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Abstract

A cancer registry is a critical and massive 
database for which various types of domain 
knowledge are needed and whose 
maintenance requires labor-intensive data 
curation. In order to facilitate the curation 
process for building a high-quality and 
integrated cancer registry database, we 
compiled a cross-hospital corpus and 
applied neural network methods to develop
a natural language processing system for
extracting cancer registry variables buried 
in unstructured pathology reports. The 
performance of the developed networks
was compared with various baselines using 
standard micro-precision, recall and F-
measure. Furthermore, we conducted 
experiments to study the feasibility of 
applying transfer learning to rapidly 
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develop a well-performing system for 
processing reports from different sources 
that might be presented in different writing 
styles and formats. The results demonstrate 
that the transfer learning method enables us 
to develop a satisfactory system for a new 
hospital with only a few annotations and 
suggest more opportunities to reduce the 
burden of cancer registry curation.

1 Introduction

Cancer is a main cause of mortality worldwide and 
has been the leading cause of death over several 
decades in our country. A cancer registry system
has been established by Taiwan Society of Cancer 
Registry and supported by Ministry of Health and 
Welfare (MOHW) over 40 years. How to extract 
massive data concisely and maintain high quality
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continuously are critical issues and burdens of 
healthcare system. However, the maintenance of 
an individual cancer registry from patient 
healthcare trajectories needs different types of 
domain knowledge which is pronouncedly both 
labor-intensive and time-consuming. In addition,
how to validate and integrate between different 
hospitals or between local healthcare resource and 
national database are crucial topics.

To facilitate the integration of models for a 
specific cancer, applying information technology 
tools to improve acquisition and classification of 
patients’ healthcare trajectories can enable more 
accurate phenotyping of cancer information.
Nevertheless, addressing the issues needs more 
cooperation both on information technology and 
medical expertise. In order to assist integration 
among the institutes, a national project was 
established under the Cancer Center Support Grant 
Program (CCSG) supported by MOHW. As the 
coordinator of this project, we conducted research 
studies and cooperated with several hospitals to 
establish a platform to work out a model system 
based on existing cancer data.

One major goal of this project is to apply natural 
language processing (NLP) techniques to
automatically analyze unstructured data including 
surgical reports, pathology reports, oncology 
clinical notes, and laboratory findings that may not 
be easy to acquire or share across hospitals for 
specific cancers. Pathology reports are usually 
abundant and contain operative findings, general 
tumor information, pathological assessment, 
cancer staging, and end-results which need to be 
extracted and classified clearly. In the pilot study,
we focus on tasks including the collection and de-
identification of pathology reports, data annotation
for developing and evaluating deep learning-based 
NLP systems to extract cancer registry variables 
from different hospital sites.

To standardize the annotation of pathology 
material for developing our NLP system, the 
variables and their definitions were defined by the 

consensus from expertise committee composed of
hospital investigators and annotators. Furthermore, 
we applied transfer learning and conducted 
experiments to examine the performance of the 
developed neural networks on the cross-hospital 
pathology materials to gain insights on how 
effective and concise transfer learning can be. The 
results not only enable us to understand which 
layers of the developed network convey the most 
important parameters for transfer but also let us 
know how many annotations are needed for 
training a system for a new hospital to achieve 
reasonable performance.

2 Method

2.1 Datasets

In the presented study, we primarily focused on the 
colorectal cancer, which is the third leading cause 
of cancer-specific death in Taiwan. We cooperated 
with two medical centers, namely China Medical 
University Hospital (CMUH) and Kaohsiung 
Medical University Chung-Ho Memorial Hospital
(KMUH), to collect colorectal pathology reports 
and the data were excluded non-tumor reports as
well as the reports without cancer registration data
for compiling our corpora. Table 1 shows the 
grouping and the number of the collected datasets.

2.2 Corpus Construction

In order to produce high quality annotations for 
developing our system, we established a NLP
working group focusing on the construction of 
high-quality corpora. For our purpose, the 
annotation process was conducted by eight 
annotators based on an annotation guideline
developed by consulting the committee composed 
of hospital investigators and cancer registrars.
According to the standard of American Joint 
Committee on Cancer, nine cancer registry 
variables were defined for extraction in order to
achieving a better understanding and unified 
effects on pathological materials. Table 2
summarizes the nine variables defined for the 
colorectal cancer including stage classification 
(SC), pathological TNM classifications (TNM),
the number of examined nodes (NE) and positive 
nodes (PN), tumor size (TS) histology types (H),
and grades (G). The entire annotation process is 
elaborated as follows.

A preliminary consistency test was conducted 
by asking the annotators to individually annotate 

Table 1: Datasets collected from two medical 
centers for this study.

Source CMUH KMUH
# of Reports 393 1615
Training Set 293 1515
Test set 100 100
Period 2007~2013 2009~2015
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an identical set of 100 reports randomly selected 
from the collected datasets. All of them used the 
annotation tool (Figure 1) developed by our 
collaborator to conduct their annotations. We then 
measured their inter-annotation agreement by 
Kappa statistic (Viera & Garrett, 2005).

Afterwards a labeling meeting was organized to 
discuss issues and concerns encountered during the 
annotation process and the annotation guideline 
was adjusted according to the conclusion of the 
meeting. The above process was conducted 
iterative until they achieved an agreement above 
substantial. Finally, the remaining unlabeled 
datasets were evenly distributed to all annotators
for labeling. The same annotation process was 
applied individually for the data collected from the 
two hospitals. 

The aforementioned 100 annotation data 
generated by all annotators individually on the 
same reports were collected as the test set for 
evaluating the performance of the developed 
systems. They were combined by voting; only 
those annotations that were annotated by more than 
four annotators at the same time were kept. The 
other reports evenly annotated by annotators were 
collected as the training sets.

2.3 Cancer Registry Information Extraction
with Different Approaches

For a given pathology report, our clinical toolkit 
(Dai, Syed-Abdul, Chen, & Wu, 2015) was 
employed to segment sentences and generate 
tokens based on MedPost (Smith, Rindflesch, & 
Wilbur, 2004). The numerical normalization 
method proposed by Tsai et al. (2006) was 
employed to reduce variations in numerical parts 
of each token. We then formulated the problem as 
a sequential labeling task and applied the IOB-2
tag scheme to encode the span information
generated by annotators. All sequences including 
those that did not contain any annotations were 
included in the training set to train a neural 
sequence labeling network model whose 
architecture is briefly described as follows.

The input of the network is the pre-processed 
sequence of tokens in a pathology report and the 
output being the sequence of labels for each token. 
The input tokens was represented as a vector by 
concatenating the pre-trained word representations 
obtained by using GloVe (Pennington, Socher, & 
Manning, 2014) and RoBERTa (Liu et al., 2019).
The parameters of the concatenated vectors were 
kept fixed during the training process.

Figure 1: An example pathology report and the 
annotation tool used for annotation.

Table 2: The nine cancer registry variables defined for this study.

Type Description Example

SC
Stage classifications including clinical, 
pathological, post-therapy/neoadjuvant 
therapy, retreatment/recurrence and autopsy

p., yp., rp., a., c.

T Size or contiguous extension of the primary 
tumor

Primary tumor (T): Tx, T0, Tis, T1, T1, 
T2, T3, T4a, T4b

N The absence, or presence and extent of cancer 
in the regional draining lymph nodes

Regional lymph nodes (N):
Nx, N0, N1a, N1b, N1c, N2, N2a, N2b

M The absence or presence of distant spread or 
metastases

Distant Metastasis (M):
M0, M1, M1a, M1b

NE Regional lymph nodes examined Any numeric values
PN Regional lymph nodes positive Any numeric values
TS Size of tumor Any numeric values
H Histology Adenocarcinoma

G Tumor grade; a measure of how abnormal the 
cancer cells look under the microscope.

Description likes: well differentiated, and 
undifferentiated
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The concatenated representation was then feed 
to a fully connected layer (denoted as FC1) along 
with a variational dropout before passing the 
embeddings into the bidirectional long-short term
memory (BiLSTM) network with one layer 
consisting of 256 hidden nodes. The output of the 
BiLSTM layer goes through another fully 
connected layer (denoted as FC2) to generate an 
output of a size equal to the number of the classes, 
which becomes the input of the inference layer in 
which a conditional random field (CRF) layer was 
used to model the dependencies between labels in 
neighborhoods with the Viterbi loss to jointly 
decode the best chain of labels for the given 
sequence.

In addition to the aforementioned architecture, 
we implemented the following baselines for 
comparison: 

Dictionary-based approach: For a given 
token, output the most frequent assigned 
tag estimated on the training sets.

Support vector machine (SVM): 
Formulate the task as a token-based 
classification task and apply SVM with a
polylinear kernel to learn a classification 
model.

CRF: The normalized word features with 
a context window of three along with 
transition features were used for training 
a CRF model. 

BiLSTM: Similar to the aforementioned 
network architecture, but a linear layer 
was used instead of the CRF layer as the 
output layer.

All of the above neural networks were 
implemented by using PyTorch trained on NVidia
Tesla P-100 GPUs. CRF was implemented by 
using CRF++1 and scikit-learn2 were used for the 
remaining implementations.

2.4 Transfer Learning for Extracting 
Information between Different Hospitals

Transfer learning (Pan & Yang, 2009) aims to learn 
a better model on a target domain by leveraging the 
knowledge previously learned from a source 
domain. In this study, the transductive transfer 
learning technology was applied by transferring 
                                                           
1 https://taku910.github.io/crfpp/

the parameters in different layers of the BiLSTM-
CRF model trained on the dataset of the source 
hospital to the target hospital by retraining the 
model with transferred parameters on the target 
hospital’s dataset via fine-tuning. In our 
experiments, we didn’t freeze any layers but fine-
tuned all transferred parameters in different layers.
2.5 Experiment Configurations
We conducted three experiments to study the 
characteristics of the compiled corpora and the 
effectiveness of the developed models on the 
compiled corpora. The first compared the proposed 
model with the aforementioned baseline methods. 
The second examined the effectiveness of transfer 
learning and the last checked the robustness of the 
developed models under the evaluation of cross-
corpus. The standard micro-precision (P), recall (R) 
and F-measure (F) were used to evaluate the 
models’ outputs against the gold annotations.

For training the neural networks in all of our 
experiments, we randomly kept 50 reports in the 
training sets as the validation sets to determine the 
best performed models during the training process. 
The validation sets were not used in training. The 
mini-batch gradient descent along with the 
stochastic gradient descent algorithm (with a
learning rate of 0.1, a momentum of 0.9 and a
weight decay of 10-5) was used for optimizing the 
parameters. Unless specifically described, the 
batch size and epoch were set to 2,048 and 150 
respectively in the following experiments. The
training process was early stopped if the learning 
rate was lower than 10-5. For consistency, we used 
the same set of hyper-parameters and a fixed 
random seed across all experiments.

3 Results

3.1 Corpus Statistics
A total of 2,008 reports collected from the two 

hospitals were annotated. The final Kappa values 
estimated for CMUH and KMUH are 0.802 
(substantial) and 0.914 (almost perfect)
respectively. Table 3 shows the detail statistics of 
the compiled corpora. As one can see that the size 
of KMUH is much larger than that of CMUH.
Although the size of the KMUH corpus is much 
larger than that of CMUH, the annotations for 
pathological M is much less in KMUH. It’s
because that pathological M stage need the other 

2 https://scikit-learn.org/
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reports (e.g., image reports from other examination 
division) to conclude the outcome, the pathological 
M stage was shown inconclusive results on the 
current pathological data frequently in KMUH.

3.2 Performance Comparison with Different 
Methods

In the first experiment, we trained the developed 
models on the two training sets separately and 
evaluated their performance on the test sets of the 
two hospitals. The results were illustrated in Table 
4.

In general, the developed models performed 
better on the KMUH test set which may be owing 
to the larger numbers of training samples. The CRF 
model achieved a comparable F-score on the 
KMUH test set but its F-score is lower than that of 
BiLSTM-CRF by 0.214 on the CMUH test set. 
Table 5 shows the detail results for the nine 
annotation types of the BiLSTM-CRF model on
the two test sets. Overall, the developed networks
demonstrated promising F-scores for all items.

3.3 The Effect of Transfer Learning

In this experiment, we would like to gain insights 
on what extent transfer learning improves the 
performance on the cross-hospital datasets. We 
used KMUH as the source dataset since its size is 

Table 3: Corpus statistics for the compiled corpora used in this work.

CMUH KMUH
Type Training Test Total Training Test Total

Histology 558 136 694 4,517 273 4,790
Grade 519 140 659 4,410 265 4,675
Numbers of examined nodes 623 189 812 2,021 153 2,174
Numbers of positive nodes 554 177 731 2,021 153 2,175
Staging classification 670 161 831 1,441 99 1,540
Pathological T 400 122 522 1,440 99 1,539
Pathological N 380 122 502 898 61 959
Pathological M 373 124 497 6 0 6
Tumor size 1,112 383 1,495 1,606 115 1,721
Numbers of reports 293 100 393 1,515 100 1,615
Numbers of sentences 21 229 5,699 26,928 63,887 3,966 67,853
Numbers of sentences with annotations 2,348 596 2,944 9,007 578 9,585
Numbers of annotations 5,189 1,554 6,743 18,360 1,218 19,578

Figure 2: Impact of F-score by fine-tuning the 
models with the parameters up to each layer 
pre-trained on KMU on the varied sizes of the 
CMU training set.
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BiLSTM FC2
CRF Non-transfer-CRF

Table 4: Performance comparison among different approaches.

CMUH KMUH
Type P R F P R F

Dictionary-based 0.71 0.51 0.59 0.61 0.48 0.54
SVM 0.69 0.42 0.53 0.8 0.55 0.65
CRF 0.950 0.790 0.863 0.967 0.983 0.975
BiLSTM 0.823 0.638 0.719 0.975 0.975 0.975
BiLSTM-CRF 0.943 0.908 0.925 0.977 0.975 0.976
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larger than that of CMUH. We conducted 
experiments to examine the effect of transfer 
knowledge learned from KMUH to CMUH by 1) 
analyzing the importance of each layer of the 
developed neural networks, and 2) quantifying the 
performance gain by varying the sizes
(20%~100%) of the CMUH training set when we 
fine-tuned the model pre-trained on KMUH. Note 
that because the size of the 20% CMUH dataset is 
quite small, we reduced the batch size to 512 for 
this case.

Figure 2 shows the results. Here “Non-transfer”
refers to that we only used the reduced sizes of the 
CMUH training set to develop the BiLSTM-CRF 
models without relying on any pre-trained 
parameters. “FC1” initialized the learned 
parameters of the FC1 layer of the BiLSTM-CRF 

model by adopting the pre-trained parameters on
the KMUH corpus, “BiLSTM” further included 
the learned parameters of the BiLSTM layer of the 
source model and so on. Consider the comparable 
results achieved by CRF models, we also include 
the configuration “Non-transfer-CRF” in which we 
trained several CRF models by using the 
corresponding reduced CMUH datasets.

In Figure 2, we can observe that with more 
numbers of the training samples used, the 
performance can be apparently improved for the 
‘Non-transfer’ models. However, the improvement 
for the CRF models is relatively flat comparing 
with that of the neural networks. On the other hand, 
even with only 20% of the CMUH training set, the 
models learned with transferred parameters 
achieved satisfactory F-scores, which 
outperformed the ‘Non-transfer’ models trained on 
more training samples (being equal or less than 
60%) of the full CMUH training set. The above 
results give us an insight that we can exploit the 
parameters of the neural networks learned from 
source hospitals to rapidly develop a reliable 
system relying on a small annotated dataset to 
boost the annotation process in the new hospital for 
creating and evaluating a customized system.

The results shown in Figure 2 also reveal the 
importance of parameters of each layer of the 
developed model in the manner of transfer learning. 
We can observe that transferring parameters of all 
layers in general leading to slightly better F-scores, 
but transferring the parameters of the first layer 
only is almost as efficient as transferring all. The 
result is consistent with the observations of other 
previous works (Giorgi & Bader, 2018, 2020; Lee, 
Dernoncourt, & Szolovits, 2018) and the 
hypothesis that the lower layers of a neural 
network learn generic features and the higher 
layers learn task-specific (or we can say that 
hospital-specific) features.

3.4 Cross-corpus Evaluations

To assess the performance of the developed model
in a more realistic setup, we conducted cross-

Table 5: Detail precision, recall and F-score for 
each cancer registry item of the BiLSTM-CRF 
model.

Type CMUH
P R F

G 0.843 0.879 0.860
H 0.810 0.875 0.841

NE 0.973 0.968 0.971
PN 0.994 0.938 0.965
SC 0.946 0.988 0.967
TS 0.969 0.812 0.884
T 1.000 0.992 0.996
N 0.918 0.918 0.918
M 1.000 0.944 0.971

Type KMUH
G 0.996 0.996 0.996
H 0.968 0.985 0.976

NE 1.000 0.961 0.980
PN 0.981 1.000 0.990
SC 0.970 0.990 0.980
TS 0.991 0.913 0.950
T 0.921 0.939 0.930
N 0.952 0.967 0.959
M n/a n/a n/a

Table 6: Cross-corpus evaluation among different approaches.

CMUH KMUH
Method P R F P R F

CRF 0.737 0.242 0.364 0.663 0.314 0.426
BiLSTM-CRF 0.631 0.376 0.472 0.925 0.483 0.634
Transferred BiLSTM-CRF 0.944 0.938 0.941 0.932 0.644 0.762
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datasets experiments. For this purpose, we used the 
dataset from one hospital for training, and the 
dataset from another for testing. The experiments 
provide an estimate of the cross-hospital
generalization ability of the developed models.

Table 6 shows the results. Given that both 
corpora were annotated by the same annotators 
under the same annotation guideline, we can still 
see the generality of the developed models is not 
well; a larger drop in performance can be found on 
both datasets. The results exhibited that the format 
and the writing styles of the descriptive pathology 
in surgical biopsy reports across hospitals are 
heterogeneous in real-world scenarios.

We also estimated the performance of the 
transferred model on its source dataset in Table 6.
The result illustrates an apparent drop of F-score 
from 0.976 to 0.762 on the KMUH test set. The 
results demonstrated that the developed systems 
suffered the catastrophic forgetting problem 
(French, 1999) which is now known to be a
challenge for artificial neural networks when the 
network is trained sequentially on multiple tasks 
because the weights in the network that are 
important for the original task are now changed to 
meet the objectives of the new task.

4 Conclusions

In this work, we investigated the feasibility of 
applying transfer learning via neural networks on 
the task of extraction cancer registry information 
from cross-hospital pathology reports. Because the 
writing styles and formats of the pathology reports
is different in each hospital, to estimate the 
requirements of the number of annotated datasets 
when we migrate from one hospital to the others 
and iteratively improve the effectiveness of the 
developed systems, we conducted experiments to 
quantify the impact of transfer learning on the 
datasets collected from two hospitals. From the
evaluations of the results, we confirmed that when 
transfer learning is adopted, the model pre-trained 
on a source hospital can be trained with fewer 
annotations of the target hospital and achieve 
satisfactory performance as when the full training 
set of the target hospital is used. The results suggest 
us to apply the transfer learning techniques for 
developing a customized system for a new hospital 
with only a few annotations. We will develop 
method to estimate the required numbers of 
annotations based on the language properties of the 
narrative reports and the characteristics of the 

developed neural networks. Furthermore, our 
experiment results also reveal challenges requiring 
to be addressed including the generalizability and 
catastrophic forgetting problem, which should be 
addressed in the future. 
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