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This article gives an overview of how sentence meaning is represented in eleven deep-syntactic
frameworks, ranging from those based on linguistic theories elaborated for decades to rather
lightweight NLP-motivated approaches. We outline the most important characteristics of each
framework and then discuss how particular language phenomena are treated across those frame-
works, while trying to shed light on commonalities as well as differences.

1. Introduction
1.1 Motivation
Distinguishing between semantic (deep) and formal (surface) phenomena in description

of natural languages is to be traced back to the notion of language sign as a pairing of
form and function (meaning), which has been accepted as a core concept in modern
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linguistics since de Saussure (1916, 1978). The dual perspective, most often exempli-
fied on words, applies also to morphemes as subword units, and to more complex
structures, such as sentences and texts. At the level of sentence, which is the focus
of the present article, the form-meaning opposition has been elaborated to leveled
approaches, whose details vary fundamentally in frameworks with different theoretical
backgrounds and/or application focus.

The aim of our survey is to compare available approaches to structured sentence
meaning representations (deep-syntactic representations),! in order to demonstrate that
there are basic principles shared by most (if not all) of them, on the one hand, and
specific decisions, on the other. The shared principles, being considered the core ele-
ments of deep-syntactic representations, will be reformulated into a handful of humble
suggestions for a discussion on a unifying approach to sentence meaning. This perspec-
tive justifies the inclusion of the Universal Dependencies project, though currently not
containing a proper sentence meaning annotation (Schuster and Manning 2016), since
the project sets trends in carrying out a unified annotation at the surface-syntactic level.

1.2 Existing Surveys

These days, one can find comprehensive handbooks collecting a number of descrip-
tions of various linguistic issues and language data resources. The recent Handbook of
Linguistic Annotation (Ide and Pustejovsky 2017) provides an overview of annotation
approaches applied in several tens of data resources capturing a wide range of language
phenomena. Design decisions on the annotation schemes, evolution, and possible future
developments of the particular resources are outlined, usually by the authors of the
resources themselves.

The volumes by Agel et al. (2003, 2006) have a narrower (and more theoretical)
focus, dealing with dependency and valency issues. They also include review chapters
on individual theories dealing with these concepts.

We can also list many published attempts at comparing various features of deep-
syntactic frameworks; however, to our knowledge each of them handles only a
very limited number of existing frameworks and/or narrow scope of features com-
pared. Hajicovad and Kucerové (2002) compare three frameworks, namely, PropBank
(Kingsbury and Palmer 2002), the LCS Database containing Lexical Conceptual Struc-
tures introduced by Dorr (1997), and the (pilot) annotation of the Prague Depen-
dency Treebank (Haji¢ 1998); a possible mapping among these three representations is
sketched, with a focus on mapping semantic roles. A mapping from PropBank argument
labels to 20 thematic roles used in VerbNet (Kipper, Dang, and Palmer 2000) is designed
by Rambow et al. (2003).

Ellsworth et al. (2004) compare PropBank, SALSA (Erk and Pado 2004), and
FrameNet (Johnson et al. 2002), with a focus on several selected phenomena such
as metaphor, support constructions, words with multiple meaning aspects, phrases
realizing more than one semantic role, and non-local semantic roles.

Zabokrtsky (2005) points out several parallels between Meaning-Text theory
(Zolkovskij and Mel’¢uk 1965) and Functional Generative Description (Sgall 1967) in
general, and more specifically between the deep-syntactic level of the former one and
tectogrammatical level of the latter one.

1 There are also entirely different approaches to representing sentence meaning, such as vector space
models; they are outside of the focus of our study.
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Ivanova et al. (2012) contrast seven annotation schemes for syntactic-semantic
dependencies: CoNLL Syntactic Dependencies (Nivre et al. 2007), CoNLL Prop-
Bank Semantics (Surdeanu et al. 2008), Stanford Basic and Collapsed Dependencies
(De Marneffe and Manning 2008), Enju Predicate-Argument Structures (Yakushiji et al.
2005), as well as Syntactic Derivation Trees and Minimal Recursion Semantics from the
DEPLH-IN project,” and show a few similarities across the frameworks. Oepen et al.
(2015) compare three approaches (DELPH-IN semantic annotation, Enju Predicate—
Argument Structures, and the deep-syntactic annotation of the Prague Czech-English
Dependency Treebank) in relation to the task of broad-coverage semantic dependency
parsing in SemEval 2015. Kuhlmann and Oepen (2016) follow up on the SemEval paper
and describe graph properties of the three frameworks from the SemEval task, plus
CCG Dependencies and Abstract Meaning Representation.

Zhu, Li, and Chiticariu (2019) take two approaches, namely, the semantic role label-
ing approach of the PropBank project and Abstract Meaning Representation, as a point
of departure to propose and discuss which issues are to be covered by the universal
semantic representation (with the focus on temporal features and modality).

To the best of our knowledge, so far the most comprehensive comparison of existing
semantic representation accounts (Abend and Rappoport 2017) puts together a list of
central semantic phenomena (predicates, argument structure, semantic roles, corefer-
ence, anaphora, temporal and spatial relations, discourse relations, logical structure,
etc.). The authors’ conclusion that “the main distinguishing factors between schemes
are their relation to syntax, their degree of universality, and the expertise and training
they require from annotators” opens space for further discussion.

What we try to offer in this article is to intensify insights into the core principles
of semantic representations, by surveying eleven approaches and comparing their ac-
counts of the most relevant issues.

In our comparison, we focus on how various language phenomena are handled
by individual approaches, rather than on what is their general (attested or assumed)
utility in end-user NLP applications. Complex software ecosystems with pipelines of
NLP components (in which sentence parsers always play the key role) have been
implemented for most of the selected approaches. Some of these seem to be more or
less abandoned now, such as TectoMT for FGD (Zabokrtsky, Ptacek, and Pajas 2008),
whereas others are still being actively developed, such as ETAP-3 for MTT (Boguslavsky
2017), or yet another MTT parser described by Ballesteros et al. (2014). There are also
NLP pipelines that were focused on surface processing so far, and deeper components
are planned to be added only recently—for instance, as in the case of UDPipe for UD
(Straka, Haji¢, and Strakovd 2016; Straka and Strakovd 2017). In our opinion, comparing
past performance of such software systems created in a time span longer than two
decades would not be fair, and predicting their future usability would not be wise,
as it might be conditioned by many extra-scientific factors, especially by the ability
of NLP developers to integrate recent Deep Learning advances into their systems.
Thus we give only occasional references to NLP applications in this text. Performance
comparisons for some narrower semantically oriented NLP tasks can be found, for
example, in the NLP shared task literature, such as in Oepen et al. (2015) for the task of
semantic dependency parsing. In some NLP frameworks, deep syntactic structures are
built in a more or less deterministic way by post-processing outputs of surface-syntactic
parsers, and thus shared tasks on surface-syntactic parsing are relevant, too, such as the

2 http://www.delph-in.net.
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CoNLL-2018 shared task on Multilingual Parsing from Raw Text to Universal Depen-
dencies (Zeman et al. 2018).

1.3 Structure of the Article

The article is organized as follows. Section 2 explains how we selected frameworks for
our survey, and lists linguistic notions most relevant for our study, as well as termino-
logical choices adopted in our text. Section 3 outlines the most important characteristics
of each framework, and Section 4 brings an orthogonal perspective and discusses how
particular language phenomena are treated across frameworks. Section 5 concludes
and tries to summarize possible inspirations for the future development of Universal
Dependencies.

2. Focus of the Study
2.1 Criteria for Selection of Frameworks to Compare

The present survey is focused on approaches that fall into the field of computational
linguistics and aim at designing and implementing formalized representations of sen-
tence meaning.

It is clear from the very beginning that selection is inescapable, as it is beyond the
capacity of our team to review hundreds or thousands of research threads relevant
for this or that aspect of sentence meaning published in the last five or six decades.
However, we should clarify what selection criteria we applied in our selection.

First of all, we limit ourselves to meaning representations whose backbone structure
can be described as a graph over words (possibly with added non-lexical nodes) corre-
sponding to entities, processes, properties, or circumstances, with edges representing
meaningful relations among them. However, we do not include approaches that rep-
resent only surface sentence structure, in the sense that they handle only the original
sequence of word forms and do not make any abstraction above overt morphological,
lexical, or syntactic means. Thus, for example, dozens of surface-syntactic treebanks
(be they based on the dependency or constituency paradigm) are excluded. At the
same time, we do not include primarily logical representations that are too distant from
sentence structures; this leaves out some prominent frameworks such as the Groningen
Meaning Bank (Bos et al. 2017), where the central unit, the discourse representation
structure, is a recursive structure mappable to first-order logic. All semantic represen-
tations developed primarily for modalities other than natural language, such as scene
graphs introduced by Johnson et al. (2015), are excluded, too (although eventually, one
could find a potential overlap with NLP, like the task of generating image captions in
this particular case).

Second, we select only frameworks capable of analyzing whole authentic sentences
of natural languages. We do not review approaches whose aim is only lexicographical,
although, for example, valency lexicons could also be understood as collections of
elementary dependency trees.

Third, we explore only approaches that seem mature enough to attract super-
critical mass of research effort, and are being elaborated for a longer time, are tested
on authentic data and possibly also used for natural language applications.

On the other hand, it was not decisive for us whether the framework proclaims a
multilingual or even language-independent (universal) ambition and whether or not it
declares the ability to represent synonymous sentences with identical representations.
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Table 1
Overview of the frameworks described in Sections 3.1 to 3.11.
Framework Associated corpus Associated Used in Languages
lexical NLP apps
resource
Paninian framework HDTB, UDTB MT hi, ur, bn, te
(400 BC)
Meaning-text theory SynTagRus, ECD MT ru, en, es, fr
(MTT; Zolkovskij and AnCora-UPF
Mel’¢uk 1965)
Functional Generative PDT, PCEDT PDT-VALLEX MT cs, en
Description (FGD;
Sgall 1967)
PropBank (Kingsbury PropBank + PropBank lex. many en, ar, zh, fi, hi,
and Palmer 2002) NomBank + ur, fa, pt, tr,
PDTB de, fr
FrameNet-based e.g. TIGER FrameNet en, de, fr, ko
approaches Treebank
such as SALSA (Erk (for SALSA)
and Pado 2004)
Enju (Yakushiji et al. Enju Treebank IE en, zh
2005)
DELPH-IN (Oepen DeepBank ERG many en, de, es, ja
and Lenning 2006)
Sequoia (Candito Sequoia fr
et al. 2014)
Abstract Meaning AMR Bank PropBank lex. many en, zh, pt, ko,
Representation (AMR; vi, es, fr, de
Banarescu et al. 2013)
Universal Conceptual English Wiki, en, de, fr
Cognitive parallel fiction, etc.
Annotation (UCCA;
Abend and Rappoport
2013)
Enhanced Universal Universal relation ar, bg, cs, en, et,
Dependencies (Schuster Dependencies extraction fi, it, It, Iv, nl, pl

and Manning 2016)

ru, sk, sv, ta, uk

We ended up with a selection of frameworks, listed in Table 1 (and then described
in detail in Section 3) in roughly chronological order of their introduction. Associated

corpora and major lexicographical resources are listed, too.

We are aware of quite a few other approaches virtually located on the fuzzy border-
line imposed by our selection criteria and implementing just one or two features that are
usually considered meaning-related, on top of basically surface-syntactic frameworks.
Without the slightest ambition at completeness, we illustrate some such approaches
very briefly in a common subsection at the end of Section 3. That said, it might be
surprising for the reader that the enhanced version of Universal Dependencies (UD)
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receives more attention in our text (Section 3.11), as UD are also primarily focused
on surface sentence structures, and attempts at including more semantic features into
UD have been relatively modest so far. The reason is rather pragmatic: UD is truly
unique among syntactic frameworks in popularity gathered in recent years, and one
could expect substantial efforts invested in more semantic extensions soon. Technically,
enhanced UD is ready for such a drift already now, as it offers technical means for
(for example) adding reconstructed nodes and other than syntactic relations such as
coreference.

2.2 Basic Notions and Terminological Choices

As each of the selected approaches uses its own terminology, denoting even very closely
delimited notions by different terms (cf. semantic role vs. functor) and, at the same time,
using similar terms for different phenomena (e.g., adjunct), we make terminological
choices to which we stick in the remainder of the text before we start exploring the
diversity of “design decisions” made in individual frameworks.

2.2.1 Graph-Structure Notions. Whenever possible, we use theory-neutral terms from
graph theory:

e Node - typically capturing a word/lemma/lexeme occurring in the
particular sentence. Nevertheless, there are exceptions. Depending on
framework and language, selected words may be broken up to smaller
meaningful units, and selected groups of words (even discontinuous) may
be treated as one meaningful unit. Moreover, there may be empty nodes®
representing a hypothetical word that is part of the meaning the speaker
wished to convey but was omitted from the sentence for various reasons.
Despite being called “empty,” the node may actually be associated with a
lexeme if we know what the hypothetical word looks like. That is the case
with copied nodes—if two or more deep nodes refer to the same surface
word, we can regard one of them as the “main” node and the others as
copies. The copies are special cases of empty nodes because they represent
a hypothetical word that would be identical to some real surface word.
Yet another type of node, found in a few frameworks in our survey, are
nonterminal nodes. Although they do not directly represent a word (not
even a hypothetical word), the graph structure may still link them to one
or more words, via terminal nodes that directly represent them.

e  Edge - binary relation between two nodes, typically capturing some kind
of dependency, coordination, coreference, and so forth, manifested in the
sentence. Edges may be directed—that is, an edge going from node A to
node B is different from an edge going from B to A. In some contexts we
will refer to a directed edge as a dependency; we will then use the term
governor or parent for the source node and dependent or child for the
target node. Nodes that have no outgoing edges (no children) are called
leaves.

3 Also called null / fictitious / reconstructed / restored / zero / phantom nodes / traces, etc., by various approaches.
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*  Both nodes and edges may have labels that specify their type and other
attributes.

*  Graph - the pair (V, E) where V is a set of nodes and E is a set of edges
connecting the nodes from V. A graph is directed if at least one type of
edges in the graph are directed (note that an undirected edge can be
represented by two directed edges going in opposite directions).

*  Directed path — sequence of one or more directed edges
(v1 = vp,...,Uy—1 — U,) where each edge starts in the node in which the
previous edge ends. A directed path is a cycle if it starts and ends in the
same node (v; = vy,).

*  Rooted tree — a graph where one node is designated as the “root” and
there is exactly one directed path from the root to each non-root node.

¢ Directed acyclic graph (DAG) — directed graph that does not contain
cycles. Every tree is acyclic, but not every acyclic graph is a tree. A DAG
may be rooted, meaning that all non-root nodes are reachable by at least
one directed path from a single root node.

¢ Undirected path — a generalized path where direction of edges is ignored,
for example (w — x < y — z). A graph is connected if for any two nodes
(%, y) there is an undirected path between x and y. We will call the graph
undirected tree if for any two nodes (x, y) there is exactly one undirected
path that connects x with y. Note that an undirected tree can be converted
to a rooted tree if one node is picked as the root and if the set of edge labels
is extended to encode the direction of the original edge.

2.2.2 Node Order. The notion of node order is important in some surveyed approaches.
In general, there are two basic definitions related to ordering;:

¢  Partial order < on a set is any binary relation that is reflexive (n < n),
antisymmetric (n; < np and ny < ny implies ny = n,), and transitive (if
ny < np and ny < nz then ny < n3).

. Total order, also called linear order or full order, adds the connexity
condition (117 < ny or ny < ny for every pair of nodes ny, 1).

The most usual approach is that there is a partial or total node order used in
a particular deep-syntactic representation that is more or less directly related to the
surface word order. The order becomes partial if, for instance, there are empty nodes
without a corresponding surface token, or because of other surface-depth asymmetries
indicated in Section 4.2.4. A less common approach is that—by design—there is no node
order declared at all, which allows us to treat wider ranges of paraphrases as synony-
mous (in the sense of having identical deep-syntactic representations). Another rare
approach is that node order is reserved for representing some other linguistic notion,
not necessarily related only to the surface word order. A more detailed discussion is
provided in Section 4.2.4.

When we present a 2D visualization of a sample sentence representation in the
following sections, the horizontal axis typically corresponds to the word order in the
original sentence. However, this does not imply that a (partial or total) order of nodes
is considered a proper theoretical component of that representation; we simply have to
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draw the charts somehow, and we prefer to present the words in their original order
where possible.

2.2.3 Deletions and Coreference. When analyzing sentence meaning representations in the
surveyed approaches with regard to the surface shape of the represented sentences,
nodes of the graph structure correspond mainly to items that are present in the surface
sentence. However, some of the nodes do not have a surface counterpart, representing
an item that is omitted (deleted) in the surface for different either structural or contex-
tual reasons. Here are the main terms that we use for describing deletions.

*  Dropped pronoun - in “pro-drop languages,” the subject may be
unexpressed; unlike in English, not even a pronoun is required. Typically,
features of the missing pronoun are reflected in the morphological form of
the verb, but there is no separate word to represent the subject; cf. the
Spanish example cantamos “[we] sing.” Dropped pronouns may be
reconstructed in the semantic representation and represented by an empty
node. This option is not limited to subjects: Any argument that is licensed
by the verb and deleted on the surface may be reconstructed.

o Ellipsis in coordination — there are various situations where coordinate
constituents allow or require semantic interpretation that involves ellipsis
and thus leads to empty nodes (Haji¢ et al. 2015; Droganova and Zeman
2017).

-  Coordinate dependents may represent multiple modifications of
the same parent, or multiple copies of the parent each with its own
modification. For instance, young and beautiful girl probably refers
to one girl that is both young and beautiful. In contrast, red and
white wine is most likely to be interpreted as a shortcut for red wine
and white wine.

—  Thesituation is more complicated if the parent is a verb with
multiple arguments. Just like with the red and white wine, multiple
instances of the verb may be understood where only one instance is
present on the surface: James flies to Paris and Martha to Prague. This
construction is called gapping.* It is quite clear that there is a verb
missing, its meaning is the same as that of the visible verb (flies) but
each instance refers to a different event, so we cannot attach all four
dependents James, Paris, Martha, Prague to a single node
representing flies.

—  Finally, we can also observe coordinate constituents with one or
more shared dependents, as in Harry buys and sells cars. This
sentence can be understood as a shortcut for Harry buys cars and
Harry sells cars; the noun Harry refers to the same person in both
clauses, and with some level of simplification, we can say the same
about the cars (although one could not say whether it is the same
set of cars in both cases).

4 The literature distinguishes other related types of ellipsis such as stripping, pseudo-gapping, or VP
ellipsis. For simplicity, we do not discuss them further and just note that similar mechanisms can be used
to capture them in a sentence meaning representation.
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In a close relation to deletions, we use the term coreference, distinguishing between
grammatical and textual coreference.

Grammatical coreference refers to cases when a rule of the grammar specifies that
two expected constituents are the same or have the same referent. It is not unusual that
the grammar also requires that the constituent occurs only once on the surface, that is,
the second occurrence is elided. The control verb construction is an example: in I want
to go, the pronoun I is the subject of want but it also represents the missing subject of
go. Other examples are relative clauses or some reflexive constructions (Zikanova et al.
2015, § 3.3).

If two or more expressions refer to the same entity and this fact cannot be deduced
from grammatical rules alone, the term textual coreference is used. A typical exam-
ple involves a noun and a later occurring pronoun; this type of coreference is called
anaphora (or cataphora, if the pronoun linearly precedes the noun), the pronoun is an
anaphoric expression or anaphor, and the noun is its antecedent.” Coreference can also
hold between two nouns or other expressions. Furthermore, a pronoun that participates
in coreference can be elided, in particular in pro-drop languages. Textual coreference
often crosses sentence boundaries, unlike grammatical coreference.

Another term, bridging relation, applies to a semantic, anaphoric relation between
two expressions that is not a full identity but rather a weaker association or a set-subset
relation; therefore, the relation is not coreference. Example: I met two people yesterday. The
woman told me a story (Clark 1975).

2.2.4 Dependency and Valency. The combinatorial potential as a general linguistic phe-
nomenon is called valency in most frameworks in the European tradition that refer
back to Tesniere (1959) (cf. Agel et al. 2003, 2006), in parallel to the chemical property of
an atom of a certain element to combine with a specific number of bindings with other
atoms. In other contexts, often the term argument structure is used.® We adhere to the
term valency.

Combinatorial potentials of particular language units, that is, the range of syntactic
elements either required or specifically permitted by the unit, are referred to by different
terms in linguistic literature. Compare the terms valency frame, case frame, thematic
(theta) grid, and subcategorization frame (if only the surface morphosyntactic features
of individual slots are considered). Less often, terms such as government patterns
(Mel’¢uk and Zolkovskij 1984), stereotypical syntagmatic patterns (Pustejovsky, Hanks,
and Rumshisky 2004), or complex sentence pattern (Dane$ 1994) are found. In the
following survey, we stick to the very first option, valency frame.

Out of the terms for individual items in valency frames (frame elements, frame slots,
case slots, etc.) we choose the term frame slot for the survey.

The roles” played by an argument that fills a governor’s slot in a particular event
or situation are labeled, inter alia, with the terms semantic roles, thematic roles (theta
roles), (deep) cases (Fillmore 1968), functors (Sgall, Haji¢cova, and Panevova 1986), or
non-specifically, deep-syntactic relations (Kahane 2003). The term semantic roles is
preferred throughout our survey. Nevertheless, the above defined difference between

5 Zikénovd et al. (2015) and others note that anaphora is in fact not subsumed by coreference, as there are
also examples of anaphora where the anaphor is not coreferential with the antecedent.

6 One could find many other terms in linguistic theories that were not lucky enough to become popular,
e.g., “intention” introduced by Pauliny (1943).

7 Such primarily semantically motivated roles are distinguished from grammatical relations such as subject
and (direct and indirect) objects, which seem much more clearly defined.
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frame slots and semantic roles is not followed consistently in papers on argument
structure and valency; for instance, one can find frame slots referred to as semantic
roles and conversely.

Typically, inventories of semantic roles are partitioned into two parts, in slightly
different ways though.® A specific set of roles is often defined for core dependents,
which are highly specific for and closely tied to the meaning of a certain lexical unit.
A different set of roles applies to the other dependents, which are much less specific
(and thus are often not worth listing in valency frames). The core dependents are called
arguments, actants (in the tradition of Tesniére), or inner participants, while the other
dependents are called adjuncts, circumstants (Tesniére’s circonstants), or free modifiers.
We adhere to the terminological distinction arguments vs. adjuncts.

A predicate with its arguments is referred to by the term predicate-argument
structure in the present article.

A predicate-argument structure together with adjuncts make up a clause whose
meaning is denoted by the term proposition.

3. Deep-Syntactic Frameworks under Survey
3.1 Paninian Framework

The description of Sanskrit grammar by Panini (probably 4th century BC; Kiparsky
1982; Bharati, Chaitanya, and Sangal 2006) has become a popular base for treebank-
ing and NLP in India. The deep-syntactic representation of the Paninian framework
has been applied to Indo-Aryan languages (including Sanskrit), but also to Dravidian
languages and English.

The Paninian syntax is the basis for annotation in some treebanks of Indian lan-
guages (Hindi, Urdu, Bengali, Telugu, and others; Husain et al. 2010). This framework
defines so-called karaka relations, which lie half-way between syntax and semantics. On
the one hand, they do not distinguish subject and object in the usual sense, as they rather
operate along the actor-patient axis and abstract from different realizations of the roles
in active and passive clauses (i.e., from their syntactic diatheses). On the other hand,
karaka relations are very coarse-grained and do not directly correspond to semantic
roles. For example, the relation k1 karta is the most independent participant in the event,
and it often corresponds to the actor, but there are clauses in which the karta is not what
other theories would want to describe as actor. Thus in (1) the karta is the boy; but it is
the key in (2) and the lock in (3).

(1)  The boy opened the lock.
(2)  The key opened the lock.
(3)  The lock opened.
Table 2 briefly introduces the six main karaka relations and their labels in Paninian

treebanks. Figure 1 shows an example sentence from the Hindi treebank with four
karakas.

8 As Przepiérkowski (2016) says: “Probably all modern linguistic theories assume some form of the
Argument-Adjunct dichotomy, which may be traced back to Lucien Tesniére’s 1959 distinction between
actants and circumstants.”
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Table 2

The six karaka relations of the Paninian syntax. Note that there is no karaka labeled k6, at least
not in modern annotation schemes referring to the Paninian grammar, such as Begum et al.
(2008). Relation number 6 denotes possession but it does not have the karaka status and is
labeled r6.

ki karta doer / agent / subject
k2 karma patient / object
k3 karana instrument
k4 sampradaana recipient / beneficiary
k6 apaadaana source
k7 adhikarana location in space or time
@
&)
|
epn) |
' [V T

e fad gl & SRu WWenr  smm & 9Sm W
hamane sirpha rastrapati ke jarie mamala ayoga ko bheja tha
we only president of through matter commision to sent was
‘We have only sent the matter through the President to the Commission.
Figure 1
A Hindi sentence with the first four karaka relations. The relations prefixed lwg are
chunk-internal, i.e., they are not part of the main structure.

e Structure: rooted tree.” The nodes can be ordered following the surface
word order; the order is partial if the tree contains an empty node.

*  Nodes generally correspond to nominal or verbal chunks. Function words
are “second-class citizens.” They are just chunk members, although one
could see additional relations between the head of the chunk and its other
members. Empty nodes may be used to represent elided predicates.

. Edges: karaka relations (see Table 2) are what makes the framework
l/deep ’/:
- The karma-nominal stays karma even when the sentence is
transformed to passive.

- Attributively used participle: The relation is still karta (rather than
the type used for adjectival modifiers) but with ~! marking the

reversed direction:

running boy

- Same for verbal nouns / infinitives.

9 For readers’ comfort, selected structural properties of individual frameworks are listed in a summarized
form in Table 4 in Section 4.
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*  Case (vibhakti) is either a morphological case, or a postposition, or a
combination of both.

3.2 Meaning-Text Theory

In the Meaning-Text theory (MTT), which is rooted in pioneering efforts in machine
translation in the early 1960s (Zolkovskij 1964; Zolkovskij and Mel’¢uk 1965, 1967),
a descriptive framework has been elaborated that decomposes the relation between
form and meaning into seven representations. The surface-phonological representa-
tion (text), deep-phonological, surface-morphological, deep-morphological, surface-
syntactic, deep-syntactic, and semantic representation (meaning) are distinguished. The
deep-syntactic representation is in focus here, though being “certainly the least defined
level of representation of MTT” according to Kahane (2003, page 556).

®  Structure: rooted directed acyclic graph (but cycles will arise when
coreference links are counted as edges; see Figure 2). The nodes can be
ordered following the surface word order.

. Nodes correspond to content words; function words are not part of the
deep-syntactic representation; copied nodes are used to represent
controlled subjects. Nodes are labeled with a deep lexeme, a set of
grammeme attributes, a coreference attribute, and attributes capturing
the deep-syntactic communicative structure.

- The deep lexeme corresponds to the basic, dictionary form of a
word, to Lexical Functions (see below), or to fictitious lexemes
(for representing peripheral phenomena). If a string in the surface
sentence forms a multiword expression (phraseme), the whole
string is represented with a single node in the deep-syntactic
representation.

- Grammeme attributes capture grammatical categories that are not
imposed by government and agreement and are relevant for the
meaning of the sentence, for example, grammatical number and
definiteness.

- Attributes of the deep-syntactic communicative structure capture
the differences between a question, affirmation, irony, doubt, and
so on.

e  Edges represent dependency relations between nodes; they are labeled
with a small set of semantic relations, distinguishing between arguments
and other items.

- Arguments are numbered starting with I for the “most salient”
argument, followed by II for the second most salient argument, and
so forth.

- Another three roles are defined for other items, namely, ATTR for
attributes and other modifiers, COORD for relations between
coordinated items, and APPEND for parentheses, interjections,
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[ o) oo o) o oy

documento proponer este contrato afectar persona persona engrosar lista paro
document suggest this contract affect person person enlarge list unemployed

‘The document suggests that this contract affect the persons who make the unemployment lists swell.’

SG PL
A2 A2 A2
A2 A2
NUMBER NUMBER NUMBER NUMBER NUMBER
Al Al
Al Al
Al
documento este —> contrato persona paro <— lista
\ \ A \ /
ROOT —> proponer —> afectar engrosar
A
Al Al Al
TENSE TENSE TENSE
A2
A2
A2
Y
PRES

Figure 2

Deep-syntactic representation and semantic representation of the sentence EI documento propone
que este contrato afecte a las personas que engrosen las listas del paro. ‘'The document suggests that
this contract affect the persons who make the unemployment lists swell.” in the AnCora-UPF
treebank (adopted from Mille, Burga, and Wanner 2013). In the deep-syntactic graph (above the
sentence), nodes correspond to content words and are labeled by their lemmas. Note the double
occurrence of the node corresponding to personas (labeled persona, linked by coreference). In the
semantic graph (in the bottom), these two nodes are merged. All nodes are treated as predicates
and/or arguments, and there are additional “predicates” representing grammatical meaning
such as number and tense.

and other items that are attached to a sentence without a proper
dependency relation.

Being considered a prototype representative of lexicalist-oriented descriptions, the
MTT relocates a significant part of deep-syntactic information into the dictionary. Lex-
ical Functions (LFs) have been proposed as the main means for capturing different
relations among lexemes in the lexicon. They are defined as mathematical functions
whose arguments and values are lexical units. Two types of LFs are distinguished,
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namely, paradigmatic LFs and syntagmatic LFs. Paradigmatic LFs capture information
about derivational and lexical-semantic relations in the lexicon (e.g., nominalizations
and other derivatives, synonymy and antonymy relations). Syntagmatic LFs make it
possible to represent a substantial part of syntactic information in the dictionary, for
example, information on collocability and light-verb constructions. See examples of LFs
(based on Wanner 1996):

e S5j function outputs a semantically corresponding noun for the input word,
e.g., So(to analyze) = analysis, Sy(fast) = rapidity,

¢ Ajprovides a semantically corresponding adjective
for the input, for example, Ay(fish) = fishy, Ay(countryside) = rural,

e S outputs an agent noun semantically related to the input word,
for example, Sq(drive) = driver, Sy(talk) = speaker,

e  similarly, 5, is used to get a patient meaning noun, for example,
Sy (drive) = vehicle,

e Syn provides synonyms, for example, Syn(positive) = favorable,

*  Magn determines for a noun or verb which lexeme it is typically
combined with in order to intensify its meaning, for example,
Magn(patience) = infinite,

e Oper assigns a light verb to a noun in order to form a light-verb
construction, for example, Operl(analysis) = carry out _, Oper2(analysis) = to
undergo _ .

LFs of both types are a core element applied in the Explanatory Combinatorial
Dictionary (Mel¢uk 2006; Mel'¢uk and Zolkovskij 1984) and are used as a type of lexical
strings in the deep-syntactic representation of the sentence. They are substituted for
lexemes at the next, lower level (surface-syntactic representation).

Some features that are captured within the deep-syntactic representation in other
approaches (e.g., topic-focus articulation in Functional Generative Description, see
Section 3.3) are described at a separate, more abstract level, so-called semantic repre-
sentation in MTT.

The multileveled scheme proposed by the MTT is applied in a corpus for Russian
(SynTagRus) and in a treebank for Spanish (AnCora-UPF Treebank):

e  In SynTagRus (Apresjan et al. 2006), Russian sentences were assigned a
morphological annotation and a surface-syntactic dependency tree (these
annotations are available at http: //www.ruscorpora.ru/). In addition,

a lexical semantic annotation and lexical-functional annotation were
announced by Boguslavsky (2014). While lexical semantic annotation
consisted in disambiguating ambiguous words that have different lemmas
and/or different part-of-speech tags, the aim of the lexical functional
annotation was to identify LFs and their arguments and values in the texts.
Semantic annotation, as described by Apresjan et al. (2006), does not seem
to be available with the SynTagRus data yet.

. In the Ancora-UPF Treebank (Mille, Burga, and Wanner 2013), Spanish
sentences are annotated at four layers, namely, at the morphological,
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surface-syntactic, deep-syntactic, and semantic one. The deep-syntactic
annotation has been semi-automatically derived from the MTT-like
surface-syntactic annotation, which was developed first on the basis of the
AnCora corpus (Marti et al. 2007; see other AnCora-related treebanks in
Section 3.4). The deep-syntactic annotation follows the principles
summarized above: A sentence is represented as a rooted directed acyclic
graph whose nodes correspond to content words and are connected with
edges labeled with numbered argument labels. Coreference links are
added to the graph. See Figure 2 for an example.

3.3 Functional Generative Description

Functional Generative Description was introduced by Sgall (1967) and since then
has been elaborated in dozens of papers and monographs (e.g., Sgall, Hajicova, and
Panevovd 1986). The multiple-leveled scheme for description of the form-meaning
continuum, as proposed by Sgall (1967), has been revised into a three-layer annotation
style applied in the Prague Dependency Treebank (PDT; Haji¢ 1998; Hajic et al. 2006).
With annotations at the morphological, surface-syntactic, and deep-syntactic (so-called
tectogrammatical) layer, the PDT is “the first complex linguistically motivated treebank
based on a dependency syntactic theory” (Hajic et al. 2017).

At the deep-syntactic layer, each sentence is represented as a dependency tree with
labeled nodes and edges. The main characteristics are as follows:

. Structure: rooted tree or DAG,!° verb as the core item. The nodes are
ordered and, unlike in most other deep-syntactic frameworks, the deep
order in FGD is not a mere projection of the surface word order. Instead, it
reflects the information structure of the sentence (topic-focus articulation).

*  Nodes generally correspond to content words, except for empty nodes
(representing pro-dropped subjects and ellipsis in coordination) and for
nodes in coordination and apposition structures, in which a coordinating
conjunction is captured as the root of the structure in order to fit it into the
dependency layout (cf. Section 4.4 for comparison of the Prague style with
other frameworks). Nodes are labeled with a lexical string and with a set
of attributes that capture semantically relevant grammatical categories
(grammateme attributes), grammatical coreference, and basic features of
information structure:

—  The lexical string corresponds to the basic (dictionary) form of a
lexeme (infinitive with verbs, nominative singular with nouns, etc.;
so-called tectogrammatical lemma), to the dictionary form of a
lexeme’s base word (with a limited set of highly regular and
productive derivatives), to a non-lexical value (with prodrops),

- Grammateme attributes are used to store information on
grammatical categories that are relevant for the meaning of the

10 The tectogrammatical graph in PDT is a rooted tree only if coreference links are not considered edges.
This is indeed the perspective taken in most descriptions of FGD and PDT; however, in the context of the
present survey, coreference qualifies as a special type of edges. That makes the structure either a directed
acyclic graph or a general directed graph, depending on the direction of the coreference edges.
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sentence but can be inferred neither from the tree structure nor
from the semantic role labels (e.g., the category of number),

—  The coreference attributes capture the relations between a pronoun
node and a noun or string it refers to, or between items governed
by a control verb; although stored as node attributes in PDT, these
relations can actually be viewed as a special type of (directed)
edges added on top of dependency trees,

—  The information structure attribute (topic-focus articulation) is
used to represent whether a node belongs to the contextually
bound or non-bound part of the sentence.

e  Edges correspond to dependency relations (with the exception of
coordination and apposition structures). They are assigned semantic role
labels (functors). Semantic roles are divided into arguments and adjuncts
according to both semantic and formal criteria specified within the valency
theory by Panevova (1974-1975):

- There are five argument roles (Actor, Patient, Addressee, Effect,
Origin), which correspond mostly to the surface-syntactic slots of a
subject and of direct and indirect objects of the verb (as the most
prominent item of the sentence).

- More than 50 adjunct roles are assigned with different types of
temporal, local, and other circumstances of an event expressed by
the verb.

- Another approx. 10 labels distinguish between different paratactic
syntactic structures such as coordination and apposition.

¢  Semantic role labeling is linked to the valency lexicon which specifies
which of the roles constitute the valency frame of the verb (being either
obligatory or optional).

¢ Annotation at the deep-syntactic layer is interlinked with annotation on
the surface-syntactic layer and morphological layer.

The deep-syntactic annotation in the above-specified extent is available in the PDT
from the version 2.0 onward (PDT 2.0, Haji¢ et al. 2006; PDT 2.5, Bejcek et al. 2011). In
version 3.0 (PDT 3.0; Bejcek et al. 2013), the deep-syntactic annotation was enriched with
annotation of further coreference types, bridging relations, discourse relations, genre
specification, multiword expressions, and quotation.

The PDT annotation scheme, including the deep-syntactic representation, was im-
plemented also in the PDT of Spoken Czech and in two parallel treebanks, namely,
in the Czech-English Parallel Corpus and in the Prague Czech-English Dependency
Treebank (PCEDT), whose English part contains the Wall Street Journal Section of the
Penn Treebank. See figures 3 and 4 for examples of PCEDT annotation.

A handful of treebank projects adopted the PDT annotation scheme for other
languages; however, only a few of them contain a sentence meaning representation;
cf. Latin Dependency Treebank, whose deep-syntactic annotation is close to PDT, or
Croatian Dependency Treebank, which uses 20 semantic role labels at the deep layer,
whereas in the Greek Dependency Treebank, Slovene Dependency Treebank, or the
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RSTR ( M (RSTR)(ADDR.m|

similar technique be almost possible #Benef apply #Gen other crop such_as cotton soybean and rice

Figure 3

Deep-syntactic (tectogrammatical) representation of the sentence A similar technique is almost
impossible to apply to other crops, such as cotton, soybeans and rice. in the Prague Czech-English
Dependency Treebank (PCEDT, rooted in FGD). Nodes correspond to content words and are
labeled with basic forms of the lexemes (tectogrammatical lemmas). Negation expressed by a
prefix in impossible is captured by a grammateme value (cf. 3.3 and 4.7.2). Function words are
linked to content words but have no nodes of their own; on the other hand, there are empty
nodes for valency-licensed arguments that are not represented on the surface. The edges labeled
APPS and CONJ are special: rather than expressing a relation between the source and the target
node, they only mark the target node as a head of a paratactic structure (apposition and
coordination, respectively). The .m suffix in edge labels marks members of paratactic structures
(see Section 4.4). The coreferential edge depicted below the sentence shows that the benefactor
argument of possible and the actor of apply are coreferential, even though none of them is overtly
expressed on the surface.

ADDR.n{ADDR.m
|

{ADDR-arg}
(PAT-arg} {PAT-arg}

(ACt-arg) {ACt-arg}

(PAT-arg)
RSTR

A smnlar technique is almost impossible to apply to other crops , such as cotton , soybeans and rice .

Figure 4

The so-called PSD graphs (standing for Prague Semantic Dependencies) were used in two
SemEval (SDP) shared tasks (Oepen et al. 2015), as well as in the CoNLL 2019 shared task
(http://mrp.nlpl.eu/). They result from a lossy conversion from the tectogrammatical
annotation of PCEDT (Figure 3). The SemEval tasks assumed that all nodes correspond to
surface tokens; hence there are no empty nodes and the coreference edge has disappeared, too.
On the other hand, nodes corresponding to function words are not connected to the rest of the
graph (although it would be possible to link them via secondary edges to “their” content word);
in the original tectogrammatical graph, they are not nodes and thus not shown in Figure 3.
Another difference is that dependencies in PSD are propagated across paratactic structures
(coordination and apposition), while the edges labeled CONJ.m and APPS.m connect the members
of the paratactic structure.

syntactic annotation in the Slovak National Corpus the deep-syntactic layer is not
available.

3.4 Proposition Bank and Closely Related Resources

The Proposition Bank (PropBank) project aimed at “adding a layer of predicate—
argument information, or semantic role labels, to the syntactic structures of the Penn
Treebank” (Palmer, Gildea, and Kingsbury 2005, page 71). The project started by
marking clause nuclei composed of verbal predicates and their arguments (predicate—
argument structure); PropBank annotation pointed to constituents in the original Penn
Treebank annotation (Kingsbury and Palmer 2002). Later, “modifiers of event vari-
ables” were added (e.g., Babko-Malaya et al. 2004), broadening the predicate—argument
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structures with adjuncts. The main features of PropBank annotation as presented by
Palmer, Gildea, and Kingsbury (2005) are:

e  Structure: directed acyclic graph, typically consisting of multiple
unconnected components. The nodes can be ordered following the surface
word order.

o Nodes are constituents of the Penn Treebank surface tree (but in
PropBanks of other languages, the surface structure may be a dependency
tree). Predicates are represented by terminal nodes, arguments are
represented by their highest-spanning non-terminal.

- Predicates are disambiguated, divided into senses.

- Arguments correspond to whole syntactic phrases (namely, noun
phrases, prepositional phrases, and dependent infinite or finite
clauses) as delimited in the surface-syntactic annotation.

- Split (discontinuous) constituents are linked together and assigned
a single semantic role.

—  Empty nodes (traces) represent subjects of controlled verbs, and
they are (often) co-indexed with the node of the corresponding
surface word.

¢  Edges go from predicates to their arguments. Co-indexing of traces with
their antecedents can be viewed as a special type of edges.

*  Arguments are assigned semantic role labels: ARGO to ARG5, ARGO being a
“Prototypical Agent,” ARG1 a “Prototypical Patient or Theme,” and so
forth; the labels are assigned consistently for a given predicate across
different syntactic alternations (as analyzed by Levin 1993), cf. [ srgoJohn]
broke [ Arg1the window] and [ srg1 The window] broke.

o Another label ARGM defined for adjuncts (which are not required by the
verb but are part of the sentence). 11 ARGM subtypes are distinguished:
LOC, EXT, DIS, ADV, NEG, MOD, CAU, TMP, PNC, MNR, DIR.

*  Two other labels can be associated with numbered arguments (namely,
EXT indicating a numerical nature of an argument, and PRD for secondary
predication).

. A set of semantic roles defined for a verb sense (roleset) is associated with
a set of syntactic frames (frameset).

The PropBank annotation (Figure 5) has been applied to multiple languages: Arabic
Proposition Bank (Zaghouani, Hawwari, and Diab 2012), Chinese Proposition Bank,
which was added to the Chinese Treebank (Xue and Palmer 2009), Finnish Proposition
Bank (Haverinen et al. 2015), Hindi Proposition Bank (Vaidya et al. 2011), Persian
Proposition Bank (Mirzaei and Moloodi 2016), Proposition Bank of Brazilian Portuguese
(Duran and Aluisio 2012), Turkish Proposition Bank (Sahin and Adali 2018), Proposition
Bank for Urdu (Nomani et al. 2016), and Basque Verb-Index (Estarrona, Aldezabal, and
Diaz de Ilarraza 2018).
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The thrift holding company said -NONE- S
0 NP-SBJ-1 VP
7y ARG e ARGML,
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it expects NP-SBJ VP
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NVB /\\(’/—» and VB % NP IN NP
obtain complete DT NN by NN
rcgulatou approval the transaction year-end
ARGy
Figure 5

PropBank annotation over the constituents of the Penn Treebank for the sentence The thrift
holding company said it expects to obtain regulatory approval and complete the transaction by year-end.
The ARGM-TMP edge between expects and by year-end seems disputable but it appears in the
annotated data, so we include it, too. Traces and their antecedents are connected to chains
identifying grammatical coreference within sentence boundaries. Note, however, that the textual
coreference between it and the thrift holding company is not annotated.

Pustejovsky et al. (2005) announced a project of merging the English PropBank with
four other resources that focused on other parts considered as belonging to sentence
meaning in English, namely with:

*  NomBank (Meyers et al. 2004), in which argument structure was assigned
with eventive nouns occurring in PropBank (data of the Wall Street Journal
Corpus of the Penn Treebank). First, “markable” noun instances were
identified among common nouns, that is, eventive nouns that are
accompanied by a PropBank-defined argument or adjunct. In each noun
phrase with such a noun, the head was identified and its arguments and
adjuncts were marked and assigned a semantic role label from the
PropBank label set (ARGO to ARG5 and different ARGM labels; see
https://nlp.cs.nyu.edu/meyers/NomBank.html for detailed annotation
instructions).

. Penn Discourse Treebank (PDTB), in which the relations between
propositions (i.e., meanings of individual clauses made up of a
predicate—argument structure and related adjuncts) are annotated.
Propositions are marked as arguments with regard to discourse
connectives, which are either explicit or implicit (Miltsakaki et al. 2004a,
2004b).

¢  TimeBank (Pustejovsky et al. 2003), in which temporal features of
propositions (expressed by temporal adjuncts, temporal prepositions and
connectives, tensed verbs, etc.) and temporal relations between
propositions are annotated.
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e Coreference Annotation created at the University of Essex, which
contained texts from a subset of the Penn Treebank (Poesio and Vieira
1998) and the Gnome Corpus (Poesio 2004) annotated with coreference
relations.

Merging these resources meant that the clause nuclei composed of verbal predicates
and their arguments, as captured in PropBank, were broadened with the argument
structures for instances of common nouns (NomBank) and, finally, the isolated islands
were connected with discourse relations (PDTB). By also having an explicit temporal
and coreference annotation, the initially limited focus of PropBank was substantially
extended, providing a more complex semantic annotation than available in the partic-
ular resources. A more general goal of the merging project was to define a “Unified
Linguistic Annotation” (ULA). ULA was presented at the ACL 2005 workshop Fron-
tiers in Corpus Annotations 1I — Pie in the Sky, at the ACL 2007 Linguistic Annotation
Workshop, at the ULA workshop co-located with TLT 2007, and several others. It was
used in the Unified Linguistic Annotation Collection, which consisted of two corpora
(The Language Understanding Annotation Corpus and REFLEX Entity Translation
Training /DevTest) and was released by LDC in 2009. The former subcorpus contained
English and Arabic texts annotated for temporal relations, coreference, committed be-
lief, and dialog acts. The latter subcorpus consisted of English, Chinese, and Arabic texts
translated into each of the other two languages; it contained named entity annotation
and annotation of temporal features.

As another project, Akbik, Guan, and Li (2016) propose what they call the Universal
Proposition Banks. They stick to PropBank-style annotation. They are interested in
building proposition banks for other languages; they have done and evaluated it for
German, French, and Chinese. They project the English frames across word alignments
in the Open Subtitles parallel corpus (Lison and Tiedemann 2016). They currently
cannot handle target verbs that can be only expressed as complex predicates in English
(e.g., French rentrer corresponds to English go home or come home).

PropBank argument structure has been applied as one type of annotation to three
languages in the OntoNotes project. In the final release of the data (OntoNotes 5.0;
Weischedel et al. 2013), English, Chinese, and Arabic texts are assigned three types of
annotation, namely, a surface-syntactic (Penn Treebank-style) annotation, the PropBank
predicate-argument structure, and “shallow semantics,” which consists of word sense
disambiguation for nouns and verbs (with senses connected to an ontology) and coref-
erence annotation.

With its primary focus on semantic role labeling of verb predicates, PropBank is
related to yet another resource, VerbNet, which consists of hierarchically arranged verb
classes that are based on Levin’s approach (Kipper, Dang, and Palmer 2000; Kipper,
Palmer, and Rambow 2002). For each class, subclass, and the corresponding set of verbs,
a list of arguments (selected from a set of 23 roles in total) is assigned, and syntactic and
semantic information is given. A two-step mapping between VerbNet and PropBank
has been created (Loper, Yi, and Palmer 2007). First, a “lexical mapping” was applied to
link VerbNet records to the verbs in PropBank. Second, if more mappings were offered
for a verb, an “instance classifier” decided which of them is most appropriate.

PropBank-style annotation was adopted as a part of semantic annotation in An-
Cora treebanks for Spanish and Catalan (AnCora-Es and AnCora-Ca, Taulé, Marti, and
Recasens 2008; both based on previous annotation efforts, Marti et al. 2007). The data are
assigned morphological annotation, surface-syntactic (constituency) trees, and semantic
annotation. In addition to PropBank semantic role labels (Arg0 to Arg4, ArgM, ArgA for
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so-called external agents, and ArgL for complementations of light verbs), the semantic
annotation also contains thematic roles (Agent, Cause, Patient, and 17 other roles),
word senses (with each noun, based on the respective derivative of WordNet), and
named entity tags. More recently, AnCora-Es was enriched with annotation of implicit
arguments of deverbal nominalizations (resulting in the Spanish Iarg-AnCora corpus,
Taulé, Peris, and Rodriguez 2016).

3.5 FrameNet-Based Approaches

There is a (rather heterogenous) family of approaches in which semantic relations in
a sentence are represented using the FrameNet semantics framework (Fillmore 1976;
Baker, Fillmore, and Lowe 1998; Johnson et al. 2002).

In contrast to PropBank, FrameNet started as a primarily lexicographic project,
from the definition of semantic frames, which consist of frame elements whose labels
are chosen with regard to the particular situation. For instance, BUYER is one of the
frame elements of the frames “Commerce_buy” and “Commerce_sell” whereas COOK is
contained in the “Apply_heat” semantic frame; BUYER with the verb to buy and COOK
with the verb to cook correspond to the ARGO semantic role in the PropBank label set. For
each frame, a set of predicates is listed that evoke the particular frame.

Typically, the FrameNet-based annotation is added on top of an existing con-
stituency treebank (analogously to PropBank annotation being added on top of Penn
Treebank constituency trees), such as in the case of

e the original Berkeley FrameNet (Ruppenhofer et al. 2006), in which the
core lexicographic database is accompanied by frame-annotated fragments
of the Penn Treebank (besides other frame-annotated running-text samples
which are not tied to any treebank annotation),

¢ inthe SALSA corpus (Saarbriicken Lexical Semantics Annotation and
Analysis), which is a resource developed for German (Erk et al. 2003;
Burchardt et al. 2006) built on top of the TIGER Treebank (Brants et al.
2002),

o the annotation over the KAIST Treebank for Korean (Hahm et al. 2018).

Using an underlying constituency treebank simplifies delimitation of frame ele-
ments manifested in a given sentence, as well as of frame-evoking elements.

Figure 6 illustrates the overlapping of constituency trees with the FrameNet-based
annotation in SALSA. In SALSA, verb predicates (and possibly nouns) are handled as
frame-evoking elements:

e  Structure: As in PropBank, all frames identified in a sentence make up an
unconnected directed acyclic graph where edges connect elements of one
frame. Nodes correspond to surface strings; therefore a partial order can
be defined for them.

*  Frame-evoking elements are assigned an appropriate FrameNet frame
(cf. the verb fordern assigned the Request frame in Figure 6).

e  For each frame-evoking element, frame elements are identified in the
sentence and labeled according to the particular semantic frame (cf. the
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e )

Larcher forderte hierzu klare Aussagen .
Larcher demanded on this clear statements .

‘Larcher demanded clear statements on this.
Figure 6

SALSA: Shallow constituent structure and frame structure of the sentence Larcher forderte hierzu
klare Aussagen.’Larcher demanded clear statements on this.” (Adapted from Erk and Pado 2004).

semantic role labels Speaker and Message in Figure 6). Frame elements
correspond to syntactic phrases or their parts as delimited in the
surface-syntactic annotation (in the TIGER corpus).

FrameNet offers much finer-grained inventory of roles compared with that of Prop-
Bank. For more details on differences between the semantic role labeling in FrameNet
and in PropBank see examples (1) to (3) vs. (4) to (6), and Ellsworth et al. (2004) for
a comparison of semantic roles and some other linguistic phenomena (e.g., metaphor,
light-verb constructions) in FrameNet vs. PropBank.

(1) [cooasA car] was bought [p,e,by Chuck].

(2)  [GoodsA car] was sold [pyyerto Chuck] [sererby Jerryl.
() [BuyerChuck] was sold [Gooasa car] [seierby Jerry].
(4)  [arq1A car] was bought [a,eoby Chuck].

(5)  [arg1A car] was sold [argato Chuck] [arg0by Jerryl.
(6)  [arg2Chuck] was sold [arg1a car] [argoby Jerry].

3.6 Enju Predicate-Argument Structures

Enju (Yakushiji et al. 2005) is a parser trained on HPSG-style annotations automati-
cally converted from the Penn Treebank; the parser further converts surface forms to
Predicate-Argument Structures.!! According to the authors, strong normalization of
syntactic variations (illustrated in Table 3) should lead to more efficient Information
Extraction. See also Figure 7 showing a full Enju graph. Basic features of the Enju
structures are as follows:

. Structure: A sentence is assigned a set of predicate-argument structures
(PAS). The term PAS is sometimes used to denote the graph constructed as
a combination of all predicate-argument structures in a sentence (graph
nodes = words, graph edges = binary relations from individual PAS); the

11 http://kmcs.nii.ac.jp/enju.

626


http://kmcs.nii.ac.jp/enju

Zabokrtsky, Zeman, and Sev&ikova Sentence Meaning Representations Across Languages

Table 3
Syntactic variation examples that all contain the predicate-argument structure
Entityl-ARG1-activate—ARG2-Entity2 in their Enju PASs (adopted from Yakushiji et al. 2005).

Active Main Verb  Entityl recognizes and activates Entity2.
After an Auxiliary  Entityl can activate Entity2 through a region in its carboxy terminus.

Passive Entity2 are activated by Entityla and Entity1b.

Past Participle Entity2 activated by Entityl are not well characterized.

Relative Clause The herpesvirus encodes a functional Entityl that activates Entity?2.
Infinitive Entityl can functionally cooperate to synergetically activate Entity?2.
Gerund in PP The Entityl play key roles by activating Entity2.

\ \ I
A similar technique is almost impossible to apply to other crops , such as cotton , soybeans and rice .

Figure 7

Enju Predicate-Argument Structures of the sentence A similar technique is almost impossible to
apply to other crops, such as cotton, soybeans and rice. (Adapted from Oepen et al. 2015). Although
the direction and the labels of the edges are deep-syntactic, all surface words including function
words are included as graph nodes.

resulting graph is connected and acyclic (Hashimoto et al. 2014). Due to
the direct correspondence between nodes and words, the nodes are totally
ordered.

¢ Words are converted to their base forms and augmented with their POS
tags. Every word in a sentence is treated as a predicate, an argument, or
both.

° A predicate has a certain category and governs zero or more arguments.

*  Predicate categories are relatively fine-grained and rather syntactically
oriented, such as verb_arg123 _relation for a verb that takes two NP objects
or a verb that takes one NP object and one sentential complement,
conj_argl2_relation for subordinating conjunctions that take two
arguments, or aux_relation for an auxiliary verb; in total, 36 values are
distinguished.!?

*  Types of arguments are coarse-grained, values such as ARG1 (semantic
subject), ARG2 (semantic object), and MODARG (modifier) are distinguished.

* A predicate with all its arguments constitutes a PAS, which represent
deep-syntactic relations between the predicate and its arguments.

12 https://mynlp.is.s.u-tokyo.ac.jp/enju/enju-manual/pas.html.
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ARG2 R-INDEX

(R-INDEX)
BV) TNDF\ BV} ]\IDF\ -{

a similar techmque almost impossible apply udef other crop such+as udef udef cotton implicit udef udef soybeans and udef rice
a ato nl al a for vto g al nl P q q nl conj q q uunknown ¢ q nl

Figure 8

DELPH-IN Elementary Dependency Structure of the sentence A similar technique is almost
impossible to apply to other crops, such as cotton, soybeans and rice. (Adapted from Ivanova et al.
2012.) There are six empty nodes labeled udef q, which represent underspecified quantifiers for
the bare noun phrases. An additional empty node is labeled implicit conj and ties together
cotton with soybeans and rice.

e
ARG l@v—mﬁ
) ‘

A similar technique is almost impossible to apply to other crops , such as  cotton, soybeans and rice .

a similar technique be almost impossible to apply to other crop , such as  cotton soybean and rice .
q:i-h-h a_ toe-i n:x _awe-h a_for:e-h-i _ v_towe-i-p-i _ ae-i nix _ pe-u-i pre-u-i mix n:x _omx
Figure 9

DELPH-IN Minimal Recursion Semantics-derived bi-lexical dependencies (DM) of the sentence
A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.
(Adapted from Oepen et al. 2015). In comparison to EDS (Figure 8), the underspecified
quantifiers have been removed, coordination has been restructured as a chain headed by the first
conjunct (cotton), and the multiword expression such as is now formally treated as two nodes.

3.7 DELPH-IN Semantic Graphs

DELPH-IN" is a research network that constructs natural language descriptions using
two formalisms: HPSG (Head-driven Phrase Structure Grammar; Pollard and Sag 1994)
for the syntactic part, and MRS (Minimal Recursion Semantics; Copestake et al. 2005)
for the semantic part. MRS is designed for smooth integration with HPSG, and it uses
typed feature structures as its data structure. As such, it stands beyond the scope of
the present survey (see also Section 2.2). However, there are also graph representations
derived from MRS. First, a full-fledged underspecified logical form is reduced into a
localized variable-free dependency graph, dubbed Elementary Dependency Structure
(EDS; Oepen and Lenning 2006). EDS may contain graph nodes that do not correspond
to individual surface words, for example, underspecified quantifiers for bare noun
phrases or implicit conjunctions (Figure 8). An EDS graph node can be optionally anno-
tated with a set of property-value pairs in order to store information (often determined
morphologically) such as number and tense. In the second step, EDS is transformed into
“pure” bilexical semantic dependencies (Ivanova et al. 2012, Figure 9). Both conversion
steps are lossy. The target dependency representation is referred to as DM!* and has
been used in the SemEval shared tasks on semantic dependency parsing (Miyao, Oepen,
and Zeman 2014; Oepen et al. 2015).

One of the resources created in DELPH-IN is DeepBank, a manual re-annotation of
sections 00-21 of the WSJ corpus (Flickinger, Zhang, and Kordoni 2012). See Figure 9
for an example of a semantic dependency graph obtained by the MRS — EDS — DM
conversion from DeepBank; see Figure 8 for the EDS of the same sentence.

13 http://www.delph-in.net/.
14 Standing for DELPH-IN MRS Bilexical Dependencies.
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e  Structure: EDS is a general directed graph; cycles are uncommon but
possible. Some of its nodes are lexical units that correspond to surface
words, multiword expressions, or subword units. There are also empty
nodes. Following the anchoring of some nodes in the surface text, a partial
order can be defined for the nodes.

. In contrast, the nodes of DM are surface tokens. Some of them are
considered semantically void and unconnected to any other node in the

graph.
*  Edges correspond to predicate—argument relations between lexical units.

. In case of grammatical coreference, the same lexical unit (node) serves as
argument of multiple predicates.

*  Semantically ambiguous predicates and their valency frames are
disambiguated.

. Coordination: Conjunction is treated as the head, that is, like a predicate,
in EDS; empty nodes are used where an overt conjunction is not available.
In DM, coordination is transformed to a left-to-right chain (see the
“Mel’¢uk/Moscow style” in Section 4.4).

3.8 Sequoia French Treebank

In the Sequoia corpus, the deep-syntactic representation (Candito et al. 2014) was built
on top of the existing surface-syntactic representation (Candito and Seddah 2012),
which followed the annotation scheme used in the French Treebank (Abeillé and
Barrier 2004). The surface-syntactic annotation in the Sequoia corpus, originally based
on constituent trees, was converted into dependencies and used for specification of the
dependency-oriented deep-syntactic representation.

The main features of the deep-syntactic representation can be summarized as fol-
lows (Candito and Perrier 2016):

e Structure: directed graph; may contain cycles (Figure 10). The nodes can be
ordered following the surface word order.

*  Nodes of the graph correspond to content words. Function words are not
included even if they are parts of multiword expressions (except for
grammatical multiword expressions). Annotation of verbal multiword
expressions was added in version 9.0 of the treebank (Candito et al. 2017).

*  Edges correspond to dependency relations between content words. A
node can be connected with the same parent by more edges with the same
direction but different labels (in particular, in reflexive constructions, cf.
Figure 11).

¢ When playing multiple roles in the sentence, a node can have multiple
parents (Figure 11). For instance, infinitives are connected with the item
that semantically fills its subject position whenever available in the same
sentence (in raising and control constructions, in infinitival clauses
modifying a noun, etc.). Similarly, if a noun is shared by several verbs in
coordination (i.e., it is elided with one or more of the verbs) in the surface
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coord
lep coord
Les o0s deviennent plus minces et plus fragiles et se cassent plus facilement
D N ) ADV A CC ADV A ) ADV ADV

The bones become more thin and more fragile and SE- (htlc break more easily

(mod.comp)

sUj:suj
suj:suj
suj:obj

‘Bones become thinner and more fragile and break more easily’

{suj:suj} (suj:suj)

mo ObJ obj

Le lot gros oeuvre devra probablement etre declare 1nfructueux
ADV
The package structural works will have to  probably bo declared unsuccessful
suj:obj
1j:51j

‘The structural system package should probably be declared unsuccessful.

Figure 10

The complete representation of two French sentences in the Sequoia treebank (adopted from
Candito et al. 2014). The red edges are surface-syntactic, the blue edges are deep-syntactic, and
the black edges belong to both structures (surface and deep). The two edges connecting gros and
ceuvre thus exemplify a cycle in the deep graph. The double functions (for instance, suj:obj)
specify the final grammatical function (here, subject) first and the canonical grammatical
function (object) after that. Note that the labels of deep edges contain both functions (while the
surface structure involves only final functions).

(suj:suj) (obj:obj) /fauts:ats}X
‘ 'R
Paul  se lave Il pense étre tranquille
CL ) P ' v A
Paul himself washes he thinks to-be  quiet
‘Paul washes. ‘He thinks he is quiet.
Figure 11

Two examples illustrating non-tree structures in Sequoia (adopted from Candito and Perrier
2016). In the left example, two deep edges go from lave to Paul, one marking Paul as the
canonical subject and the other as canonical object. In the right example, three incoming edges
mark the pronoun il ‘he” as the canonical subject of three different predicate nodes.

structure, in the deep-syntactic representation all verbs are connected with
the shared item. Moreover, each adjective is linked by a deep-syntactic
edge to either the noun it modifies (adjectives in attributive position), or to
both the verb and its subject or object (adjectives in predicative position).

630



Zabokrtsky, Zeman, and Sev&ikova Sentence Meaning Representations Across Languages

e  Edges are labeled with “canonical grammatical functions,” which are
basically surface-syntactic functions that the node would be assigned with
the particular verb in a finite form in a non-elliptical construction (the
account of grammatical functions is rooted in the Relational Grammar by
Perlmutter 1980). For instance, an object with the preposition by in a
passive sentence fulfills the canonical grammatical function of a subject;

a noun is assigned as a canonical subject with both the finite form of a
control verb and the dependent active infinitive verb in a controlled
position (with the controlled subject).

e In this way, the deep-syntactic representation abstracts from syntactic
diatheses (active vs. passive clause). However, only those diatheses that
are marked overtly in the surface sentence (e.g., by the preposition by) are
assigned the same deep-syntactic annotation; for instance, the same set of
canonical functions is assigned with a verb in an active sentence and in its
passive counterpart with a subject introduced by a preposition. On the
contrary, diatheses without overt marking are not linked in the
deep-syntactic representation.

*  Semantically ambiguous predicates are not disambiguated.

*  Coordination: The head of the first conjunct is the head of the coordinating
structure.

The deep-syntactic representation combines with the surface-syntactic representa-
tion into a “complete representation.” Unlike the deep-syntactic representation using
directed graphs, the surface-syntactic structure is represented by a rooted tree. The
surface-syntactic tree consists of nodes corresponding to all words in the particular
sentence and of edges labeled with “final grammatical functions,” namely, surface-
syntactic relations of subject, object, and so on, with regard to the particular diathesis.
For instance, a noun with the preposition by with a passive verb is assigned the final
grammatical function of an object in the surface structure.

When displayed in a linear sentence, all words of the sentence are parts of the
surface-syntactic representation and are connected with final grammatical functions.
Those nodes that correspond to content words in the sentence enter the deep-syntactic
representation and are assigned also a canonical grammatical function; see Figure 10.

3.9 Abstract Meaning Representation

Abstract Meaning Representations (AMRs) introduced by Banarescu et al. (2013) repre-
sent sentences as graphs in which non-leaf nodes stand for variables and only leaf nodes
capture lexical content (i.e., only leaves are labeled with concepts). An example of such
structure is depicted in Figure 12. Compared with most other approaches under our
survey, the correspondence between AMR structures and surface-syntactic structures
such as surface dependency trees is relatively limited, as the origins of AMR go back
rather to a knowledge representation tradition.

®  Structure: A directed graph, typically acyclic, although cycles are not
completely excluded (Kuhlmann and Oepen 2016). Any correspondence
between nodes and surface strings is hidden by design, hence the nodes
are unordered.
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ARG1
[ >0
ARGO
ARGO
instance
instance
instance

want-01 boy go-01
Figure 12
Abstract meaning representation of the sentence The boy wants to go. (Adapted from Banarescu
et al. 2013).

When an entity plays multiple roles in a sentence, variable nodes can have
multiple parents. In this way, AMR abstracts away from co-reference
devices like pronouns, zero-pronouns, reflexives, control structures, and so
on. However, AMR annotates sentences independent of context, so if a
pronoun has no antecedent in the sentence, its nominative form is used.

AMR makes use of PropBank framesets to abstract away from English
syntax (though AMR is not claimed to be an Interligua); verb frames are
not assigned only to verbs, but also to their derivations such as deverbal
nouns.

AMR uses basic PropBank style labels ARGO—-ARG5 for core arguments.
Around 40 additional semantic roles such as :condition, :direction,
:duration, and :manner are distinguished, as well as around 20 roles
expressing quantities and values such as :day and :year.

Time and location prepositions are preserved in the semantic role value if
they carry additional semantically indispensable information such as in
‘prep-against and :prep-on; subordinating conjunctions are treated
analogously (altogether around 20 distinct values).

In total, there are more than 100 role values distinguished according to the
current web documentation of AMR," including rather technical roles
:sntl-sntl0 that serve for merging multiple subsequent sentences into a
single structure if needed.

AMR represents negation with :polarity, both in the case of clause negation
and in the case of word-formation negative prefixes (inappropriate —
appropriate :polarity -).

AMR does not represent semantic counterparts of inflectional categories
expressing tense and aspect (however, an AMR augmentation for
capturing tense and aspect because of their importance in NLP

15 https://www.isi.edu/~ulf/amr/lib/roles.html.
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applications has been suggested recently by Donatelli et al. 2018). AMR
omits articles.

In spite of the fact that Banarescu et al. (2013) openly admitted that AMR is heavily
biased toward English, AMR has been applied on a variety of other languages.'®

3.10 Universal Conceptual Cognitive Annotation (UCCA)

Like AMR, the Universal Conceptual Cognitive Annotation (UCCA; Abend and
Rappoport 2013) puts words on leaf nodes only. However, UCCA is still anchored in the

surface text and all surface words have their nodes. Here are some basic characteristics
of UCCA graphs:

*  Structure: A directed acyclic graph. A partial order can be defined for the
nodes as some of them correspond to surface strings.

*  Leaves of the graph are called terminals and represent atomic
meaning-bearing units (words and multiword chunks). Their labels are
surface forms rather than lemmas. Nonterminal nodes bear no labels,
but edges do. A nonterminal node can be characterized in terms of the
categories of its outgoing edges.

¢  Thenodes of an UCCA graph are also called units. More precisely, the unit
represented by a nonterminal is the subgraph headed by the nonterminal,
and it contains embedded smaller units. Terminal nodes are atomic units.
A unit in UCCA “expresses a relation along with its arguments.” See
Figure 13 for an example. A unit may cover discontinuous parts of the text.

*  Animportant special type of nonterminal unit is called scene. It describes a
movement, action, or temporally persistent state, which is the scene’s main
relation.”” The main relation is represented as a sub-unit, often a verb, but it
can also be an adjective, an eventive noun, and so forth. Other sub-units
are participants of the scene. There can also be secondary relations, which
are marked as adverbials (Figure 14).

e There may be implicit terminal units that do not correspond to a stretch of
text. For example, playing games is fun has an implicit sub-unit, connected
via an A edge, and corresponding to the people playing the game. In our
terminology, implicit terminals are empty leaf nodes.

* A unit may participate in more than one relation; that is why the graph is
not necessarily tree (Figure 14).

*  Relations are labeled with coarse-grained categories; the inventory
contains 12 values such as P — Process, A — Participant, D — Adverbial,
E - Elaborator, and N — Connector.

16 See https://nert-nlp.github.io/AMR-Bibliography/. In some languages this required
language-specific modifications of the annotation scheme because of phenomena that have no analogy in
English, viz. coreference of noun classifiers in Vietnamese as discussed by Linh and Nguyen (2019), or
third-person clitic pronouns in Spanish as discussed by Migueles-Abraira, Agerri, and de Ilarraza (2018).

17 Unlike some other frameworks, in UCCA the term relation does not mean an edge. It is one of two types
of concepts of which an utterance is constructed, the other being an entity.
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P A

AN

ball

A

John kicked

Figure 13

UCCA graph of the sentence John kicked his ball (Adapted from Abend and Rappoport 2013). The
non-scene unit his ball is represented as a subgraph with one non-terminal and two terminal
nodes; the C edge marks ball as the “center,” while E means “elaborator.” The other non-terminal
represents a scene (roughly corresponding to the semantic content of a clause) and its main
relation is a “process” (as opposed to a “state”), hence the edge label P. Participants of the
process are attached via edges of the category A (besides arguments, A can also attach locations).

/

C

A

the film we saw yesterday wonderful

Figure 14

UCCA graph of the sentence the film we saw yesterday was wonderful (Adapted from Abend and
Rappoport 2013). There are three new edge categories: S denotes a main relation that is a state
rather than a process; D is an adverbial modifier of a scene; and F (“function”) is a word in a
non-scene unit that is not an elaborator. Note that the terminal node film participates in two
larger units: it is the center of the film we saw yesterday, and it is also a participant in the scene we
saw film yesterday. Note that UCCA distinguishes primary edges (C to film) from remote edges
(A to film).

e UCCA annotates text, which typically comprises multiple sentences and
paragraphs. Linkage of scenes can cross sentence boundaries.

UCCA has been designed as a multilayer framework. What we describe here is
referred to as the foundational layer in UCCA to which additional layers can be added
that “may refine existing relations or otherwise annotate a complementary set of distinc-
tions” (Abend and Rappoport 2013). In a recent paper (Prange, Schneider, and Abend
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2019), coreference annotation is proposed as a layer to be annotated on top of the UCCA
foundational layer. Coreference links are assigned with the units as delimited in the
foundational layer.

UCCA does not model syntax explicitly or build on other annotation layers, assum-
ing that semantic annotation can be mapped directly to surface form.

UCCA is relatively insensitive to syntactic variation, giving similar analyses to syn-
tactically different but semantically close scenes. This increases parallelism both within
a language and across languages. For example, compare the annotations of English
John took a shower and John showered: in both cases, we have a single scene with one
participant and with the main relation whose center expresses the notion of showering:
(1) John 4 [tookg [ap showerclc]p (2) John 4 showeredp. The structure is also preserved under
translation to other languages, such as German (John, duschtep, lit. John showered) or
Portuguese (John, [tomour banhoclp, lit. John took shower.

UCCA is not tied to a particular lexical resource. The authors mention some resem-
blances with the FrameNet project, where frames can be seen as a context-independent
abstraction of UCCA’s scenes.

There is an English Wikipedia corpus of approximately 5,000 tokens annotated in
UCCA,; there is also a pilot annotation of a parallel English-French-German corpus, and
a trainable parser.!® Parsing text into UCCA was the topic of a SemEval shared task in
2019, and UCCA was also one of five target schemes (along with AMR, the FGD-based
PSD scheme, and DELPH-IN’s DM and EDS) of the 2019 CoNLL shared task!’ (Oepen
et al. 2019).

3.11 Enhanced Universal Dependencies

UD? (Nivre et al. 2020) is a community project that strives to define one set of guidelines
for morphological and syntactic annotation that could be applied to all human lan-
guages. It defines two layers: the basic representation and the enhanced representation.
The former must be a rooted tree, while the latter is a connected directed graph. Even
the basic tree is somewhat closer to semantics than is usual in surface dependency
treebanks. UD puts considerable emphasis on cross-linguistic parallelism, and one way
of making the structures parallel is to push function words out and make them leaves of
the tree. Furthermore, function words are attached to content words via specific relation
types, hence they can be viewed as mere features of content words (cross-linguistically it
makes sense because in other languages they may correspond to morphological features
of the content word).

The enhanced representation (Schuster and Manning 2016) is still less developed.
Its concrete specification exists since UD guidelines version 2 (December 2016)?! and
there are still discussions about whether and how the specification should be extended.
In any case, enhanced UD does not aspire to become a full-fledged deep structure of
the utterance, in any sense of the term. The current guidelines consist of five sepa-
rate “enhancement areas” whose common denominator could be roughly described as
“phenomena that may be useful for downstream language-understanding tasks such
as relation extraction, and that cannot be represented using a labeled rooted tree.” This

18 See the resource list at http://www.cs.huji.ac.il/~oabend/ucca.html.

19 http://mrp.nlpl.eu/.

20 https://universaldependencies.org/.

21 https://universaldependencies.org/u/overview/enhanced-syntax.html.
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objective ultimately introduces certain annotation items that we find in other “deep”
(semantic) frameworks.

As of UD release 2.5 (November 2019), only 16 languages have a UD treebank
with some enhanced structures (while there are 90 languages with basic treebanks).
Moreover, the five defined enhancements are all optional and a treebank*? may choose
only to annotate some of them.

e  Structure: Directed graph (connected, but not necessarily acyclic).
The nodes are ordered following the surface word order. Annotation
guidelines do not specify the position of empty nodes, thus the node
order is partial.>?

—  All the nodes of the surface (basic) tree also participate in the deep
(enhanced) graph but dependency relations (edges) may be added
as well as removed.

- Asinbasic UD, orthographic words may be declared multiword
tokens and split to several syntactic words (nodes).

-  Empty nodes may be added in cases of gapping and stripping
(ellipsis with coordination). Their attributes may be copied from the
corresponding node in the overt conjunct.

-  Types of added relations are from the same inventory as those of
basic tree structure (with one exception: ref). The main
distinctions: does it modify a clause, or a nominal? And is the
modifier itself a clause, a nominal, or another modifier word? Is it a
core argument, or an oblique argument/adjunct? (UD claims not to
mark argument/adjunct distinction, nor the semantic roles.)

- As in basic UD, the emphasis is on relations between content
words. Adpositions, articles, auxiliary verbs, and other function
words are attached as leaves to “their” content word and can also
be understood as features of the content word.

—  Coordination: Stanford-style backbone with additional propagated
relations to/from non-head conjuncts. Representation of nested
coordination is limited.

- Ellipsis other than gapping and stripping is solved by promotion,
that is, there is no overt annotation that announces the ellipsis.

*  The guidelines list five cases where edges and nodes are added and
removed with respect to the basic representation. All of them are optional,
that is, a structure is enhanced if it contains just one of the possible
enhancements. However, UD treebanks are not expected to use the
mechanism for other enhancements that are not listed.

22 For simplicity, the corpora are still called treebanks although the enhanced representation is no longer a
tree. A UD treebank always contains the basic trees and, optionally, there might be the enhanced graph
encoded side-by-side with the tree.

23 In fact, the data format requires that even empty nodes get a specific position with respect to surface
words, but this position is arbitrary.
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(orphan}

- - J

Figure 15

Basic (above) and enhanced (below) UD representation of an English sentence, featuring empty
nodes that reverse gapping, subject relations projected across control verbs, and adjunct relation
labels enhanced with the preposition lemma.

{obj}

Figure 16
Basic (above) and enhanced (below) UD representation of an English sentence, showing
dependencies projected to and from the second conjunct in coordination.

—  Controlled / raised subjects.

- Ellipsis with coordination (gapping and stripping).

-  Propagation of dependencies across conjuncts.

- Relative clauses (modified nominal re-attached as argument of the
relative clause).

-  Case (or adposition) added as a language-specific subtype of the
dependency relation. This could be viewed as a sort of
“semanticization” of the edge labels but unlike in the basic set of
relations, there is no attempt to unify the labels across languages.
Quite the contrary: the lemma of a preposition becomes part of the
label even if it is a Chinese character.

See figures 15, 16, and 17 for examples of basic vs. enhanced UD graphs.
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punct

1 \

A gdzie szukaé szamponu , ktéry myje ?
And where to-look for-shampoo , that washes ?

{
punct

‘And where to look for shampoo that works?’

Figure 17
Basic (above) and enhanced (below) UD representation of a Polish sentence, showing relation
reversal in relative clauses. Note the directed cycle between the words szamponu and myje.

3.12 More Surfacy Approaches

The syntactic-semantic opposition is clearly not black and white, and there are a number
of approaches in which only a few ideas that could be considered “deep” are imple-
mented, often in a rather ad-hoc heuristic manner and without any underlying theory;
the motivation for such partial extensions often comes from the application perspective.
An exhaustive overview of such approaches is most likely impossible. For illustration
purposes, we select (admittedly arbitrarily) only a few such “mildly deep” approaches
and describe them briefly, without including them in the systematic comparison in the
next section:

*  Microsoft’s machine translation system described by Menezes and
Richardson (2003) makes use of Logical Forms similar to those introduced
by Jensen (1993); the expected advantage of using Logical Forms for such a
purpose is that “additional generality obtained by normalizing both the
lexical and syntactic form of examples, they may then be matched and
applied more broadly when new sentences are translated.” A Logical
Form is an unordered graph representing the relations among the most
meaningful elements of a sentence. Nodes are identified by the lemma of a
content word and directed, labeled arcs indicate the underlying semantic
relations.

¢  TFilippova and Strube (2008) present an unsupervised method for sentence
compression which relies on a dependency tree representation and
shortens sentences by removing subtrees. A tree of an original sentence is
pruned, that is, edges are removed in an optimized way so that retained
edges form a valid tree and their total edge weight is maximized. Finally, a
shortened sentence is synthetized from the pruned compression tree. The
trees to be pruned result from a transformation of surface dependency
trees. During this transformation, function words like determiners,
auxiliary verbs, and negative particles are removed from the tree and
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saved as attributes of their lexical heads. Nodes (corresponding to content
words) are labeled with their lemmas.

*  PropS introduced by Stanovsky et al. (2016) is an automatic converter of
Stanford dependency trees into so called proposition structures in the form
of directed graphs. Because of downstream applications, semantically
equivalent yet syntactically different constructions should receive the
same representation, and thus “non-core syntactic details” are hidden
during the conversion (e.g., auxiliary words are turned into features,
compound word forms are merged into single nodes).

*  Very similarly to PropS, PredPat described by Zhang, Rudinger, and
Durme (2017) is a software system that extracts predicates and arguments
from surface dependency trees, this time from UD-shaped trees. Manually
designed patterns that are claimed to be language-agnostic are used for the
extraction.

4. Commonalities and Differences in Handling Core Linguistic Phenomena

Basic structural properties as listed for the individual frameworks in Section 3 are sum-
marized in Table 4. A more detailed discussion of the particular phenomena follows.
Section 4.1 compares the data-structure types of the sentence meaning representations.
Section 4.2 reviews how the sentence meaning representation is related to the surface
representation with a special focus on the opposition of content and function words,
the synonymy issue, and node order. Section 4.3 discusses the accounts of valency
and semantic role inventories across the frameworks. Attention is paid also to para-
tactic structures (Section 4.4), deletions and coreference (Section 4.5), discourse relations
(Section 4.6), inflectional and derivational morphology (Section 4.7), and complex word
forms (Section 4.8).

4.1 Basic Data-structure Types of Deep Representations

The surveyed frameworks differ in what class of graphs they use to describe semantic
relations in the sentence: For example, some frameworks allow cycles and some do
not. It is also important to note that a framework typically defines several types of
relations (edges), and certain graph properties may only hold for edges of a particular
type. Furthermore, some surface words may be considered semantically void and not
awarded a graph node; if we treated them as nodes, the graph would not be connected.
On the other hand, the graph may contain empty nodes that do not correspond to any
surface word.

Paninian structures are rooted trees. The same can be said about the main tec-
togrammatical structure of FGD; however, when coreference relations are added, the
graph is no longer a tree, and some coreference links even cross the sentence boundary.

The deep structure of MTT is a rooted directed acyclic graph. Individual projects
inspired by MTT do not necessarily stay within the DAG constraints: For instance, the
coreference edges in AnCora-UPF (Figure 2) cause cycles. Directed acyclic graphs as the
data structure are used also in AMR and UCCA.

In PropBank, the individual predicate—argument structures are simple rooted trees,
just the root and leaves. But the representation of the sentence is a general graph:
Some nodes may participate in multiple predicate-argument structures, some in none.
Some proposition banks are built on top of dependency treebanks, for example, the
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Table 4
A simplified overview of characteristics of the frameworks surveyed in Sections 3.1 to 3.11.
Framework Sentence Surface- Nodes and Edge type Semantically Coref.
(Deep Meaning depth their order inventory relevant
representation representation interface morphological
name) structure categories
Panini rooted tree overlap in syntactic karaka — (yes)
a single phrases relations
structure (nominal/ (k1,k2...)
verbal chunks);
surface-related
order
MTT / rooted directed two content words; LI,.. & yes yes
deep-syntactic acyclic graph separate surface-related ATTR,COORD,  (grammemes)
representation (on top of dep. structs. order APPEND
trees)
FGD / rooted tree two content words; ACT, PAT, yes yes
tectogrammatical plus addit. edges separate specific order ADDR, ORIG, (grammatemes)
representation (on top of dep. structs. EFF & 10 roles
trees) for paratact. &
50+ adjunct
roles
PropBank and directed graph two syntactic ARGO-ARG5 &  — yes
related (on top of const.  separate phrases; ARGM*
annotations trees) structs. surface-related
order
FrameNet-based  directed graph two syntactic FrameNet frame — —
approaches (on top of const.  separate phrases; element labels
trees) structs. surface-related (Buyer, Seller,
order Speaker...)
Enju / PASs directed graph two tokens; ARGI1, ARG2,... — yes
(on top of separate surface-related
HPSG) structs. order
DELPH-IN directed graph two content words; ARGI, yes yes
dependency (on top of separate surface-related ARG2,... &
structures EDS HPSG) structs. order conj, mwe. ..
& DM
Sequoia / directed graph overlap in content words; subject, object, - yes
deep-syntactic (on top of a single surface-related mod,...
representation const. trees) structure order
AMR directed acyclic ~ no direct concepts, ARGO0-ARG5 only negation, yes
graph relation nonterminals; & 40+ general recently also
to surf. no order by semantic tense and aspect
design roles ...
UCCA directed acyclic ~ no direct tokens, 12 semantic — yes
graph relation nonterminals; categories:
to surf. surface-related P - Process,
order A - Participant,
D - Adverbial...
UD / enhanced  directed graph two tokens; 37 universal — yes
repr. (on top of dep. separate surface-related syntactic
trees) structs. order relations:
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Finnish PropBank (Haverinen et al. 2015). Nevertheless, the original English PropBank
is defined over the constituent trees of the Penn Treebank, and arguments are phrases
rather than individual words (see Figure 5); it is possible that the argument phrase
contains other predicates and arguments. Finally, when we consider the combination
of the PropBank with the PDTB, there will be edges that cross sentence boundaries,
hence a graph corresponds to a larger portion of the discourse.

The remaining frameworks need general directed graphs, even if still somewhat
restricted at places. The graph in enhanced UD is typically quite close to the rooted tree
of the basic representation and for some sentences the two structures are identical. Prop-
agation of dependencies across coordination may cause the tree to become a DAG,* and
so can propagation of arguments of control verbs. Cycles appear only in sentences with
relative clauses. The deep structure in Sequoia bears some similarities to UD: It is also
relatively close to the surface tree but may include additional paths and even cycles.

The dependency graphs derived from DELPH-IN MRS and Enju PAS are connected
as long as semantically void function words are not counted as nodes. Although a typi-
cal graph in these frameworks seems to be an undirected tree, cycles are not completely
excluded. Kuhlmann and Oepen (2016) note that a small percentage of DELPH-IN EDS
and AMR graphs contain cycles, and that the same would hold even for DELPH-IN DM
if graphs with cycles were not excluded from the published data set. Nevertheless, they
do not give examples nor discuss the linguistic perspective of the problem.

4.2 Surface vs. Depth
4.2.1 Relation Between Surface and Deep Representations. It is not uncommon that a frame-
work recognizes multiple layers of analysis, with different layers for surface syntax
on the one hand, and deep syntax or semantics on the other hand. However, several
frameworks surveyed in this article have only one layer of representation (which seems
to be at least partially “deep”). These include Panini, AMR, and UCCA.

In contrast, the following frameworks explicitly distinguish surface and deep
relations:

*  MTT: Surface representation vs. deep representation. There are two
independent graphs. (In addition, there is a third layer called semantic
representation; deep syntax, which is the layer we focus on in the present
survey, lies between surface syntax and semantics.)

*  FGD: Surface-syntactic layer (called ‘analytical” layer in the Prague
Dependency Treebank) vs. tectogrammatical layer. There are two separate
trees for each sentence, but their nodes are interlinked.

e  PropBank: A new annotation layer built on top of existing surface
structure: the Penn Treebank constituent trees in the case of English, the
Turku Dependency Treebank in the case of Finnish, and so on. Selected
words are connected by new predicate-argument edges. In theory these
edges can be viewed as building a separate graph, although in practice a
PropBank file contains stand-off annotation where nodes are just
references to the original (surface) tree.

24 There may be multiple roots if the top-level predicates are coordinated.
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e  FrameNet-based approaches: Analogously to PropBank, additional
annotation level of frame semantics (this time based on FrameNet, though)
is added on top of constituency trees of the TIGER Treebank.

e InENJU, predicate-argument structures are obtained automatically from
HPSG structures, which in turn result from a conversion of Penn Treebank
or similar constituent trees; while these could be considered the
corresponding surface representation, Enju is still a relatively independent
project.

e In DELPH-IN, the complete framework consists of a syntactic and a
semantic component, viz. an HPSG derivation and a MRS structure; each
HPSG feature structure deterministically determines an MRS. The two
graph representations discussed in this survey are derived from MRS
through simplification. First, EDS is extracted from MRS, then it is further
reduced and converted to DM (DELPH-IN MRS Bilexical Dependencies).

o Sequoia: Surface representation vs. deep representation. Deep edges
connect only content words. Some edges are shared between both graphs,
some edges appear only in the surface tree, and some only in the deep
graph.

*  Universal Dependencies: Basic representation vs. enhanced representation.
The two graphs are stored in the same file side-by-side. In many cases the
basic tree is a subset of the enhanced graph but it is not guaranteed:
Sometimes a basic edge is omitted from the enhanced graph.

Clearly, the nature of interlinking deep-syntactic representations with correspond-
ing surface dependency trees (Figure 18) differs from the case in which constituency
trees are used to represent surface syntax (Figure 19). Conceptually, interlinking two
types of dependency trees seems more straightforward.

MMK
(AuxV)
.;AUXV [% f@x
ROOT Byl by sel do lesa .
ROOT byt byt jit les
Z# VpYS---XR-AA  Vc  VpYS---XR-AA RR——Q NNIS2----- A Z:
ROOT he had would gone to woods
ROOT #PersPron [ jit] [ leSJ
\ \ ACT /j \ DIR3 f

PRED

‘He would have gone to the woods.

Figure 18

Interlinking between two dependency structures in FGD: The surface-syntactic (analytical) tree
is above the sentence, the deep-syntactic (tectogrammatical) graph is below, and the middle

line contains morphological tags (adopted from Hajic et al. 2006). The artificial root node and
the content words 5el ‘went” and lesa ‘woods’ are nodes in both graphs, although in the
deep-syntactic graph they are represented by their lemmas jit and les, respectively. The red
function words byl, by, do, as well as the punctuation, are nodes in the surface graph but not in
the deep graph; in the deep graph, function words are converted to mere attributes of content
words, which is indicated by the boxes. Finally, there is a blue empty node that exists only in the
deep graph and corresponds to a dropped personal pronoun.
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NNS VBP VP

have VBN VP

been VBN

created

G2 ARGMD
been \BN AEZS pp

Raen T

‘V\H\Hu\\vv\ CREATE | CAUSE CHANGE P(».\'Hu\\\\ A SCALE |

push.V

) \ i
rate) has been pushed [beloyy 17%] [from

—{ttem}——— L\aluo Q\J L\z\luo 1J
Figure 19

Constituency-dependency interlinking between Penn Treebank constituency trees and PropBank
predicate-argument structure (top). FrameNet frame-semantic structures (bottom) for the same
sentence (million, create, push as lexical items evoking semantic frames; adapted from Das et al.
2014).

4.2.2 Content vs. Function Words. The precise definition of function words varies across
languages and frameworks; vaguely put, it is a class of words that are important
for syntax, but their semantic content is negligible. They are also called auxiliary or
semantically void. Words that are not function words are content words (also called
autosemantic).

In practice, there is a scale rather than a sharp boundary, and frameworks must
decide where to draw the line. For example, we may observe the following scale of
verb types: (1) auxiliary verbs or particles used to construct periphrastic tenses, passive
and the like (to be, to have); (2) modal verbs (can, must); (3) quasi-modal verbs (ought
to, used to); (4) phase verbs (to begin, to stop); (5) aktionsart-modifying verbs (to keep);
(6) lexical (content) verbs (fo kill, to eat). Another blurry border is that of multiword or
secondary prepositions (postpositions, conjunctions) on one side (such as because of, in
spite of, according to), and the core closed class on the other.

Intuitively, content words are more important for any semantic description than
function words. Indeed, many frameworks treat function words differently or ig-
nore them completely. We observed the following approaches to the content-function
distinction:

*  No difference - function words have nodes of their own and they are
connected to other words via edges of the same type that is used for
content words. Observed in Enju.

*  Second-class citizens — function words have nodes of their own but they
are explicitly distinguished from content words. They are leaves in the
graph and they can be viewed as mere features of the content word they
are attached to. Observed in UCCA, UD (both basic and enhanced) and in
Panini.

*  Hidden nodes - function words are considered as existing on surface level

only, and are hidden or removed during the transformation from surface
to deep structure. Observed in MTT, FGD, Sequoia, DELPH-IN, and AMR.
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Still, certain function words may be preserved for technical reasons (e.g.,
conjunctions to represent coordination, see Section 4.4).

¢  Edge labels - function words (especially prepositions) become edge labels.
Not observed in frameworks included in the main comparison, but only in
some more surfacy frameworks (in compression trees of Filippova and
Strube, and in Microsoft logical forms, Section 3.12). In enhanced UD,
prepositions and conjunctions can be copied to labels of edges incoming to
“their” content word but at the same time they are still kept as separate
nodes.

e  PropBank and FrameNet-based approaches operate only on selected parts
of a sentence corresponding to predicates and their arguments and ignore
everything else (but recall that the complete sentence surface structure is
already captured in the underlying surface-syntactic treebank, i.e., in the
Penn Treebank or in the TIGER treebank, respectively). The related parts
are typically content words or non-terminals. Note, however, that the
PDTB, a project that we consider together with PropBank, uses a similar
data structure for discourse relations: It treats a discourse connective
(typically a function word) as a predicate, and the connected propositions
(that are conveyed by individual clauses) as its arguments.

In the case of multiword function words, all tokens composing the multiword
function words are usually handled in the same way (for instance, all are absent in
the tectogrammatical representation in FGD).

Even if a representation hides function words, it usually keeps pronouns. While
pronominal forms could be classified as function words, they are indispensable as
arguments in propositions, members of coreference chains, and so forth.

Note that punctuation tokens may be treated either the same way as function words,
or even as something less important (e.g., when function words are second-class citizens
and punctuation is simply ignored).

4.2.3 Synonymy. Synonymy as, generally speaking, one type of asymmetry between
form and meaning is observed with items of different complexity, from morphemes
through words to sentences or even more complex units. Concerning syntactic issues,
this topic is addressed in most of the surveyed approaches.

The approaches oscillate between two competing requirements. On the one hand,
the sentence meaning representation is to be defined broadly enough in order to reflect
the speaker’s freedom to choose different surface-syntactic means in expressing a par-
ticular proposition (in other words, the speaker can choose from multiple paraphrases).
On the other hand, the sentence meaning representation should be specific enough not
to lose meaningful features contained in the surface structure. The latter one seems to
be important when proceeding from form to function, for instance, when annotating
particular sentences in a lexical resource.

A sort of minimal account is to assign an active and passive diathesis of the same
predicate an identical deep representation (and possibly also a few more diathesis alter-
nations, such as the dative shift alternation). While, for instance, the Sequoia treebank
limits itself to this step, some other approaches proceed further to achieve a more
abstract structure. The next step is the underspecificaton of grammatical and/or lexical
information, as exemplified by the deep-syntactic representation in MTT. Another step
is documented in AMR graphs, which abstract from words to concepts.
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The amount of paraphrases that are treated as formally synonymous also depends
on how far a given framework goes with abstracting from inflectional and derivational
morphology (such as in the case of nominalizations, as discussed in Section 4.7).

4.2.4 Ordered and Unordered Representations. Because of the predominantly sequential
nature of spoken language, a total (linear) order of individual signifiers is present in
every utterance. And this holds even more for the written form, in which other commu-
nication channels such as intonation are usually suppressed.

It is also well known that languages differ quite a lot in how they use the inevitable
presence of word order. For example, if a language does not use its word order for
manifesting sentence constituents, then its word order may be used for conveying
some other type of meaning, such as information structure; clearly, leaving word order
completely unused would not be economic (and thus we believe that the term “free
word order” is rather a misnomer).

When it comes to rendering a sentence’s word order in a surface-syntactic formal
representation, be it constituency- or dependency-oriented, then in a vast majority® of
approaches the linear precedence of tokens in the original sentence is simply preserved
(be the writing system oriented left-to-right as in Latin-based scripts, or right-to-left or
top-down as in Arabic and Japanese, respectively). There is a rich body of literature
dealing with word order in surface-syntactic formalisms, for example, from the follow-
ing perspectives:

1. What empirical evidence on word-order phenomena can be found in
syntactically annotated data, such as in the studies on non-projectivity?
structures occurring in dependency treebanks (Kuhlmann and Nivre
2006), (Havelka 2007), or a typological view of Alzetta et al. (2018).
Word-order phenomena that are non-trivial to handle and require,
for example, using traces in constituency formalisms or allowing
non-projectivities in dependency formalisms, sometimes also lead to
introducing finer-grained categories such as mildly context-sensitive
grammar (Joshi, Shanker, and Weir 1990) or mildly non-projective
dependency grammar (Gémez-Rodriguez, Carroll, and Weir 2011).

2. What the impact is of various word-order-related requirements on parsing,
in terms of complexity and efficiency. For instance, some graph-based
models are able to produce non-projective dependencies natively
(McDonald and Satta 2007), while special techniques had to be developed
to adapt transition-based models for non-projective parsing (Kuhlmann
and Nivre 2010). More recently, extensions from parsing into trees to
parsing into more general graphs (which is supposed to be beneficial for
downstream semantic processing) have been studied, too (Kuhlmann and
Jonsson 2015).

When it comes to the order of nodes in deep-syntactic representations, the discus-
sion in the literature seems to be much less structured. The dominating approach is that

25 There are exceptions, such as systems in which tokens are artificially permuted in a specific way in order
to facilitate parsing, for instance, by reducing the length of long-distance dependencies (Bommasani
2019).

26 A dependency tree is projective if and only if an edge from node x to node y implies that x is an ancestor
of all nodes located linearly between x and y.
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the node order in deep-syntactic structures is not paid much attention to, but the struc-
tures are presented as ordered and it is assumed that the linear order can be induced
from the linear order of corresponding surface strings. In fact, most deep-syntactic
nodes are somehow anchored in the totally ordered sequence of sentence tokens, im-
plicitly or explicitly. However, depending on a chosen deep-syntactic approach, one
faces various structural asymmetries between surface and depth that require specific
order-related decision-making, for instance, in the following cases of non-one-to-one
correspondences:

¢ when multiple surface nodes collapse into a single deep node,
e  if a deep node has no surface counterpart,

*  in cases of ellipsis, if a single surface node has multiple deep counterparts.

In the opposite extreme case, no linear order of deep nodes is introduced, which
is the case for AMR. This is done on purpose, as it allows reaching a higher level of
abstraction: disclosing the original word order could lead to excluding some of the
potential synonymous utterances, which is not desirable. This seems to correlate with
other design decisions aimed at reaching high abstraction in these approaches (and thus,
in a sense, at “hiding” what the original sentence exactly was), such as in the following
cases discussed in more detail elsewhere in this article:

*  representing deverbal derivatives and their base verb by the same label
(Section 4.7.2),

*  concealing an actual preposition if the semantic role label captures the
meaning sufficiently (Section 4.2.2),

*  orrepresenting a set of co-referring expressions by a single node (since the
information on pronominalization could also provide a clue about the
original sentence ordering, because anaphora is more frequent than
cataphora; Section 4.5).

To our knowledge, the only approach that uses deep-syntactic node order as a repre-
sentational means for something different from (even though not completely unrelated
to) the surface word order is FGD. In FGD, the node order represents Communicative
Dynamism (Buraniova, Hajicovd, and Sgall 2000). A total order is specified locally for a
node and all its children using the notions of the topic-focus articulation, and the total
order on the set of nodes of the whole tree is then only induced recursively; thus FGD’s
tectogrammatical trees are projective by definition.”

In addition, FGD in its earlier versions (Sgall, Haji¢ovéd, and Panevova 1986) consid-
ered ordering of conjuncts in a coordination structure as a special ordering, unrelated to
the ordering induced from the topic-focus articulation of the dependency tree. In other
words, coordination was considered a separate dimension of tectogrammatical trees
(added to the dimensions of dependency subordination and of linear precedence). Even
more interestingly, the number of such additional dimensions was supposed to grow
in the case of nested coordinations. However, such a psychologically intricate algebraic

27 MTT represents the topic-focus articulation formally too, but on a different level of representation (on the
semantic one) and not by node order.
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model did not prove attractive for other researchers and is probably not used in any
contemporary approach.

4.3 Valency and Semantic Roles

Different language units manifest clearly different combinatorial potentials, in the sense
that they require different contexts (surroundings) to constitute acceptable utterances.
Given that our study assumes the dependency-oriented syntactic paradigm with its
head-dependent asymmetry, the combinatorial potentials of language units can be
viewed from two perspectives: an active potential (what arguments a language unit
requires) and a passive potential (to what other language units it can attach). We use
exclusively the former one in the following text. Attempts at formalizing the latter
(passive) perspective exist but none of the surveyed frameworks make use of them.

If we adopt the corpus-based methodology of contemporary linguistics, we can
observe manifestations of the combinatory potentials in almost every utterance in a cor-
pus. However, such positively observed instances are more or less where the “empirical
truth” ends. If we want to have a (linguistically) interpretable model, we can proceed
further only after introducing some more abstract notions, for which we need to adopt
some assumptions first.

The assumptions adopted (though sometimes silently) in all or almost all deep-
syntactic approaches under our study are the following:

*  The combinatory potential of a language unit can be decomposed into a
set of abstract “slots,” which are saturated individually.

¢ The number of such slots is very low and stable for a given lexical unit,
and thus it can be captured as lexicographic information about the lexical
unit in a special dictionary.

¢ Ina given utterance, it is possible for a linguist to recognize which
argument fills which slot of a given language unit occurring in that
utterance.

*  The relation between the “dependent” (argument, participant, modifier)
and the “governor” (predicate, head) can be labeled using a discrete (and
relatively small, again) set of semantic role labels.

. In addition, the slot can be labeled with information on possible (surface)
morphosyntactic forms of expressions that can saturate the slot. In other
words, slots can contain both deep and surface information.

*  To avoid redundancy, only such slots are to be described that are somehow
specific (i.e., are specifically required or specifically permitted) for the
given lexical unit. It makes no sense to describe such slots that can appear
with every language unit.

¢ Combinatorial potentials of different language expressions are clearly not
independent. For example, different inflected word forms from a
conjugation paradigm of a given verb are typically related in a quite
systematic way, and there is a strong dependency also when it comes to
morphological derivations. Thus combinatory potentials are not described
for each and every graphemically different expression separately, but
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rather for whole “clouds” of morphologically (inflectionally or
derivationally) related expressions.

Now we are finished with the underlying theory-neutral intuition. More detailed
operational criteria are chosen for each of these assumptions in each formal framework.
The comparison of inventories of semantic roles recalls a quotation from Dowty (1991,
page 547):

There is perhaps no concept in modern syntactic and semantic theory which is so often
involved in so wide a range of contexts, but on which there is so little agreement, as
[semantic role] .. ..

Almost thirty years later the situation does not seem to be any better; the fact that
various semantic role inventories have been used in corpus annotation did not lead to
substantial convergence, though one can find recurring patterns. We believe that the
diversity is worth studying separately for arguments and for adjuncts.

As for argument semantic roles,? at first glance we notice highly different numbers
of distinguished argument roles:

1.  only very few indexing labels such as Arg0,
2. more weakly descriptive labels such as Actor,

3. hundreds of strongly descriptive labels such as Buyer.

Actually the difference is not only in granularity, but is a more principled one. The
first approach with a very low number of labels is used in the following framework
families:

¢  Frameworks that refer back to Dowty’s proto-roles proto-agent and
proto-patient (Dowty 1991), such as PropBank, in which labels ARGO to
ARGS5 are used (cf. also Enju and DELPH-IN).

e  MITT (Kahane 2003), in which Roman numerals (I, II) are assigned to
arguments.

U FGD, in which labels ACT, PAT, ADDR, ORIG, and EFF are used; according to
the shifting principle of Panevova (1974-1975), the ACT slot is present
when there is at least one argument, the PAT slot is present if there are at
least two arguments and it is the less volitional one, and more “semantics”
is considered only if there are three or more arguments. A similar shifting
principle applies also to the karaka relations of Panini.

. In UCCA, 12 categories such as P — Process, A — Participant, and D —
Adverbial are distinguished. They are very coarse-grained and do not
distinguish, for instance, roles of individual predicate’s participants from
each other.

The common denominator of such approaches is that they do not attempt to find
meaningful partitioning of all possible argument roles played in all possible situations;

28 Sequoia and UD, whose relation type inventories are clearly surface-oriented, are not included in this
particular analysis.
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Table 5
Argument semantic roles assigned within the sentence meaning representation of the sentences
The boy opened the lock, The key opened the lock, and The lock opened in the frameworks under survey.

Theboy opened thelock. Thekey opened  thelock. Thelock opened.
Panini k1 k2 k1 k2 k1
MTT I II I II I
FGD ACT PAT ACT PAT ACT
PropBank  ARGO ARG1 ARG2 ARG1 ARG1
FrameNet Agent Closure C_portal Instrument Closure C_portal C_portal Closure
ENJU ARG1 ARG2 ARG1 ARG2 ARG1
DELPH-IN ARGl ARG2 ARG1 ARG2 ARG1
Sequoia suj:suj obj:obj suj:suj obj:obj suj:suj
AMR ARGO ARG1 ARG2 ARG1 ARG1
UCCA A P A A P A A P
EUD nsubj obj nsubj obj nsubj

instead, the labels serve almost exclusively for indexing purposes: they only identify
which frame slot is being filled, and the cognitive meaning of the role is left up to
the lexical semantics of the governor. What we find interesting is that—at least to our
knowledge—the indexing approaches mentioned above developed basically without
being influenced by each other.

The most prominent representative of the opposite end of the granularity scale
is clearly FrameNet. In this approach (applied in SALSA, for instance), the labels are
extremely detailed, but there is some reuse: The sets of labels are shared, for example,
across verbs describing the same situation (such as buying and selling). See Table 5 for
a basic comparison of core semantic labels across all the frameworks surveyed.

When it comes to adjunct semantic roles, there is also a range of different partition-
ings introduced in the individual frameworks. For the purpose of illustration, we draw
the granularity scale as follows:

e  Raw granularity: MTT is an extreme with only one adjunct semantic label
(ATTR);

*  Medium granularity: 11 types of modifiers distinguished in PropBank,
such as ARGM-LOC, ARGM-TIME;

*  High granularity: PDT with about 60 adjunct roles (called functors), or
AMR distinguishing around 90 adjunct roles.

In some cases, a two-level system of adjunct roles is introduced, in which the second
level can possibly be used for capturing finer-grained distinctions.

FGD introduces so-called subfunctors that distinguish, for instance, LOC.below
from LOC.above (actually this finer-grained division basically reflects prepositions or
subordinating conjunctions used in the sentence).

In AMR, temporal and spatial prepositions are kept if they carry additional infor-
mation, such as time-after.

4.4 Paratactic Structures
As discussed by Popel et al. (2013) in their survey of coordination representations

in dependency treebanking, paratactic syntactic structures such as coordination and
apposition are notoriously difficult to be represented by dependency formalisms. The
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reason is that the nature of paratactic structures is symmetric (two or more conjuncts
play the same role), as opposed to the head-modifier asymmetry of dependencies. The
dominant solution in treebank design is to introduce artificial rules for the encoding
of coordination structures within dependency trees using the same means that express
dependencies, that is, by using edges and by labeling of nodes or edges.

Three major families of representations of paratactic structures are distinguished in
the referred survey: In the Prague family (instantiated, e.g., in the PDT), all the conjuncts
are siblings governed by one of the conjunctions (or a punctuation fulfilling its role);
in the Moscow family (instantiated in MTT), the conjuncts form a chain where each
node in the chain depends on the previous (or following) node; in the Stanford family
(instantiated in UD), the conjuncts are siblings except for the first (or last) conjunct,
which is the head. Several other dimensions of variability are identified and illustrated
on treebanks for 26 languages (Popel et al. 2013). Basic possible representations are
shown in Table 6. The said survey focuses on surface-syntactic representations where
the required structure is a rooted tree. There are more options in general graphs. For
example, one type of edges can connect conjuncts and another type can link each
conjunct separately to a shared governor or dependent.

*  The Paninian treebanks, FGD, Enju, the Elementary Dependency
Structures of DELPH-IN, and AMR use generalized Prague-style
structures to capture coordination: The head node either directly
corresponds to a surface conjunction word, or it represents an abstract
joining concept (especially AMR).

¢ MTT, the DM graphs of DELPH-IN, and Sequoia use Moscow-style
structures.

e Enhanced UDs use Stanford-style structures combined with dependency
propagation across conjuncts.

Table 6
Possible representations of the coordination structure “dogs, cats and rats” in different
dependency approaches (adopted from Popel et al. 2013).

Family Prague family Moscow family Stanford family
Choice of head
dogs
: S~ dogs
Head on left /N ’ Cats\
dogs cats and rats and " cats and rats
rats
rats
and and rats
Head on right
dogs , cats rats /cats dogs , cats and
dogs ,

650



Zabokrtsky, Zeman, and Sev&ikova Sentence Meaning Representations Across Languages

e In UCCA, conjuncts are grouped as parallel scenes under one
non-terminal, and the non-terminal unit also covers the linking
conjunction (but the conjunction is not the head of the unit).

¢ InPropBank, dependencies are propagated across conjuncts without
explicitly showing coordination. An argument shared by coordinate
predicates is linked from each of the predicates separately; in contrast,
coordinate arguments enter the deep structure as a single constituent.
Similarly in SALSA, coordination is only annotated in the underlying
surface-syntactic structure and if it fills a slot in a frame, the slot points to
the constituent that covers all conjuncts.

4.5 Deletions and Coreference

Paninian treebanks have empty nodes for deleted predicates. The Paninian grammar
defines rules for certain instances of grammatical coreference (called “karaka sharing”;
Bharati, Chaitanya, and Sangal 2006, §5.6.2); however, treebanks based on Panini do not
annotate the shared arguments explicitly. Other types of ellipsis and coreference are not
annotated either.

Various corpora that refer to MTT take different approaches to ellipsis and corefer-
ence. SynTagRus has empty nodes (called “phantom”? nodes) for deleted predicates in
gapping constructions. The deep-syntactic layer of the AnCora-UPF treebank has node
copies for shared arguments in control verb constructions (cf. the two copies of the word
persona ‘person’ in Figure 2). The two deep nodes are connected by a coreference edge.
Dropped subject pronouns are reconstructed as empty nodes and may enter coreference
relations, too. Kahane (2003) shows in his theoretical overview that a deep-syntactic tree
where all pronouns are expanded to the lexemes they represent, and where additional
links denote the coreference, is equivalent to a DAG (Figure 20); he further argues that
a DAG is easier to work with when the coreferential noun has dependents.

In the tectogrammatical layer of FGD, empty nodes are used for all missing,
valency-licensed arguments, including pro-drop subjects. In the case of grammatical
coreference, gapping, and so on, an empty node is generated first, then it is linked to its
antecedent using a coreference edge (Figure 3). Prague treebanks also annotate textual
coreference (including cross-sentence edges) and bridging anaphora.

In Sequoia, grammatical coreference is solved by linking the shared arguments
directly from all predicates that share them. There are no empty nodes. The same
holds for PropBank, DELPH-IN (Figure 9), and Enju PAS (Figure 7; in the last two,
arguments can be shared even between content and auxiliary verbs). However, the
English PropBank is built over the Penn Treebank, which, despite being a rather surface-
syntactic representation, has empty nodes (called traces) to account for grammaticalized
ellipsis and coreference (Figure 5).

In AMR, inner nodes representing abstract predicates are connected with the inner
node representing their shared abstract argument. Inner nodes are connected with
nodes of concrete words via special “instance” edges. The nodes of concrete words are
leaves.

In UCCA, coreference annotation was added as a separate (additional) layer on top
of the foundational layer in a recent pilot experiment (Prange, Schneider, and Abend

29 The actual spelling is “fantom.”
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think think
11 11
I
I
brother late late
A ~
Te. . I brother
™ S

II brother I

Mary Mary

Figure 20

Deep-syntactic tree vs. DAG in MTT for the sentence Mary's brother thinks he is late (adapted from
Kahane 2003). The left-hand side illustrates that a tree would need two nodes corresponding to
brother and that it is then unclear where the modifier Mary should be attached. This problem
disappears if the two nodes for brother are merged and the structure becomes the DAG on the
right-hand side.

2019). The coreference relations are assigned with units delimited at the foundational
layer. UCCA also has empty (“implicit”) nodes to represent elided participants.

Enhanced UD provides empty (copied) nodes for deleted predicates so that their
arguments and adjuncts have a reasonable attachment option (Figure 15). Other than
that, empty nodes are not used. Grammatical coreference in control verb constructions
is solved by connecting the shared argument directly with both verbs. Similarly, the
nominal modified by a relative clause is simultaneously attached as a dependent node
within the clause according to the role it plays there. The relative pronoun is connected
with its antecedent via a coreference edge labeled ref (Figure 17). Other instances of
ellipsis or coreference are not explicitly annotated. If there are orphaned dependents,
for instance, within a noun phrase, one of them is simply promoted to the position of
the missing head noun.

SALSA does not seem to include any rules for coreference or ellipsis, although
specific types of ellipsis occurring in coordination constructions are captured by so-
called secondary edges in the TIGER treebank (Harbusch and Kempen 2007).

4.6 Discourse Relations

The term “discourse relations” refers to semantic relations between propositions, which
are conveyed by clauses based on individual predicate-argument structures. In parallel
to predicate-argument structures, propositions are described as discourse arguments
that are related either explicitly by a discourse connective (a subordinating or coordi-
nating conjunction, or a discourse adverbial like instead), or implicitly.

Discourse relations between propositions that are expressed by individual clauses
within a single sentence are handled as a part of the sentence meaning representation
across the reviewed approaches. While subordinating conjunctions fall into the class
of function words and predicates of subordinated clauses are represented as arguments
of the governing predicate (see Section 4.2.2), coordinating conjunctions are often part of
the sentence meaning representation (similarly to content words) and different accounts
of coordination are documented in Section 4.4.
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Unlike subordination and coordination as intrasentential relations, relations be-
tween propositions that are separated into different sentences (inter-sentential relations)
are omitted in most approaches or, if considered, they are annotated at a separate layer.

e  PDTB (Miltsakaki et al. 2004b; Prasad et al. 2008) is a project related to
Penn Treebank and PropBank (cf. Section 3.4). It annotates the Wall Street
Journal Section of the Penn Treebank with discourse relations. If an explicit
discourse connective is found in the sentence or between two sentences, it
is assigned a sense tag. If no discourse connective is present, a connective
expression is added into the structure (being encoded as a lexical item or
with a special label). Discourse relations are assigned between clauses in a
sentence and between each successive pair of sentences within paragraphs.

*  In Prague Dependency Treebank (Section 3.3), annotation of discourse
relations was added on top of existing annotation layers (morphological,
surface-syntacic, and deep-syntactic annotation). The discourse annotation
was released under the title Prague Discourse Treebank (Poldkova et al.
2012; Rysova et al. 2016). In addition to discourse relations based on both
explicit and implicit discourse connectives (as described with the PDTB
project), extended textual coreference, bridging relations, annotation of
elliptical constructions, apposition, and parentheses, many of them
annotated already at the deep-syntactic layer, are considered a part of the
discourse annotation.

4.7 Partitioning the Lexical Space

It is a generally accepted assumption in linguistics that in many languages some words
can occur in two or more different forms, to mark distinctions such as tense or number.
The process of modifying the word form in order to express such grammatical categories
is called inflection. Word forms can be grouped together and each group is represented
by a canonically selected word form, usually called a lemma. Inflection is distinguished
from derivation, in which additional meanings are also added to a base word (by adding
morphemes), the result of which, however, is considered a different word, not just a
different word form.*

To a certain extent, it is a matter of linguistic convention to distinguish inflection
from derivation (such as in the case of aspectual verb counterparts in Czech), and it is
also a matter of linguistic (especially lexicographic) tradition to choose a lemma within
a cluster of inflectionally related word forms. These fuzzy boundaries bring one extra
dimension of diversity into contemporary language data resources.

Another dimension of diversity, this time more specific for “deep” approaches, is
related to how a given approach compensates for the information removed from a word
form during lemmatization. Given a deep-syntactic graph, some pieces of information
become really redundant (such as those verbal features that are only imposed by
subject-verb agreement), while some other pieces of information are still semantically
indispensable (such as number with nouns).

30 It should be emphasized that a word form used in a sentence might be composed of more tokens, such as
the future tense in English.
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4.7.1 Inflectional Morphology. We can observe the following range of approaches to how
inflection is tackled in the frameworks under our survey, from minimalistic to theoreti-
cally founded ones:

Nodes are simply labeled with original word forms, without any attempt
at lemmatization.

Word forms as well as lemmas, and possibly also detailed POS tags
(with values of all inflectional categories) are kept in nodes and no
abstract model is used to remove the apparent redundancy.

Only selected morphological categories are represented, while all other
inflectional categories are lost after lemmatization.

The most semantically oriented approaches were developed in FGD and in
MTT, as described in Zabokrtsky (2005, page 553): “each lexeme is
associated with appropriate semantically full grammemes (grammatemes
in FGD terminology); grammemes imposed only by government and
agreement are excluded.” Thus out of the inflectional categories removed
by lemmatization, only the semantically indispensable ones (such as
number with nouns, but not case, or tense with verbs, but not number)
get their deep counterpart. A similar approach is enabled also in
DELPHIN-MRS, in which, however, such extra attributes for capturing
morphologically expressed meanings seem to be considered rather an
optional and less elaborated extension.’!

4.7.2 Derivational Morphology. With a bit of oversimplification, derivation can be consid-
ered as prolonged lemmatization (in the sense that it merges clusters of word forms
induced by lemmatization into even bigger clusters), and again, we can observe a
gradual range of solutions:

1.

Most approaches do not go beyond lemmatization (if they consider
lemmatization at all).

The middle way: FGD (in PDT) converts some of the most productive
derivations back to base words, for example, in the case of possessive
adjectives, which are represented by lemmas of their base nouns, or in the
case of deadjectival adverbs, which are represented by their base
adjectives in tectogrammatical trees. DELPH-IN handles selected most
productive types of morphological derivation in the same way. AMR
represents many deverbal derivatives (such as nominalizations) by their
base verbs, and associates them with selected PropBank frames of these
verbs; in addition, AMR removes derivational prefixes for negation from
lemmas and adds a negative polarity marker instead.

MTT goes probably farthest, as it systematically captures derivative
relations among lexemes using the notion of paradigmatic lexical function,

31 http://moin.delph-in.net/EdsTop.
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which allows replacing a derived lexeme using a lexical function applied
on the base lexeme in the deep-syntactic representations. For instance, the
word decision would be represented by a deep-syntactic node labeled with
So(decide) (Mili¢evi¢ 2006).

It should be mentioned that the boundary between inflection and derivation is not
dependent only on a chosen linguistic tradition but also on the language: For instance,
whereas negation of nouns in Czech is pretty regular and can be thus easily considered
as an inflectional category, the nature of negated nouns in English is rather derivational.

4.8 Complex Word Forms

Many languages express certain inflectional categories by adding auxiliary words,
such as in the case of English future tense (complex verb phrases).?? Similarly to
the case of “single-token” inflection, the auxiliary tokens can be removed during the
transfer from surface-syntactic to deep-syntactic representation, and—if semantically
indispensable—represented by a specific grammeme value in MTT (or grammateme in
FGD). In some cases, a grammeme value is an abstraction over typologically different
surface morphological means: for example, superlatives in English are formed either by
adding a suffix morpheme -est, or by adding the auxiliary most.

In some frameworks, light verb constructions (which are another example of expres-
sions resulting from a grammaticalized combination of several words) receive particular
attention. Typically, a light verb construction consists of a verb that bears very general
lexical meaning, and of a noun that carries the main lexical meaning of the entire phrase,
such as in the case of to put emphasis (instead of to emphasize) and to give a kiss (instead
of to kiss). In FGD, the verb is still marked as the main predicate, but the noun receives
a special semantic role (analogously, dependent parts of a multiword idiom expression
are marked with another special role). In PropBank and AMR, it is the whole light verb
construction what is assigned a predicate-argument frame. UD currently allows both
approaches: In many languages including English, it attaches the nominal part of a light
verb construction simply as a direct object (obj). However, languages where light verb
constructions are dominant, such as Persian or Hindi, can opt for using a special edge
type, which marks the whole construction as one lexical unit (compound: 1vc).

5. Summary: Can We Converge?

Having surveyed a number of diverse approaches to representing sentence meaning
of natural languages, we can now turn to our initial question: Is there or can there be
any convergence that would eventually result in one unified approach that is not only
applicable, but also applied to dozens of different languages?

Many frameworks discussed in this article have been applied to multiple languages;
virtually all of them at least assume that they can be applied to any language. On the
other hand, none of them has reached as far and wide as Universal Dependencies did
on the surface-syntactic level. What should or could be done for this to actually happen?
In the community around UD, there seems to be demand to “go deeper.” The first step
is the enhanced UD representation, but a real semantic representation would probably

32 We prefer to avoid the term “multiword entities,” as it often subsumes very heterogeneous types of
expressions such as named entities or idioms.
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have to be a new project, backwards-compatible with UD and built on top of it.>® It
seems inevitable that it will provide annotated data for fewer languages than UD itself,
simply because it requires more work, and even within UD some languages have only
tiny text samples due to lack of available manpower. Therefore, it is important to iden-
tify the most desirable aspects of a sentence meaning representation. By recommending
these aspects as the core minimum, and making the other aspects optional, the entrance
barrier could be sufficiently lowered.

We are not going to strictly define what this minimum should be—that should come
out of a broader discussion to which we hope to contribute. However, we want to point
out in this summary what the tendencies and recurring solutions are that we found.
It is striking how many similar features one can observe across such a diverse set of
intellectual works, despite their being created by mostly disjoint groups of people, often
distant both in time and space.

Looking back at the individual items in Section 4, we can make a number of general-
izations about covered phenomena and prevailing approaches. At the same time, these
generalizations can serve as a kind of recommendation for what should be considered
as the minimal core and what would be better left optional:

¢ Deep syntax can be well represented by a directed graph. Requiring a tree
would be too restrictive; a DAG may be enough for most phenomena but
not all (recall that Enhanced UD contain occasional cycles).

¢ Only content words are normally important in the graph. Still, the graph
can be trivially connected and span all surface words if function words are
attached via a special edge to a suitable content node. It also follows that at
least partial node order can be deduced from the order of the surface
words.

¢ Empty nodes are useful means of representing elided material. However,
the exact extent of their usage is a matter of further discussion. Some
instances of copied nodes in some frameworks can actually be replaced by
redirecting edges to the original node.

o Deep representations often exist together with corresponding surface
representations. In case of “deep UD,” the natural surface counterpart
would be the basic UD tree.

U Normalization of diathesis is the common minimum that is done with
predicate-argument structure.

*  Most frameworks also solve at least some instances of grammatical
coreference such as control verbs. This way the predicate is connected to
all arguments that are overtly represented on surface. Reconstruction of
dropped, valency-licensed pronouns is less common, although arguably
useful.

*  Some frameworks are accompanied by large lexical resources with
predicates, their valency frames, detailed semantic roles of the arguments,

33 During the preparation of the present article, a first version of Deep UD corpora was released by
Droganova and Zeman (2019). However, this version does not go beyond simple heuristics that take an
Enhanced UD graph and normalize diathesis.
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etc. Such lexicons are invaluable but also extremely costly, hence not likely
to become available for many languages. A “deep UD” framework should
be able to incorporate them but it should also be able to exist without
them.

Textual coreference, bridging relations, and any discourse relations that
cross sentence boundaries are relatively rare. On the other hand, they do
not require significantly different data structures; the only technical
problem is finding a file format that allows links between sentences.

Lexical synonymy, normalization of derivational morphology, complex
word forms, and gramm(at)emes are also dealt with less frequently.
They could be optional.

Some of the surveyed frameworks are closer to syntax (e.g., Enhanced UD
or PDT); others are more abstract (e.g., AMR). It may not be tractable to
define one all-inclusive scheme; instead, we may end up with multiple
“deep” layers, similarly to the deep-syntactic vs. semantic layer of MTT.

If a multilingual resource is built around the UD treebanks, then it seems
natural to start with the layer that is less abstract and closer to syntax, and
then to enrich the scheme with more semantic components gradually.

In the long term, we could go further and approach phenomena behind
the scope of our survey, such as temporal and spatial semantics, logical
elements such as quantification and entailment, rhetorical structures, and
so forth—some of them reviewed by Abend and Rappoport (2017).

It has yet to be seen what exactly is selected for pilot annotation on top of existing
UD treebanks. We believe that the present survey, first of its kind, will contribute to
shaping a new layer of extensive multilingual annotation.
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