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Abstract

Understanding context-dependent variation in word meanings is a key aspect of human language
comprehension supported by the lexicon. Lexicographic resources (e.g., WordNet) capture only
some of this context-dependent variation; for example, they often do not encode how closely
senses, or discretized word meanings, are related to one another. Our work investigates whether
recent advances in NLP, specifically contextualized word embeddings, capture human-like dis-
tinctions between English word senses, such as polysemy and homonymy. We collect data from
a behavioral, web-based experiment, in which participants provide judgments of the relatedness
of multiple WordNet senses of a word in a two-dimensional spatial arrangement task. We find
that participants’ judgments of the relatedness between senses are correlated with distances be-
tween senses in the BERT embedding space. Homonymous senses (e.g., bat as mammal vs. bat
as sports equipment) are reliably more distant from one another in the embedding space than
polysemous ones (e.g., chicken as animal vs. chicken as meat). Our findings point towards the
potential utility of continuous-space representations of sense meanings.

1 Introduction

A key challenge in natural language understanding is grasping the range of meanings that a word can
take as a function of linguistic and non-linguistic context. Successful linguistic comprehension involves
constantly resolving lexical ambiguity of this nature (Frazier and Rayner, 1990; Klepousniotou, 2002).
This re-use of word forms by speakers — relying on listeners to choose the appropriate meaning depend-
ing on context — confers language with higher communicative efficiency than it would otherwise have,
and may pose a solution to the problem of limited memory (Piantadosi et al., 2012). The re-use of word
forms also allows speakers to extend the lexicon to new communicative situations, for example to refer
to new objects, entities or processes using existing words in the language (Ramiro et al., 2018; Xu et
al., 2020; Srinivasan et al., 2019). How these context-specific meanings are understood and represented
pose critical open questions regarding the lexicon.

Following the conventions of lexicographic resources like natural language dictionaries, variation in
word meaning is often treated in a categorical fashion: lexical types contain clusters of related meanings,
or word senses. Under this treatment, word tokens (instances of a word type that are used in context)
can be categorized into these word senses. Different sub-types of lexical ambiguity are thus reflected in
different relations between word senses: pairs of word senses are polysemous if they are semantically
related (Pustejovsky, 1998), or homonymous if this is not the case (Apresjan, 1974; Tuggy, 1993; Lyons,
1995). For example, using “bottle” to refer to a container as well as to the liquid it contains is an example
of polysemy. By contrast, using “bank” to refer to a riverside or a financial institution — two semantically
unrelated meanings — constitutes homonymy. Polysemous relations are often regular (Apresjan, 1974),
such that many word types exhibit the same alternation (e.g., the container-for-contents relation is also
exemplified by “box” and “glass”); such patterns can also be generalized to new words (Srinivasan et al.,
2019).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Because of variation in the perceived relationship between senses across language users, theories in
psycholinguistics assert that humans treat polysemy and homonymy as falling onto a continuous gradient
(Tuggy, 1993; Crossley et al., 2010). This is corroborated by psycholinguistic experiments which show
that both adults and children represent and process polysemous and homonymous senses differently
(Frazier and Rayner, 1990; Rodd et al., 2004; Klepousniotou et al., 2008; Rabagliati and Snedeker,
2013; MacGregor et al., 2015). However, these theories of word sense representation lie in stark contrast
with many lexicographical approaches, most notably WordNet (Miller et al., 1990). Although WordNet
contains a vast store of word senses—and has historically been considered the gold standard ontology
of word senses (Jurafsky and Martin, 2014)—it does not encode relations among those senses, and thus
does not distinguish between polysemy and homonymy.

Models based on distributional semantics can help bridge the gap between psychological theories of
word senses and existing lexicographical resources. Contextualized word embeddings (CWEs), espe-
cially BERT (Devlin et al., 2019), which is derived from a Transformer-based architecture (Vaswani et
al., 2017), have the potential to capture fine-grained distinctions in relatedness between word senses, be-
cause they offer a continuous measure of relatedness between individual uses of words in context (Lake
and Murphy, 2020). While fine-tuned BERT models are known to perform exceptionally well in word
sense disambiguation (WSD) tasks (Wiedemann et al., 2019; Loureiro and Jorge, 2019; Blevins and
Zettlemoyer, 2020), there are still open questions of whether BERT representations capture fine-grained
distinctions in sense relatedness.

In the present work, we evaluate whether contextualized embeddings from BERT capture relationships
between word senses similar to English speakers. We collect human judgments of the relatedness among
different senses of 32 English words through a web-based two-dimensional spatial arrangement task
(Goldstone, 1994). We then compare the experimental data to BERT vectors for the same set of words.
This is done through extracting and analyzing BERT embeddings for word tokens in the Semcor corpus
(Miller et al., 1993), which has been annotated with word sense identifiers from WordNet. Assessing
whether relatedness in BERT representations corresponds with human judgments of sense relatedness is
an important test of whether CWEs can be used to develop more realistic computational models of word
meanings.

2 Background

The distributional hypothesis proposes that a word’s meaning can be represented by the lexical context
in which it occurs (Harris, 1954). This insight underlies the success of computational models that repre-
sent words as continuous-valued vectors representing their surrounding lexical context. Latent semantic
analysis (Dumais et al., 1988), and neural models like Word2Vec(Mikolov et al., 2013) encode informa-
tion about all of a word’s senses in a single vector. By contrast, newer models include contextualized
embeddings: vector space representations of specific word uses (tokens), reflecting the context of their
use. These richer word representations from contextualized embeddings have allowed researchers to ask
which aspects of linguistic knowledge are incorporated in their vector spaces (See Rogers et al. (2020)
for a review; see also Ethayarajh (2019)). For example, one of the most notable discoveries from this line
of work suggests that a sentence’s dependency parse tree can be reconstructed from BERT embeddings
(Hewitt and Manning, 2019; Reif et al., 2019; Jawahar et al., 2019). However, despite progress inves-
tigating how BERT encodes syntactic information, relatively little work has explored how it encodes
semantic information such as the relations between word senses.

While older models like Word2Vec may encode some aspects of word sense (Arora et al., 2018),
we focus here on Transformer architectures (Vaswani et al., 2017), which may be able to find sense-
distinguishing context words at larger distances, and thus perform better for WSD. BERT-based ap-
proaches have led to state of the art performance on word sense disambiguation tasks (Wiedemann et al.,
2019; Loureiro and Jorge, 2019; Blevins and Zettlemoyer, 2020), but approaches analyzing the model’s
representation of word senses remain exploratory (Reif et al., 2019; Lake and Murphy, 2020). Evidence
from Reif et al. (2019) shows that BERT embeddings for the same word in a large text corpus are largely
clustered based on their meanings, but the authors do not investigate the model’s ability to encode canon-
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ically homonymous or polysemous relationships. Mickus et al. (2020) note that BERT embeddings for
the same word type vary as a function of the position in the sentences they occur in. Lake and Mur-
phy (2020) assess BERT’s capacity for homonym resolution by comparing relatedness of words that are
similar to a homonym in highly constraining contexts. Ettinger (2020) points out the need for more
psycholinguistic diagnostics of neural language models like BERT, and compares BERT to human data
from tasks such as commonsense inference. Our work falls under this framework, focusing on comparing
human judgements of word sense relatedness to BERT representations.

3 Methods

We conducted a metalinguistic experiment (vs. a processing task testing implicit knowledge) where
participants used a web interface to assess the relatedness of WordNet senses in a two-dimensional spatial
arrangement task. We then obtained BERT embeddings for word types in the Semcor corpus (Miller et
al., 1993) and compared them to the experimental data, looking at both cosine distance in the embedding
space as well as the accuracy of a sense classifier using BERT’s contextualized word embeddings as
input. All stimuli, code and visualizations are available at https://osf.io/fm78w.

3.1 Data

We select a sample of word types for analysis from Semcor (Miller et al., 1993), which has WordNet
sense annotations for 235,000 tokens from the Brown corpus (Francis and Kucera, 1979). We use the
corpus reader from the Python Natural Language Toolkit (NLTK) (Bird and Loper, 2004) to access
the corpus. The fact that syntax is represented within BERT embeddings (Hewitt and Manning, 2019)
implies that BERT embeddings can easily capture distinctions in part of speech, so we focus on lexical
ambiguity within part-of speech (specifically nouns and verbs) as a more challenging test case.

For the behavioral experiment, we selected word types across a range of sense entropy values (i.e., uni-
form to highly peaked sense distributions). We created a multinomial distribution over the senses of each
lemma, i.e., (word type, part of speech) pair, and computed its entropy as follows: �

X

s2L

cs
cL

log(
cs
cL

),

where L is a lemma, s is a sense and c corresponds to a frequency, or count in the corpus. We removed
stopwords and lemmas with zero entropy (79.3% of all lemmas). This yielded 444 word types.

For experimental stimuli, we chose 32 word types. 20 word types came from Semcor, including
11 low/medium entropy word types and 9 high entropy word types. We defined high entropy to be
greater than 1.5 when rounded to the nearest tenth, and medium/low entropy to be less than this value,
based on the distribution of sense entropy in the available Semcor data (in Figure 1). To account for
variability in participants’ placement of tokens in the spatial arrangement task, we needed to normalize
measurements in the interface on a per-trial basis, so we selected words with three senses or more. We
chose word types with varying entropy values to determine if this quantity had an effect on the correlation
between BERT vectors and human judgements; relatedness between embeddings for words with more
unpredictable sense distributions may be less consistent with results from the experiment. To avoid
overwhelming participants, we selected words with fewer than eight senses. We also chose six additional
words of theoretical importance that exemplify patterns of regular polysemy that have been observed
across languages from Srinivasan and Rabagliati (2015), and manually chose six words with three senses,
one of which was less semantically related to the other two. Because we expected these words to exhibit
the greatest differences in pairwise similarity, we elicited judgments from all participants on these items.
More details about how these stimuli were presented and exclusion criteria are in Appendix B.

3.1.1 Participants

105 undergraduate students from a major research university participated in the experiment and were
compensated with class credit. Upon providing informed consent, participants reported their experience
with English and other languages to ensure that data were collected from proficient English speakers
(defined as at least 50% of daily language use); one participant was excluded using this criterion.



132

3.2 Experiment

From the set of 32 word types, each participant received 14 word types as stimuli. We used a two-
dimensional spatial-arrangement task (Goldstone, 1994), because it allowed us to efficiently capture
psychological judgments, and because tasks of this nature effectively capture relatedness in a high-
dimensional semantic space (Richie et al., 2020). Participants were told to place less related sense
tokens further apart from one another on the canvas, and more closely related tokens near each other.
The experimental interface is shown in Appendix A. To place the sense tokens, participants were given
definitions (from WordNet) and example sentences (from Semcor; in some cases shortened for brevity).
The task was untimed, and participants were encouraged to introspect for as long as necessary about the
meanings of the presented senses before making their placements. Partcipants were encouraged to adjust
their placements to reflect all senses.

3.3 Relatedness Matrices

For each word, we collected spatial (x,y) positions of each of the word’s senses from each participant.
To derive an estimate of the relatedness of senses for each word type, we normalized the distances such
that they were rescaled according to the largest reported pairwise distance. This controlled for varia-
tion in the absolute amount of space in the canvas that different participants used when making their
placements. After excluding participants with unreliable responses (Appendix B), we then averaged re-
latedness matrices for each word type across the remaining participants. This yielded a single “aggregate
relatedness matrix” for each word type which could then be directly compared with model results for a
word type. To account for the larger number of participants reporting data for shared stimuli, we selected
data from a random set of participants whose size corresponded to the average amount of test items (n =
29). Data from a minimum of 21 participants and a maximum of 37 participants were used to construct
the aggregate relatedness matrix for each word type.

3.4 Modeling

We retrieved BERT embeddings for labeled tokens from the Semcor corpus (Miller et al., 1993) and
ran classifiers to distinguish between different senses of individual words based on BERT vectors. We
compared these data to results from the experiment based on two metrics: distance in the embedding
space and classification accuracy, assessing their similarity through correlation (Budanitsky and Hirst,
2006).

Given a word type and a part of speech, we derived word embeddings from BERT as follows. For
each sense of the (word type, part of speech) pair, we retrieved sentences from Semcor, and tokenized
them using rules specified by the BERT authors (Devlin et al., 2019). We loaded a pre-trained BERT
model BERT-base from Wolf et al. (2019) and ran the forward pass on each sentence, extracting the
activations corresponding to the type, and storing the summed activations of the final four layers, which
has produced strong results in word sense disambiguation (Loureiro and Jorge, 2019).

3.5 Word Sense Classifier

As a matter of due diligence, we first evaluated the effectiveness of BERT representations for word sense
disambiguation (classification) in the Semcor corpus. While WSD-focused work has used the Semcor
dataset for training and tested on other datasets (Raganato et al., 2017), we confirmed that BERT demon-
strates similar levels of performance on Semcor. To this end, we assessed performance of multiclass
logistic regression models to predict word senses for 401 word types from Semcor. Senses were omit-
ted from this classification whenever there were fewer than 10 tokens. Each logistic regression model
was trained to predict WordNet sense labels for each instance of a sense based on its contextual word
embedding from BERT. We conducted 5-fold cross validation and applied L1 regularization to prevent
overfitting. To confirm consistency with prior work on WSD (Loureiro and Jorge, 2019; Reif et al., 2019;
Blevins and Zettlemoyer, 2020), we report the average F1 score (weighted for each sense) across the runs
for each word type. Comparable F1 scores relative to this prior work would suggest that it is appropriate
to further investigate the geometry implicit in these contextual word embeddings.
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Method All Types in Semcor Types in Behavioral Expt.
Number of Available Types 401 32

Random Sense 0.480 0.423
Majority Sense 0.441 0.403

Logistic Regression on BERT Embeddings 0.757 0.797

Table 1: Average F1 scores (across types and train-test splits) for BERT-based word sense disambiguation
in the Semcor corpus.

3.5.1 Extracting Cosine Distances Between Word Sense Centroids

After qualitatively reproducing previous word sense disambiguation results using BERT embeddings, we
then tested whether the relationship between BERT embeddings of senses parallels human judgments of
relatedness between senses. Because BERT generates one vector for each use of a word token, we com-
puted the centroids of the BERT embeddings corresponding to each sense, and then compared different
senses by using the cosine distance of these centroids to one another. In a broad range of models, cosine
distances between vectors corresponding to word types can encode the degree of semantic relatedness
(Dumais et al., 1988; Mikolov et al., 2013; Bojanowski et al., 2017), so we can use this same metric
with BERT embeddings to compare word senses to one another. Following the same procedure as the
relatedness matrices, we define relatedness as (1 - cosine distance), such that the largest cosine distance
(least related pair) takes the value of 0 and the smallest cosine distance (most closely related pair) takes
the value of 1 for each word type. We stored these relatedness measures between sense centroids in a
matrix analogous to the aggregate relatedness matrices from the behavioral experiment. To evaluate their
fit to human data, we computed the Spearman rank correlation coefficient between the upper triangular
entries in these two distance matrices. A nonparametric measure of correlation is appropriate given that
the relationship is not necessarily linear.

4 Results

First, we verified that BERT can discriminate between senses in Semcor comparably to other test datasets.
We then compared relatedness estimates derived from distances in the BERT embedding space to the
aggregate relatedness measures from the experiment. We then conduct two exploratory analyses, the first
comparing the relatedness of homonymous and polysemous sense pairs, and the second examining the
utility of pairwise sense confusion as a measure of relatedness.

4.1 Classification Results for All Semcor Data

We compared the distribution of F1 scores of the classifiers on the 401 words from Semcor (BERT
failed to process 43 of the words) with two baselines: random choice and selecting the most frequent
sense (Figure 1). Classification performance on all 401 words, including 25 words used in the behav-
ioral experiment, were similar to those reported by Blevins and Zettlemoyer (2020), Loureiro and Jorge
(2019), and Reif et al. Reif et al. (2019) (0.739, 0.754, and 0.711, respectively), which used test sets
from Raganato et al. (2017). We find that type-wise F1 score is negatively correlated with sense entropy
computed from Semcor (�sense entropy = �0.074, R2 = 0.06; Fig. 1).

4.2 Comparing Human Relatedness with BERT Word Sense Geometry

We computed the Spearman’s rank correlation coefficient between human judgments of sense relatedness
(from the aggregate relatedness matrices) and measures of word sense relatedness from the centroids of
BERT contextualized word embeddings. This yielded a positive correlation (Spearman’s r = 0.565, p <
0.001), with a 95% confidence interval of (0.459, 0.655). To confirm that this correlation was above
that expected by random chance, we compared it to a random baseline established by 1000 draws of
randomly generated sense placements for 29 participants (the average number of participants per item).
This correlation was much lower (Spearman’s r = 0.062, p < 0.001, 95% CI: -0.065 - 0.208). We
report the correlation between relatedness measures from the embedding space and human judgements
by part of speech and high vs. low/medium entropy in Table 2. Correlations between human relatedness
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Figure 1: Classifier performance for word types with respect to their sense entropy in Semcor. F1 score
for each type is averaged over cross validation folds and weighted by sense frequency. Vertical line
represents boundary between low/medium and high entropy word types.

Figure 2: Distribution of distances between pairs of senses from the human data (left) and from BERT
(right), across word types.

judgments and BERT relatedness were substantially higher among low to medium than high entropy
words(Table 2). We also find that correlations among human and model relatedness are higher among
verbs than nouns.

4.2.1 Polysemous vs. Homonymous Sense Pairs

We conducted an exploratory analysis to see if human relatedness judgments differed between homony-
mous and polysemous relations, and whether the geometry of BERT embeddings captured this distinction
between word senses. In the absence of gold-standard datasets labeling polysemous and homonymous
word sense relationships,1 we tagged pairs of senses as polysemous or homonymous ourselves for the
set of words in the behavioral experiment. For human judgments, we took the set of average distances
between polysemous and homonymous pairs of senses. For BERT embeddings, we took the cosine
distances between pairs of polysemous and homonymous sense centroids.

The density plots in Figure 2 show that participants in the behavioral experiment judged the polyse-
mous pairs to be more similar (i.e., less distant) than homonymous pairs (Mann-Whitney U = 516, p <
0.001). BERT-based representations reproduced this basic pattern (Mann-Whitney U = 493, p < 0.001),
though many relatedness estimates were more dispersed for both polysemous and homonymous pairs.

To illustrate the differences between how BERT represents polysemous and homonymous relation-
ships, we show t-SNE and dendrogram visualizations in Figure 3. For table.n (Figure 3, top), we

1We could in principle use natural language dictionaries, some of which list polysemous and homonymous senses under
separate entries. However, such definitions would not necessarily map to WordNet labeled data.
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Figure 3: Visualizations of example BERT embeddings for stimuli table.n cover.n. Left column
contains results of t-SNE dimensionality reduction with small points indicating word tokens and large
points indicating sense centroids. Right column contains results of single linkage agglomerative cluster-
ing.

show that two senses related by polysemy (piece of furniture vs. a tablesetting) are judged to be closer
together than homonymous pairs (either of the first two senses vs. “a set of data arranged in rows and
columns”). For cover.v, all sense pairs were polysemous. Instances of the same sense were still closer
to one another in the embedding space, but tokens corresponding to different senses were much less
clearly distinguished except for cover.v.04, which may be well-separated from other senses because
it refers to a metaphorical meaning of the lemma. We find that the BERT centroids’ cosine distances and
the aggregated relatedness judgements are strongly correlated (Spearman’s r = 0.851, p < 0.001), with
a 95% confidence interval of (0.638, 0.943).

4.3 Predicting Human Relatedness Judgments with Pairwise Confusion

One possibility is that the cosine distance computed over all dimensions of the BERT embedding space
overlooks the possibility that some dimensions may be more or less useful for discriminating word senses
depending on the word type. One alternative is to use the pairwise confusion probabilities from multiclass
logistic regression (described in Section 3.5) as a measurement of pairwise relatedness in the model. This
choice invokes substantive theoretical questions: in principle, sense relatedness and discriminability
could be orthogonal. For example, two senses could be judged as closely related by humans, but they
could in principle be able to discriminate between instances of those senses without errors. In the absence
of human sense discrimination performance data, we leave this question to future work. Nonetheless, we
investigated the utility of pairwise sense confusion as an alternative predictor for human judgments of
sense relatedness.
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Metric Part of Speech Word Sense Entropy
Nouns Verbs High Low/Medium

Relatedness (1 - Normalized Cosine Distance) 0.487 0.623 0.345 0.570
Pairwise Confusion 0.609 0.627 0.518 0.731

Table 2: Spearman rank correlations between relatedness judgements and confusion matrices in BERT
embedding space, split over part of speech and entropy level

(a) (b) (c) (d)

Figure 4: Mean human relatedness judgements, cosine similarity matrix, and confusion matrix for senses
of area.n.

To this end, we summed the confusion matrices when senses from the stimuli are classified during each
iteration of cross-validation from Section 4.1. We normalized each item in the matrix by the number of
true labels, such that it represents the probability an item was predicted given its true class. Across all
word types with available data (20 out of 32 types, including 150 out of 189 sense pairs), we found
a positive Spearman’s rank correlation between entries in the confusion matrices and matrices of the
corresponding relatedness judgements (r = 0.649, p < 0.001), with a 95% confidence interval of (0.592,
0.7). For this measure, we considered all entries in both matrices, as the confusion matrices are not
necessarily symmetric. Because this analysis omits word senses with fewer than 10 tokens in Semcor, this
evaluation reflects a smaller set of items than the one reported in Section 4.2 for cosine-based relatedness.
When we computed the correlation between cosine-based relatedness and human aggregated relatedness
matrices on this smaller set, the correlation remains lower (Spearman’s r = 0.518, p < 0.001), with
a 95% confidence interval of (0.391, 0.627). This suggests that pairwise confusion in BERT may be
a stronger predictor of human relatedness judgments. We also report correlations stratified by part of
speech and type sense entropy in Table 2. To illustrate the approach, we present aggregate relatedness
matrices and confusion matrices for the word type area.n in Fig. 4. In this case, the experimental
data (Fig 4, A) was more closely aligned with the confusion matrix (C) the than the cosine similarity of
centroids (B).

We also evaluated sense classification accuracy on the basis of the homonymous and polysemous sense
pairs from the preceding exploratory analysis. Among homonymous sense pairs, the classifiers achieved
an average F1 score of 0.992. Among the polysemous sense pairs, the classifier achieved an average F1
score of 0.752.

5 Discussion

We investigated the ability of an artificial neural network model that represents word tokens with
contextualized word embeddings to capture human-like relations among English word senses. On a
subset of word types from the Semcor corpus, we reproduced previous word sense disambiguation
results. We then showed that these same BERT embeddings capture a significant amount of information
regarding the relationship between word senses, and are able to at least partially reproduce human
relatedness judgments. An exploratory analysis revealed that BERT-based measures of the relatedness
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between pairs of homonymous senses are much lower than for pairs of polysemous senses, matching
human intuitions for the same set of senses. Pairwise confusion from the sense classifiers provided a
slightly better predictor of human judgments of sense relatedness compared to distance in the embedding
space, although this may be unsurprising given that pairwise confusion reflects some additional degree
of supervision. Analyzing the error rates of classifiers trained on BERT embeddings of the stimuli, we
also provided evidence that their results are more accurate for homonymous sense pairs compared to
polysemous sense pairs.

Following in the approach of comparing BERT vectors to experimental data from human participants
(Ettinger, 2020), the present research addresses how BERT represents word senses, bridging the gap
between human and computational models of lexical ambiguity resolution. Recent progress showing
BERT’s performance on word sense disambiguation (Wiedemann et al., 2019; Loureiro and Jorge, 2019;
Blevins and Zettlemoyer, 2020) indicates that BERT-based models perform better than past approaches,
and our work specifies that the representations they use to accomplish this are relatively consistent with
human intuitions. Existing exploratory work aims to analyze how BERT represents word senses (Reif
et al., 2019; Lake and Murphy, 2020), but we systematically evaluate these claims with both WordNet
senses and human data. Our work corroborates claims by Lake and Murphy (2020) that BERT cap-
tures relations between homonymous senses. Indeed, poor performance in discriminating polysemous
pairs of words senses suggests that more work needs to be done on capturing polysemous relations; one
possibility is to explore how BERT could be fine-tuned to capture relations exemplified by regular poly-
semy. One limitation from these findings is that the dataset only covers 32 word types, which we hope
to address in future work.

More generally, our findings suggest that a continuous measure of sense relatedness derived from neu-
ral language models could potentially be used to augment existing lexicographic resources like WordNet,
in this case providing a measure of relatedness between senses. We encourage other researchers devel-
oping sense ontologies, especially those found through word sense induction, to consider representing
the relationships among word senses in addition to discovering new sense inventories.

6 Conclusion

Through comparing results from a behavioral experiment with data from contextualized word embed-
dings, we demonstrate that new Transformer-based neural network architectures may reflect human
intuitions about the relationships between word senses, at least in English. Exploratory analyses sug-
gest that these measures of relatedness between sense pairs reflect a distinction between polysemous
and homonymous relationships between word senses, but that these models are much more effective in
discriminating homonymous sense pairs than polysemous ones. By demonstrating basic levels of consis-
tency with human judgements, we hope to stimulate further research that combines contextualized word
embedding techniques with discrete, symbolic ontologies to develop a more cognitively informed model
of the lexicon.
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Appendices

A Experiment Details

Figure 5: A sample trial in the experiment

B Trial Types and Exclusion Criteria

The first two of the eighteen trials participants received were presented as training trials to ensure that
participants were familiar with the interface; data from these trials were discarded. Participants received
a mixture of shared trials completed by all participants, and test trials where only a subset of participants
provided judgments. The inclusion of both trial types gave us a consistent set of word types for which
all participants contributed data (allowing us to evaluate which participants gave unreliable responses
compared to all other participants), while at the same time characterizing a broad set of word types with
more sparse responses. Test trials were drawn from the set of 26 lemmas consisting of words from
Srinivasan and Rabagliati (2015). To identify participants who provided low-quality data, we computed
hold-one-out correlations for each participant using their relatedness matrices for the shared trials, and
excluded participants whose data had a rank correlation with the hold-one-out averages that was lower
than 0.4. This threshold corresponds roughly to the 92nd percentile of scores if sense tokens are placed
randomly in the interface.

In addition to the shared and test trials, participants also saw two repeat trials, drawn from the same set
as the test trials, to evaluate the reliability of their responses within the same testing session. Participants
with rank correlations in reported distances between their original and repeat trials lower than 0.2 were
excluded from analysis, corresponding to the 70th percentile of correlations if sense tokens are placed
randomly (this threshold was lower because of variation in both the number of senses and the recency of
the test trial). Ten participants who failed to meet both criteria were excluded from further analysis.


