resources to obtain the largest reward. Since a language sequence can be
segmented into different sequences of language chunks, we assume the cognitive units are the language
chunks in the sequence which follow the principle of least effort.

Larger-first processing: As we mentioned, any language chunk may be the cognitive unit, short or long.
A broadly known finding is that global/larger processing has priority over local/smaller processing for
visual scene recognition; an effect named “global precedence” (Navon, 1977). This follows from the
principle of least effort: the larger the units we process, the fewer processing steps we need to take. For
visual word processing, the word superiority effect (Reicher, 1969) shows the precedence of words over
recognizing letters. Recent work (Snell and Grainger, 2017; Yang et al., 2020) extends global precedence
to the level beyond words, and also shows that we do not process only the larger units: smaller units also
have a chance to become the processing units when processing larger units does not aid comprehension.
In other words, cognitive units may be of any size, but the larger have priority.

Passive and active forgetting: To mimic human cognition, the model should have a flexible memory
to store and update information. Forgetting is critical to prevent the accumulation of an extremely large
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number of memory engrams. It has been commonly held that forgetting is merely the passive decay of
the memory engram over time, but recent studies put forward that forgetting can also be an active process
(Davis and Zhong, 2017; Gravitz, 2019). Passive forgetting by decay can clean up the engrams that are
no longer used in our brains. However, our brains may sometimes need to suppress counter-productive
engrams immediately. Active forgetting may thus be called upon to eliminate the unwanted engram’s
memory traces, which enhances the memory management system (Davis and Zhong, 2017; Oehrn et al.,
2018).

2.2 General idea

We assume the cognitive units are the chunks in the language sequence which follow the principle of
least effort (Section 2.1). In other words, the less information we need to encode the language material,
the better cognitive units we have. This less-is-better assumption grounds our model, so we named it
Less-is-Better, or LiB for short.

The LiB model accepts any sequence S of atomic symbols s: S = (s1, s2, . . .), as the input. A collection
of S forms a document D and all D together form the training corpus. S can be segmented into chunk
tokens (c1, . . . , cN ), where each chunk is a subsequence of S: c = (si, . . . , sj) and N is the number of
chunk tokens in S. The segmentation is based on a lexicon L (Fig. 1) where all chunk types are stored
in order. The ordinal number of chunk type c in L is denoted Θ(c), and |L| is the number of chunk types
in L.

Let I(c) be the amount of information (the number of encoding bits) required to identify each chunk
type in L, that is, I(c) = log2 |L|, and I(S) be the amount of information required for the input S, then:
I(S) = I(c)N . Our model aims to minimize the expected encoding information to extract the cognitive
units in any S, which means minimizing E[I(S)], which is accomplished by simultaneously reducing
|L| (smaller |L| means lower I(c)) and E[N ] (the expected number of chunk tokens in S). In practice
our model:

1. Starts with an empty L;
2. Randomly selects a D from the corpus and analyzes the S in D;
3. Adds previously unseen symbols s as (atomic) chunk types to L;
4. Recursively combines adjacent chunk tokens into new chunk types, reducing E[N ] but increasing
|L|;

5. Removes less useful types from L, reducing |L|;
6. Repeats steps 2 to 5 for a predetermined number of epochs.

The LiB model can segment any string S into a sequence of chunks (c1, ..., cN ) based on the lexicon
L. The chunk types in L are ordered based on their importance inferred from the segmentation. The
lexicon quality and the segmentation result mutually affect each other: LiB learns from its own segmen-
tation results and updates L accordingly, then improves its next segmentation (Figure 1). The bootstrap
procedure makes the model unsupervised.

Figure 1: Information flow in the LiB model.
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2.3 Implementation

2.3.1 Segmentation

Larger-first selection: An S can be segmented in different ways. For example, if both “going” and
“goingto” are in L, and the given S is “goingtorain”, then the first chunk token can be “going” or
“goingto”. The Larger-first principle (Section 2.1) dictates that LiB takes the largest substring of S
that matches a chunk type in L (in the example case, it is “goingto”), i.e. greedy matching, and selects it
as a chunk token (segment). If there is no chunk type in L that matches the current S, the first symbol s
becomes the selected chunk token.

Chunk evaluation: In most cases, selecting larger chunk tokens will reduce the number of tokensN in
S, but in some cases it will not. Let us continue the example we gave: If “goingtor”, “a”, “in”, and “rain”
are also in L, the largest chunk token becomes “goingtor”, resulting in the segmentation “goingtor/a/in”.
If “goingto” had been selected, this would result in “goingto/rain”. Hence, selecting the largest chunk
type resulted in a larger N . The average chunk token sizes of the two segmentations are 5.5 and 3.6
letters, respectively.

In order to test whether the selected chunk type c reducesN , LiB compares the proposed segmentation to
the segmentation that results if c is not in L, i.e., if the second largest chunk type in L is selected instead
of c. In case L cannot provide a second largest chunk token, there is no evaluation and c is selected
directly. Otherwise, c is evaluated as “Good” if it results in fewer chunk tokens or in the same number of
tokens but with lower total ordinal numbers (i.e., chunks that are higher up in the lexicon):

segment(S,L) : S → (c1, c2, . . . , cN )

segment(S,L− c) : S → (c′1, c
′
2, . . . , c

′
N ′)

evaluate(c) =



{
Good if N < N ′

Bad if N > N ′ if N 6= N ′
Good if

N∑
i=1

Θ(ci) ≤
N ′∑
i=1

Θ(c′i)

Bad if
N∑
i=1

Θ(ci) >
N ′∑
i=1

Θ(c′i)

if N = N ′

If evaluate(c) is Good, c is selected; otherwise, the second largest chunk token is selected.

2.3.2 Lexicon update

Memorizing: LiB learns new chunks from the segmentation results. There are two types of new chunks
in the results: unknown symbols s /∈ L and concatenations of known chunks (ci, ci+1) (with ci ∈ L and
ci+1 ∈ L) that occur consecutively in S. L starts empty, learns the symbol chunks, then the smallest
chunks construct larger chunks and the larger chunks construct even larger chunks. Thus, L can contain
chunks in different sizes.

The number of all (ci, ci+1) in the training corpus can be enormous, and most of them are infrequent
chunks. In order to reduce the lexicon size |L|, LiB will memorize all s, but not all (ci, ci+1). To
recognize the frequent chunks, a strategy is to count all chunks’ occurrences and delete the infrequent
ones (Perruchet and Vinter, 1998). However, this strategy asks for storing all chunks at the beginning,
which is memory inefficient for both a brain and a computer. Thus, LiB adopts a sampling strategy: The
model samples from all possible (ci, ci+1) tokens in the current S and memorizes only the tokens which
were sampled at least twice. The probability of sampling a chunk pair is the sampling probability α.
The sampling strategy is implicitly sensitive to the chunk token frequency in the text. It makes sure that
even without explicit counting, higher-frequency chunks have a higher probability to be memorized. The
at-least-twice strategy is not cognitively inspired but heuristic; it helps to prevent memorization of many
arbitrary chunks.
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Re-ranking and active forgetting: To avoid storing the frequencies of all possible chunk types, and
to be more efficient, LiB bypasses explicit frequency counting of chunk types. Instead, LiB encodes the
types’ importance by their ordinals Θ(c) inL – the lower the more important. The importance reflects not
only the frequency but also the principle of least effort (preference for fewer tokens and fewer types). In
general, newly memorized chunk types are less frequent than known chunk types, so new chunk types are
appended to the tail of L. The ordinals of known chunk types also need to be adjusted after new training
text data comes in. The chunk evaluation we described in Section 2.3.1 is not only for segmentation, but
also for importance re-ranking. The “good” chunk types, which result in fewer chunk tokens in S, will
move closer to the lexicon head (i.e., lower ordinal); The “bad” chunk types, which result in more chunk
tokens in S, will move closer to the lexicon tail, i.e., they get a higher ordinal number. The updated Θ(c)
of a chunk type is relative to its previous ordinal Θ′(c) in L:

Θ(c) =

{
bΘ′(c)(1−∆)c if c is good
bΘ′(c)(1 + ∆)c if c is bad

where 0 < ∆ < 1 is the re-ranking rate. In case the updated Θ(c) > |L|, c will be deleted from L.

Passive forgetting: Obviously, the re-ranking also influences other chunk types whose ordinals are be-
tween Θ(c) and Θ′(c). So even though the sampling strategy of the memorizer may add a few infrequent
chunk types into L, the re-ranker will move them closer to the tail of L. Those chunk types, as well as
the “bad” chunk types, are “junk chunks” which increase I(c). The passive forgetter removes them from
L to reduce I(c).

The junk chunk types tend to be at the tail of L, but the tail may also store some non-junk types. A
cognitive strategy to avoid deleting them is waiting for more evidence. So instead of deleting these types
immediately, LiB uses a soft deleting strategy: after each training epoch, LiB will select the last ω|L| (at
least one) chunk types in L and assign them a probation period τ . Here, ω is the forgetting ratio and τ
is the remaining time until deletion; it is initialized at τ0 and decreases by one after each training epoch
(LiB analyzes one documentD in each training epoch). Once the probation time is over, when τ = 0, the
chunk is forgotten (i.e., removed from L). If a chunk type was evaluated as “good” during its probation
period, its probation is cancelled. The c that occur in fewer documents are more likely to be forgotten.

3 Model Training

We trained the LiB model on both English and Chinese materials (Table 1). The English material is
BR-phono, which is a branch of the Brent corpus (Bernstein-Ratner, 1987), containing phonetic tran-
scriptions of utterances directed at children. We used it for testing segmentation of spoken language.
LiB accepts the document as an input batch in each training epoch but the utterances in the BR-phono
corpus have no document boundaries. We randomly sampled 200 utterances (without replacement) from
BR-phono to form one document and repeated this 400 times to create 400 documents for model train-
ing. The Chinese materials are taken from Chinese Treebank 8.0 (CTB8) (Xue et al., 2013), which is
a hybrid-domain corpus (news reports, government documents, magazine articles, conversations, web
discussions, and weblogs). As preprocessing, we replaced all the Roman letters and Arabic numbers
with [X], and regarded all punctuation as sequence boundaries.

In order to examine the unsupervised performance of LiB, all spaces in the corpora were removed before
training. We trained LiB on BR-phono and on CTB8 separately. The parameter settings are shown
in Appendix A. The example segmentations with increasing number of training epochs are shown in
Appendix B. The related code and preprocessed corpora are available online1.

1https://github.com/ray306/LiB

https://github.com/ray306/LiB
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Corpus Documents Sentences Word tokens Word types
BR-phono 400 9,790 33,399 1,321
CTB8 3,007 236,132 1,376,142 65,410
MSR / 18,236 89,917 11,728
PKU / 15,492 88,327 12,422

Table 1: The training and test corpus statistics after preprocessing. MSR and PKU are the (Chinese) test
corpora which are mentioned in Section 4.5. Word units are presegmented in the CTB8, MSR, and PKU
corpora.

4 Model Evaluation

4.1 Subchunks

After training, we evaluated the chunk units in the training corpora from two information-theoretical
views that bear a relation to cognitive processing: description length and language model surprisal. We
also examined the performance of LiB on word segmentation tasks. However, since LiB can learn new
chunks from the concatenation of known chunks, the learned chunks are not only words, but also possible
multi-word expressions. For the word segmentation task, we want to know the words in those multi-word
expressions, so we had LiB find the subchunks c[, which are the chunks inside the original chunks (e.g.,
“you” and “are” inside “youare”), and regarded the subchunks as the words. LiB defines the subchunk
by searching all the potential chunk sequences in the original chunk (craw) and selecting the sequence
with lowest sum of ordinals unless craw has the lowest sum:

(c[1, . . . , c
[
n) = arg min

(c1,...,cn)

(∑
i

Θ(ci)

)
,where (c1, . . . , cn) = craw

Subchunk(s) of craw =

{
(c[1, . . . , c

[
n) if maxi(Θ(c[i)) < Θ(craw)

craw otherwise

4.2 Qualitative evaluation

Since the LiB lexicon is ordered, we may examine the head of the trained lexicons (Table 9), which are
the highest-ranked chunk units. They show that LiB appears to learn common words and collocations.
Among the learned units we observe some collocations (e.g., “that’sa”) which are not linguistic phrases.
The lexicon of LiB trained on CTB8 shows that the high-ranked Chinese chunk units are usually bigrams
(Appendix C). The middle and the tail of the trained lexicons are also shown in Appendix C. We present
examples of chunk and subchunk segmentation results in Table 3. The results show the chunk units
include common collocations, while the subchunk units are very close to the linguistic words.

4.3 Description length evaluation

LiB provides two types of new units to segment language: LiB chunks are the raw segmentation result
of LiB, and LiB subchunks are the subchunks inside LiB chunks. In order to examine the encoding
efficiency of LiB chunks and LiB subchunks, we compared the description lengths (DL) on different
segmentations. The DL is the number of bits required to represent the corpus; it sums the number of bits
required to encode the lexicon and the number of bits required to encode the corpus when segmented by
the lexicon (Zhikov et al., 2013):

DL(total) = DL(lexicon) +DL(corpus) = −
#s∑
i=1

Freq(si) log2 P (si)−
#u∑
j=1

Freq(uj) log2 P (uj)
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Corpus Top 50 entries (translated) in Lexicon
BRphono the, yeah, you, what, wanna, can you, two, and, that’s, okay, four, now, it, they’re, he’s,

in, look, with, you want, who, he, that, all, your, here, i think, put, that’s a, what’s, you
can, his, my, see, you wanna, no, is that, high, whose, this, good, there’s, very, see the,
its a, is it, alright, this is, are you, ing, have

CTB8 haven’t, China, we, economics, already, kid, but, education, can, now, government,
country, a, these, self, can’t, if, journalist, today, they, although, require, tech, process,
this, Xinhua News Agency, wish, issue, is, mainland, because, some, and, all are, so,
now, may, Taiwan, should, political, development, also is, also is, society, such, via,
continue, isn’t, Shanghai, ’s

Table 2: Transliterations/translations into English of the top 50 entries in the lexicons. The original re-
sults of BRphono are in phonemic characters, and the original results of CTB8 are the Chinese characters.
For completeness, in Appendix C we repeat these results with the original results included.

Corpus Level Segmentation
BRphono Input allrightwhydon’tweputhimawaynow

Chunks allright·whydon’t·we·puthimaway·now
Subchunks all·right·why·don’t·we·put·him·away·now
Words all·right·why·don’t·we·put·him·away·now

CTB8 Input 这个出口信贷项目委托中国银行为代理银行
Chunks 这个·出口信贷·项目·委托·中国银行·为·代理·银行
Subchunks 这个·出口·信贷·项目·委托·中国·银行·为·代理·银行
Words 这·个·出口·信贷·项目·委托·中国·银行·为·代理·银行

Table 3: Example segmentations of strings in the two corpora. BRphono’s results are transcribed into
English words for ease of presentation.

Here, #s denotes the number of unique symbols s in L (either as a single-symbol chunk or as part of a
larger chunk); Freq(si) and P (si) are the occurrence count and ratio of si in L; #u denotes the number
of unique units u in the corpus; Freq(uj) and P (uj) are the occurrence count and ratio of uj in the
corpus.

As benchmarks, we used Symbol (the indivisible units; in our two corpora, phonemes and characters re-
spectively), Word (the words presegmented in the corpora), and BPE subword (the Byte Pair generated
by SentencePiece (Kudo and Richardson, 2018) with default parameters setting). The DL result (Table
4) shows that LiB chunks result in shortest DL; they minimze the information; they are the most concise
encodings.

4.4 Language model evaluation

Besides the DL, which compares the information efficiencies of different lexicons, we are also interested
in whether the LiB lexicon can reflect the mental lexicon. We lack a ground truth of what is in the
putative mental lexicon. However, we can regard natural language material as a large-scale result of
human language use and language behavior. Trained on a very large corpus, a recent study by Brown
et al. (2020) shows that Language Models (LMs) can closely predict human performance on various
language tasks. LMs capture the probabilistic constraints in natural language and perform the tasks
by making predictions, which is a fundamental cognitive function (Bar, 2007). So, by measuring the
prediction surprisal in the corpus segmented by different lexicons, we can evaluate different lexicons
from a cognitive view, and we presume that the lexicon that gets the best LM performance is a better
approximation of the mental lexicon.

Many studies have shown that word surprisal is positively correlated with human word-reading time
(Monsalve et al., 2012; Smith and Levy, 2013) and size of the N400 component in EEG (Frank et al.,
2015). From the cognitive principle of least effort, it follows that readers try to minimize reading time.
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Segmentation
Corpus Evaluation metric Symbol BPE subword Word LiB subchunk LiB chunk

BRphono

Average length 1 2.8 2.9 2.9 3.6
Lexicon size 50 5,574 1,321 1,119 1,869
DL(lexicon) <1 173 28 24 47
DL(corpus) 490 278 262 258 233
DL(total) 490 451 289 282 281

CTB8

Average length 1 1.4 1.7 1.7 1.9
Lexicon size 4,697 7,980 65,410 24,763 39,320
DL(lexicon) 57 133 1,767 621 1,153
DL(corpus) 21,864 18,229 15,669 16,188 15,602
DL(total) 21,921 18,362 17,436 16,809 16,755

Table 4: Average token lengths, lexicon sizes, and the DL results of different types of segmentation on
the two corpora. The unit of Average Length is phoneme (BRphono) or Chinese character (CTB8). The
unit of DL is kilobit.

Segmentation
Corpus Model Symbol BPE subword Word LiB subchunk LiB chunk

BRphono
2-gram 1.539 0.695 0.677 0.649 0.548
3-gram 0.950 0.390 0.405 0.378 0.335

CTB8
2-gram 2.466 1.932 1.617 1.668 1.452
3-gram 1.404 0.827 0.806 0.748 0.626

Table 5: Bits-per-character scores on different segmentations.

Hence, it follows that readers would try to find lexical units such that total surprisal is also minimized.

Surprisal, defined as − log2(P (w|context)), is not comparable between models with different segmenta-
tions. Instead we use bits per character (BPC) (Graves, 2013), which is average surprisal/|c|, where |c|
is the average chunk length over the whole test set. We tested the segmentations2 on both bigram and
trigram language models and the results show that the corpora represented by LiB chunks achieve the
lowest surprisal (Table 5).

4.5 Word segmentation evaluation

As we already illustrated in Table 3, subchunk units tend to be close to linguistic words. We thus
tested LiB subchunks as a resource for word segmentation. To evaluate LiB on English word segmen-
tation, we compared LiB with Adaptor Grammar (AG) (Johnson and Goldwater, 2009), which achieves
state-of-the-art performance on the segmentation task of BR-phono. AG requires grammar construc-
tion rules that encode prior linguistic knowledge. These rules presuppose knowledge about unigrams
only, or unigrams+collocations, or unigrams+collocations+syllables. This yields three versions of AG.
Table 6a shows that AG(syllable), whose rules carry extra linguistic knowledge (Johnson and Goldwa-
ter, 2009), achieves the highest score. The score of LiB is higher than AG(unigram) and slightly lower
than AG(collocations), the two versions of AG comparable to our approach. AG(syllable) presumes
knowledge that our model does not have (and that could possibly benefit LiB).

In the Chinese segmentation task. we compared LiB with three popular word segmentation toolboxes:
Jieba3, THULAC (Sun et al., 2016), and pkuseg (Luo et al., 2019). These toolboxes are supervised,
learning the ground truth (word boundaries) during training. For comparison, we also modified a su-

2The code of the BPC calculations was modified from a Github project: https://github.com/joshualoehr/
ngram-language-model. We kept all tokens during training.

3https://github.com/fxsjy/jieba

https://github.com/joshualoehr/ngram-language-model
https://github.com/joshualoehr/ngram-language-model
https://github.com/fxsjy/jieba
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pervised LiB (LiB(sup)) for the word segmentation task. LiB(sup) skips the training phase. Instead, it
counts all the ground-truth words in the training set and adds them as the chunk types to L. The higher
the frequency of a type in the training set, the smaller its ordinal in L. We trained and tested the models
on CTB8. To test the generalization performance of the models in the word segmentation task, we also
test the training result on two additional corpora: MSR and PKU (Table 1) provided by the Second In-
ternational Chinese Word Segmentation Bakeoff (Emerson, 2005). The segmentation rules are slightly
different among MSR, PKU, and CTB8. MSR and PKU are news domain, which is different from CTB8.
MSR and PKU were preprocessed in the same way as CTB8.

Table 6b shows that the scores of the unsupervised original version of LiB are lower than the supervised
models4, but the scores of the supervised version of LiB are close to the supervised models and are
even higher on MSR. Due to the low out-of-vocabulary (OOV) rate of MSR (Emerson, 2005), the good
performance on MSR shows that the lexicon is important for LiB. The only difference between the two
versions of LiB is in their lexicons: the original LiB learned the lexicon from zero and the supervised
LiB directly uses the ground-truth words in its lexicon. It shows that the segmentation module in LiB is
appropriate for the word segmentation task.

[a]

Model Scores
AG (unigram) 56
AG (collocations) 76
AG (syllable) 87
LiB subchunk 71

[b]

Test set scores
Model CTB8 MSR PKU
Jieba 87.1 82.8 87.1
THULAC 94.6 83.5 89.1
pkuseg 95.7 83.7 89.7
LiB subchunk 76.1 78.7 78.9
LiB(sup) chunk 94.7 84.5 88.3

Table 6: Token F1 scores (%) of segmentations. [a] the scores on BR-phono by three versions of Adaptor
Grammar (AG) and LiB subchunks. [b] the scores of Jieba, THULAC, PKUSEG, LiB subchunks, and
LiB(sup) chunks. LiB(sup) represents the supervised adaptation of LiB.

5 Conclusions and Future Work

This paper presented an unsupervised model, LiB, to simulate the human cognitive process of language
unitization/segmentation. Following the principles of least effort, larger-first processing, and passive
and active forgetting, LiB incrementally builds a lexicon which can minimize the number of unit tokens
(alleviating the effort of analysis) and unit types (alleviating the effort of storage) at the same time on any
given corpus. Moreover, it is able to segment the corpus, or any other text in the same language, based
on the induced lexicon. The computations in LiB are light-weight, which makes it very efficient. The
LiB-generated lexicon shows optimal performances among different types of lexicons (e.g., ground-truth
words) both in terms of description length and in terms of statistical language model surprisal, both of
which are associated with cognitive processing. The workflow design and the computation requirement
make LiB cognitively plausible, and the results suggest that the LiB lexicon may be a useful proxy of the
mental lexicon.

Future work will be to allow skip-gram units in the lexicon. Skip-grams may help to capture
longer-distance dependencies, and further lessen the cognitive effort by reducing the number of unit
types/tokens. Furthermore, as the word segmentation results of the current LiB are not ideal, we hypoth-
esize that skip-gram units may also benefit the detection of infrequent named entities (e.g., the skip-gram
“Mr. said” helps to detect “Mortimer” in “Mr.Mortimersaid”) and thus improve the word segmentation
performance. Other future work includes a LiB variant that accepts speech input and a semi-supervised
LiB variant that uses semantic knowledge (e.g., word embeddings) to enhance the language unitization.

4The scores of Jieba, THULAC, and pkuseg are provided by https://github.com/lancopku/pkuseg-python

https://github.com/lancopku/pkuseg-python
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A Training parameter settings

Since BR-phono is a child-directed speech corpus, its chunk types are usually very common, and so
they often have much higher document ratios than CTB8 chunks. We use a lower τ0, which is related
to document ratio, to balance the corpus difference. The number of training epochs for CTB8, which is
large-scale, was set to a higher number than for BR-phono. The epochs numbers are well beyond the
convergence points. α and ∆ mainly affect the training speed, while ω and τ0 mainly affect |L|. The
current parameter settings may not be optimal for end tasks such as word segmentation; in preliminary
experiments we optimized for speed5.

Corpus α ∆ ω τ0 epochs
BR-phono

0.25 0.2 0.0001
10 5,000

CTB8 500 50,000

Table 7: The parameter settings in the training on two corpora. α is the sampling probability, ∆ the
re-ranking rate, ω the forgetting ratio, τ0 the probation period.

B Segmentations with increasing number of training epochs

The progression in chunking over training epochs before convergence (Table 8) shows LiB can learn
some word chunks even in the very early epochs. Also, Table 8 illustrates that convergence is reached
well before the preset number of runs.

Corpus Epoch Segmentation
BRphono 0 Olr9tW9dontwipUthIm6wenQ

1 O·l·r·9·t·W·9·don·t·w·i·pUt·h·I·m·6·w·e·nQ
2 Ol·r·9t·W·9·dont·wi·pUt·h·I·m·6·we·nQ

10 Olr9t·W9·dont·wi·pUt·hIm·6we·nQ
100 Olr9t·W·9dont·wi·pUthIm6we·nQ

1,000 Olr9t·W·9dont·wi·pUthIm6we·nQ
CTB8 0 这个出口信贷项目委托中国银行为代理银行

1 这·个·出·口·信·贷·项·目·委·托·中·国·银·行·为·代·理·银·行
2 这·个·出·口·信·贷·项·目·委·托·中国·银·行·为·代·理·银·行

10 这·个·出口·信·贷·项·目·委·托·中国·银·行·为·代·理·银·行
100 这个·出口·信·贷·项目·委·托·中国·银·行·为·代·理·银·行

1,000 这个·出口·信贷·项目·委·托·中国·银行·为·代·理·银行
10,000 这个·出口信贷·项目·委托·中国银行·为·代理·银行

Table 8: Example segmentations of strings in the two corpora with increasing number of training epochs.
See Table 3 for the correct word-level segementation.

5The training of BR-phone costs 57 s and the training of CTB8 costs 31 min 55 s. The code is written in pure Python 3.7
and ran on a single core of Intel Core i5-7300HQ.
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C Top, middle and tail entries in lexicon

Corpus Entries in Lexicon
BRphono
(Top 50)

D6 the, y& yeah, yu you, WAt what, wan6 wanna, k&nyu can you, tu two, &nd and,
D&ts that’s, oke okay, f% four, nQ now, It it, D* they’re, hiz he’s, In in, lUk look,
wIT with, yuwant you want, hu who, hi he, D&t that, Ol all, y) your, h( here, 9TINk
i think, pUt put, D&ts6 that’s a, WAts what’s, yuk&n you can, hIz his, m9 my, si
see, yuwan6 you wanna, no no, IzD&t is that, h9 high, huz whose, DIs this, gUd
good, D*z there’s, v*i very, siD6 see the, Its6 its a, IzIt is it, Olr9t alright, DIsIz this
is, #yu are you, IN ing, h&v have

BRphono
(Middle 20)

siD&t see that, nik, lEtmiQt let me out, DIsgoz this goes, d&diznat daddy’s not,
9ms%i i’m sorry, kIN, lUksl9k6n9s, wITDiz with these, hizwe he’s way, lON long,
h&p happen, lEtssiIf let’s see if, lEtspUthIm6we let’s put him away, diIzf%, pR,
brEkf6st breakfast, h9c* high chair, lUk&tD6bUk look at the book, W*zD6kIti

BRphono
(Tail 20)

Nkyu, T, uyuwant, * air, 3, ( ear, Z, c, ), M, InhIzhQs, 6mily6 amelia, dOghQs
doghouse, wITt7z with toys, &ndsAmt9mzwi, holdh&ndz hold hands, tIkLmi tickle
me, h9ke high kay, tekItQt, k&nyubrAShIzh*

CTB8
(Top 50)

没有 haven’t,中国 China,我们 we,经济 economics,已经 already,孩子 kid,但是
but,教育 education,可以 can,目前 now,政府 government,国家 country,一个 a,
这些 these,自己 self,不能 can’t,如果 if,记者 journalist,今天 today,他们 they,
虽然 although, 要求 require, 技术 tech, 进行 process, 这个 this, 新华社 Xinhua
News Agency,希望 wish,问题 issue,就是 is,大陆 mainland,因为 because,一些
some, 以及 and, 都是 all are, 因此 so, 现在 now, 可能 may, 台湾 Taiwan, 应该
should,政治 political,发展 development,也是 also is,还是 also is,社会 society,
这样 such,通过 via,继续 continue,不是 isn’t,上海 Shanghai,的 ’s

CTB8
(Middle 20)

肝脏 liver,军事政变推翻 military coup overthrows,在其他地方 in other places,
在野势力 opposition force, 而且这个 and this, 泄的, 帮他 help him, 宝应县
Baoying County, 政治新闻 political news, 经济越 economic more, 塔肯, 迅速地
rapidly,铅笔 pencil,集体经济 collective economy,起源 origin,邓相扬协助 Tang
Xiangyang assisted,建制 establishment,写完 after writing,说的那样 as said,后
顾 look back

CTB8
(Tail 20)

存在主权 there is sovereignty,确权 confirm rights,草案还 the draft also,桌会议,
第一首相 the first prime minister,迪奥 dior,长大了 grown up,爱他 love him,说
他 say him,子虚乌,有没有参与 did you participate,严谨的 rigorous,仍然是 is
still, 站上车, 运输署 Transport Department, 杀机 murderous, 决 decided, 建成
通车 completed and opened to traffic, 主要嫌疑人赖昌星 the main suspect Lai
Changxing,已经向加拿大 has to Canada

Table 9: The top 50 entries, the middle 20 entries and the tail 20 entries in the lexicons. The original
results of BRphono are in phonemic characters; we transcribed the entries containing complete words
into English words (in bold font) for ease of presentation. The original results of CTB8 are the Chinese
characters; we added the English translations (in bold font) with the entries containing complete words.
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