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Abstract

In many practical applications, neural machine
translation systems have to deal with the input
from automatic speech recognition (ASR) sys-
tems which may contain a certain number of
errors. This leads to two problems which de-
grade translation performance. One is the dis-
crepancy between the training and testing data
and the other is the translation error caused
by the input errors may ruin the whole trans-
lation. In this paper, we propose a method to
handle the two problems so as to generate ro-
bust translation to ASR errors. First, we sim-
ulate ASR errors in the training data so that
the data distribution in the training and test is
consistent. Second, we focus on ASR errors
on homophone words and words with similar
pronunciation and make use of their pronunci-
ation information to help the translation model
to recover from the input errors. Experiments
on two Chinese-English data sets show that
our method is more robust to input errors and
can outperform the strong Transformer base-
line significantly.

1 Introduction

In recent years, neural machine translation (NMT)
has achieved impressive progress and has shown su-
periority over statistical machine translation (SMT)
systems on multiple language pairs (Sennrich et al.,
2016). NMT models are usually built under the
encoder-decoder architecture where the encoder
produces a representation for the source sentence
and the decoder generates target translation from
this representation word by word (Cho et al.,
2014; Sutskever et al., 2014; Gehring et al., 2017;
Vaswani et al., 2017). Now NMT systems are
widely used in real world and in many cases they
receive as input the result of the automatic speech
recognition (ASR) system.

Despite the great success, NMT is subject to
orthographic and morphological errors which can

be comprehended by human (Belinkov and Bisk,
2017). Due to the auto-regression of decoding pro-
cess, translation errors will be accumulated along
with the generated sequence. Once a translation
error occurs at the beginning, it will lead to a totally
different translation. Although ASR technique is
mature enough for commercial applications, there
are still recognition errors in their output. These
errors from ASR systems will bring about transla-
tion errors even totally meaning drift. As the in-
creasing of ASR errors, the translation performance
will decline gradually (Le et al., 2017). Moreover,
the training data used for NMT training is mainly
human-edited sentence pairs in high quality and
thus ASR errors in the input are always unseen in
the training data. This discrepancy between train-
ing and test data will further degrade the translation
performance. In this paper, we propose a robust
method to address the above two problems intro-
duced by ASR input. Our method not only tries to
keep the consistency of the training and test data
but to correct the input errors introduced by ASR
systems.

We focus on the most widely existent substitu-
tion errors in ASR results which can be further dis-
tinguished into wrong substitution between words
with similar pronunciation and wrong substitution
between the words with the same pronunciation
(known as homophone words). Table 1 shows
Chinese-to-English translation examples of these
two kinds of errors. Although only one input word
changes in the given three source sentences, their
translations are quite different. To keep the con-
sistency between training and testing, we simulate
these two types of errors and inject them into the
training data randomly. To recover from ASR er-
rors, we integrate the pronunciation information
into the translation model to recover the two kinds
of errors. For words with similar pronunciation(we
name it as Sim-Pron-Words ), we first predict the
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Gold input 这 份 礼 物 饱 含 一 份 深深深 情情情.
zhè fèn lı̌ wù bǎo hán yı̄ fèn shēn qı́ng.

ASR-HM 这 份 礼 物 饱 含 一 份 申申申 请请请.
zhè fèn lı̌ wù bǎo hán yı̄ fèn shēn qı̌ng.

ASR-SP 这 份 礼 物 饱 含 一 份 心心心 情情情.
zhè fèn lı̌ wù bǎo hán yı̄ fèn xı̄n qı́ng.

Reference This gift is full of affection.
Trans-HM This gift contains an application.
Trans-SP This gift is full of mood.

Table 1: A Chinese-English translation example with ASR errors. “ASR-HM” gives an input sentence with ASR
errors on homophone words and “Trans-HM” shows its translation. “ASR-SP” gives an input sentence with ASR
errors on words with similar pronunciation and “Trans-SP” denotes its translation.

true pronunciation and then integrate the predicted
pronunciation into the translation model. For ho-
mophone words, although the input characters are
wrong, the pronunciation is correct and can be used
to assistant translation. In this way, we get a two-
stepped method for ASR inputted translation. The
first step is to get a training data close to the practi-
cal input, so that they can have similar distribution.
The second step is to smooth ASR errors according
to the pronunciation.

We conducted experiments on two Chinese-to-
English data sets and added noise to the test data
sets at different rates. The results show that our
method can achieve significant improvements over
the strong Transformer baseline and is more robust
to input errors.

2 Background

As our method is based on the self-attention
based neural machine translation model (Trans-
former) (Vaswani et al., 2017), we will first in-
troduce Transformer briefly before introducing our
method.

2.1 Encoder and Decoder
Encoder The encoder consists of 6 identical lay-
ers. Each layer consists of two sub-layers: self-
attention followed by a position-wise fully con-
nected feed-forward layer. It uses residual con-
nections around each of the sub-layers, followed
by layer normalization. The output of each sub-
layer is LayerNorm(x + Sublayer(x)), where
Sublayer(x) is the function carried out by the sub-
layer itself. The input sequence x is fed into these
two sub-layers, then we can get the hidden state
sequence of the encoder:

h = (h1,h2, . . . ,hj)

where j denotes the length of the input sentence.

Decoder The decoder shares a similar structure
with the encoder, which also consists of 6 lay-
ers. Each layer has three sub-layers: self-attention,
encoder-decoder attention and a position-wise feed-
forward layer. It also employs a residual connec-
tion and layer normalization at each sub-layer. The
decoder uses masking in its self-attention to pre-
vent a given output position from incorporating
information about future output positions during
training.

2.2 Attention
The attention mechanism in Transformer is the so-
called scaled dot product attention which uses the
dot-product of the query and keys to present the
relevance of the attention distribution:

a = softmax(
QKT

√
dk

) (1)

where the dk is the dimensions of the keys. Then
the weighted values are summed together to get the
final results:

t =
∑

(a�V) (2)

Instead of performing a single attention function
with a single version of queries, keys and values,
multi-head attention mechanism get h different ver-
sions of queries, keys and values with different
projection functions:

Qi,Ki,Vi = QWQ
i ,KWK

i ,VWV
i , i ∈ [1, h]

(3)
where Qi,Ki,Vi are the query , key and value
representations of the i-th head respectively.
WQ

i ,W
K
i ,W

V
i are the transformation matrices.

h is the number of attention heads. h attention
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Figure 1: The illustration of our method. “HM” stands for substitution errors between homophone words and “SP”
stands for substitution errors between the words with similar pronunciation. The elements in blue boxes are a case
of SP errors. Those in the red boxes represent the corrected version with the help of pronunciation information.

Error type Rate

Ground Truth -
语 音 翻 译.
yǔ yı̄n fān yı̀.

Substitution 6.4%
语 音 翻 一.
yǔ yı̄n fān yı̄.

Deletion 2.3%
音 翻 译.
yı̄n fān yı̀.

Insertion 0.7%
语 音 翻 了.
yǔ yı̄n fān le .

Table 2: Word error rate (WER) against all the words
for the three types of ASR errors.

functions are applied in parallel to produce the out-
put states ui. Finally, the outputs are concatenated
to produce the final attention:

t = Concat(t1, ..., th) (4)

3 The Proposed Method

Although ASR is mature for commercial applica-
tions, there are still recognition errors in the result
of ASR. The ASR recognition errors can be clas-
sified into three categories: substitution, deletion
and insertion, which are shown in Table 2. We
counted the word error rate (WER) for the three
types of errors respectively on our in-house data
set, which consists of 100 hours of Chinese speech
across multiple domains. The results in Table 2
gives the ratio of the wrong words against the to-
tal words. We can see that the substitution errors

are the main errors which is consistent with the
results in Mirzaei et al. 2016. Other researchers
have proven that over 50% of the machine transla-
tion errors are associated with substitution errors
which have a greater impact on translation quality
than deletion or insertion errors (Vilar et al., 2006;
Ruiz and Federico, 2014). Substitution errors can
be further divided into two categories: substitu-
tion between the words with similar pronunciation
(denoted as SP errors) and substitution between
homophone words (denoted as HM errors). Based
on these conclusions, we focus on these two kinds
of substitution errors in this paper. In what follows
we will take Chinese as an example to introduce
our method and our method can also be applied to
many other languages in a similar way.

Our method aims to improve the robustness of
NMT to ASR errors. To this end, our method first
constructs a training data set which has a similar
data distribution with the test data, then makes use
of pronunciation information to recover from the
SP errors and HM errors. Specifically, our method
works in a flow of three steps as

1. adding SP errors and HM errors in the training
data randomly to simulate ASR errors occur-
ring in test;

2. predicting the true pronunciation for SP er-
rors and amending the pronunciation to the
predicted results;

3. integrating pronunciation information into the
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word semantic to assistant the translation of
HM errors as homophone words always have
the pronunciation.

Figure 1 illustrate the architecture of our method.
Note that the above three steps must be cascaded

which means we always first try to correct the pro-
nunciation information for SP errors and then use
the corrected pronunciation information to play a
part in the translation for HM errors. We will in-
troduce the three steps in details in the following
sections.

3.1 Simulating ASR errors in Training
We process source words one by one by first decid-
ing whether to change it to ASR noise at a certain
probability p ∈ [0, 1], and if yes, then selecting
one word to substitute the source word according
to the word frequency of the training data. Given
a source word x, we first collect its SP word set
Vsp(x) and HM word set Vhm(x), then sample
from a Bernoulli distribution with a probability
p to substitute it with a noise:

rx ∼ Bernoulli(p) (5)

where rx ∈ {0, 1} is the output of the Bernoulli
distribution and p ∈ [0, 1] is the probability that
the Bernoulli distribution outputs 1. When rx is 1,
we go to the next step to substitute x. Next, we can
select a word to substitute x from a word set V(x)
at a probability as

p(x) =
Count(x)∑

x′∈V(x)\{x}
Count(x′)

(6)

where Count(x) stands for the count that the word
x occurs in the training data, and V(x) can be
Vsp(x), Vhm(x) or Vsp(x) ∪ Vhm(x) depending
on whether we want to simulate SP errors, HM
errors or mixture. To get the training data with the
data distribution consistent with the ASR input, we
sample words from Vsp(x) ∪ Vhm(x).

3.2 Amending Pronunciation for SP Errors
In Chinese, the Pinyin word is used to represent
the pronunciation of the word and a Pinyin word
usually consists of several Pinyin letters. For exam-
ple, in Table 2, the Pinyin word for the word “语”
is “yǔ” and it has two Pinyin letters as “y” and “ǔ”.
According to the pronunciation, one Pinyin word
can be divided into two parts: the initial, which
usually only contains the first Pinyin letter, and the

final, which usually contains the rest Pinyin letters.
We looked into our in-house ASR results and found
that most SP errors are caused by the wrong initial.
Besides, Chinese Pinyin has fixed combinations of
the initial and the final, and hence given a final,
we can get all possible initials that can occur to-
gether with the final in one Pinyin word. In this
sense, for an SP error, we can draw the distribution
over all the possible initials to predict the correct
Pinyin word. With the distribution, we can amend
the embedding of the Pinyin word to the correct
one.

Formally, given a source sentence x =
(x1, . . . , xJ), we use u = (u1, . . . , uJ) to denote
its Pinyin word sequence and use ujk to denote
the k-th Pinyin letter in the Pinyin word uj . For a
Pinyin word uj , we represent its initial as

uini
j = uj1 (7)

and represent its final as

ufin
j = [uj2, . . . , ujKj

] (8)

where Kj is the number of Pinyin letters of uj . We
also maintain an embedding matrix for the Pinyin
words and the Pinyin letters, respectively. Then we
can get the embedding for the final ufin

j by adding
all the embedding of its Pinyin letters as

E[ufin
j ] =

Kj∑
k=2

(E[ujk]) (9)

where E[·] means the corresponding embedding of
the input. As SP errors usually result from wrong
initials, we predict the probability of the true initial
according to the co-occurrence with the immedi-
ately previous Pinyin word uj−1 and the right after
Pinyin word uj+1. Then we can draw the distribu-
tion over all the possible initials for uj as

pini ∼ softmax(gini(E[uj−1] +E[ufin
j ] +E[uj+1]))

(10)
where gini(·) is a linear transformation function.
Then we use the weighted sum of the embedding
of all the possible initials as the true embedding of
uini
j as

E[uini
j ] =

∑
l∈V ini(uj)

pini(l) ∗E[l] (11)

where V ini(uj) denotes the letter set which can
be used as the initial of uj and pini(l) denotes the
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predicted probability for the Pinyin letter l in Equa-
tion 10. Then we can update the embedding of uj
based on the amended Pinyin letter embedding as

E[uj ] = g(E[uj ],E[uini
j ],E[ufin

j ]) (12)

where g(.) is a linear transformation function.

3.3 Amending Encoding for HM Errors
For HM errors, although the source word is not
correct, the Pinyin word is still correct. Therefore,
the Pinyin word can be used to provide additional
true information about the source word. Specifi-
cally, we integrate the embedding of Pinyin words
into the final output of the encoder, denoted as
h = (h1, . . . ,hJ), to get an advanced encoding
for each source word. This is implemented via a
gating mechanism and we calculate the gate λj for
the j-th source word as

λj = Wλ tanh (Whhj +WuE[uj ]) (13)

where Wλ, Wh and Wu are weight matrices.
With the gate, we update the hidden state hj to

hj = λj ∗ hj + (1− λj) ∗E[uj ] (14)

Then the updated hidden states of source words
are fed to the decoder for the calculation of atten-
tion and generation of target words.

4 Experiments

4.1 Data Preparation
We evaluated our method on two Chinese-English
data sets which are from the NIST translation task
and WMT17 translation task, respectively. For the
NIST translation task, the training data consists of
about 1.25M sentence pairs from LDC corpora with
27.9M Chinese words and 34.5M English words re-
spectively 1. We used NIST 02 data set as the devel-
opment set and NIST 03, 04, 05, 06, 08 sets as the
clean test sets which don’t have ASR errors in the
source side. For the WMT17 translation task, the
training data consists of 9.3M bilingual sentence
pairs obtained by combing the CWMT corpora and
News Commentary v12. We use the newsdev2017
and newstest2017 as our development set and clean
test set, respectively.

For both of these two corpus, we tokenized and
truecased the English sentences using the Moses

1The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

scripts2. Then 30K merging operations were per-
formed to learn byte-pair encoding(BPE) (Sennrich
et al., 2015). As for the Chinese data, we split the
sentence into Chinese chars. We use the Chinese-
Tone3 tool to convert Chinese characters into their
Pinyin counterpart without tones.

Then we apply the method mentioned in the sec-
tion 3.1 to add SP errors, HM errors or both to the
clean training set to get three kinds of noisy data.
We have also set the substituting probability p to
0.1, 0.2 and 0.3 to investigate the impacts of the
ASR errors in the training set. Considering that
there is no public test sets simulating the substitu-
tion errors of ASR, we also crafted another three
noisy test sets based on the clean sets with different
amount of HM errors and SP errors in each source
side sentence to test the robustness of the NMT
model. We try our best to make these noisy test
sets be close to the results of ASR, so that it can
check the ability of our proposed method in the
realistic speech translation scenario.

4.2 Training Details
We evaluate the proposed method on the Trans-
former model and implement on the top of an open-
source toolkit Fairseq-py (Edunov et al., 2017). We
follow (Vaswani et al., 2017) to set the configura-
tions and have reproduced their reported results on
the Base model. All the models were trained on a
single server with eight NVIDIA TITAN Xp GPUs
where each was allocated with a batch size of 4096
tokens. Sentences longer than 100 tokens were re-
moved from the training data. For the base model,
we trained it for a total of 100k steps and save a
checkpoint at every 1k step intervals. The single
model obtained by averaging the last 5 checkpoints
were used for measuring the results.

During decoding, we set beam size to 5, and
length penalty α=0.6 (Wu et al., 2016). Other train-
ing parameters are the same as the default configu-
ration of the Transformer model. We report case-
sensitive NIST BLEU (Papineni et al., 2002) scores
for all the systems. For evaluation, we first merge
output tokens back to their untokenized representa-
tion using detokenizer.pl and then use multi-bleu.pl
to compute the scores as per reference.

4.3 Main Results
The main results are shown in the Table 3 and Ta-
ble 5 (Row1 and Row4). It shows that our propoed

2http://www.statmt.org/moses/
3https://github.com/letiantian/ChineseTone



20

System p Clean
Noise

1 Sub 2 Subs 3 Subs Ave.

Baseline - 45.21 43.63 42.24 41.33 42.40

Our Method
0.1 45.15 44.64 44.23 43.87 44.24
0.2 45.13 44.83 44.41 44.12 44.45
0.3 44.95 44.68 44.45 44.09 44.40

Table 3: Case-sensitive BLEU scores of our approaches on thec NIST clean test set (average bleu score on nist03,
nist04, nist05, nist06) and three artificial noisy test sets (1 Sub, 2 Subs and 3 Subs) which are crafted by randomly
substituting one, two and three original characters of each source sentence in the clean test set with HM errors or
SP errors, respectively. p is the substitution rate.

System p Clean
Noise
Ave.

Baseline - 45.21 42.40
+SP Amendment 0.2 45.20 43.55
+HM Amendment 0.2 45.30 43.77
+Both Amendment 0.2 45.13 44.45

Table 4: Results of the ablation study on the NIST
data. “+SP Amendment”, “+HM Amendmen” and
“+Both Amendment” represents the model only with
the amending pronunciation for SP errors, amending
errors for HM errors and with amending pronunciation
for both of these two kinds of errors, respectively.

System p Clean Noise

Baseline - 23.11 20.23
+SP Amendment 0.2 23.08 22.12
+HM Amendment 0.2 23.09 22.23
+Both Amendment 0.2 23.13 22.67

Table 5: Comparison of “+SP Amendment”, “+HM
Amendmen” and “+Both Amendment” on the WMT17
ZH→EN dataset.

model significantly outperforms the baseline model
on the noisy test sets on both of the NIST and
WMT17 translation tasks. Furthernmore, we got
the following conclusions:

First, the baseline model performs well on the
clean test set, but it suffers a great performance
drop on the noisy test sets, which indicates that the
conventional NMT is indeed fragile to permuted in-
puts, which is consistent with prior work (Belinkov
and Bisk, 2017; Cheng et al., 2018).

Second, the results of our proposed method show
that our model can not only get a competitive per-
formance compared to the baseline model on the
clean test set, but also outperform all the baseline
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Figure 2: Training cost of the baseline model (blue
dots) and our proposed method (red dots).

models on the noisy tests. Moreover, our proposed
method doesn’t drop so much on the noisy test sets
as the ASR errors increase, which proves that our
proposed method is more robust to the noisy inputs
after we make use of the pronunciation features to
amend the representation of the input tokens for
the SP errors and HM errors.

Last, we find that our method works best when
the hyper-parameter p was set to 0.2 in our experi-
ments. It indicates that the different noise sampling
methods have different impacts on the final results.
Too few or too much ASR errors simulated in the
training data both can’t make the model achieve
the best performance in practice. This finding can
guide us to better simulate the noisy data, thus
helping us train a more robust model in the future
work.

4.4 Ablation Study

In order to further understand the impact of the
components of the proposed method, we performed
some further studies by training multiple versions
of our model by removing the some components of
it. The first one is just with the amending pronunci-
ation for SP errors. The second one is just with the
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amending errors for HM error. The overall results
are shown in the Table 4 and Table 5.

The “+SP Amendment” method also improve
the robustness and fault tolerance of the model. It
is obvious that in all the cases, our proposed Sim-
Pron-Words model outperforms baseline system by
+1.15 and + 1.89 BLEU. which indicates that it
can also greatly enhance the anti-noise capability
of the NMT model.

The “+HM Amendmen” method provides further
robustness improvements compared to the base-
line system on all the noisy test sets. The results
show that the model with SP amendment achieves
a further improvement by an average of +1.37 and
+2.00 BLEU on the NIST and WMT17 noisy test
sets respectively. In addition, it has also achieved a
performance equivalent to baseline on the clean test
sets. It demonstrates that homophones feature is an
effective input feature for improving the robustness
of Chinese-sourced NMT.

Eventually, as expectecd, the best performance is
obtained with the simultaneous use of all the tested
elements, proving that these two features can coop-
erate with each other to improve the performance
further.

4.5 Training Cost
We also investigate the training cost of our pro-
posed method and the baseline system. The loss
curves are shown in the Figure 2. It shows that
the training cost of our model is higher than the
baseline system, which indicates that our proposed
model may take more words into consideration
when predicting the next word, because it aggregate
the pronunciation information of the source side
character. Thus we can get a higher BLEU score
on the test sets than the baseline system, which will
ignore some more appropriate word candidates just
without the pronunciation information. The train-
ing loss curves and the BLEU results on the test
sets show that our approach effectively improves
the generalization performance of the conventional
NMT model trained on the clean training data.

4.6 Effect of Source Sentence Length
We also evaluate the performance of our proposed
method and the baseline on the noisy test sets with
different source sentence lengths. As shown in
Figure 3, the translation quality of both systems is
improved as the length increases and then degrades
as the length exceeds 50. Our observation is also
consistent with prior work (Bahdanau et al., 2014).
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Figure 3: Effect of source sentence lengths of noisy
input.

These curves imply that more context is helpful
to noise disambiguation. It also can be seen that
our robust system outperforms the baseline model
on all the noisy test sets in each length interval.
Besides, the increasing number of the error in the
source sentence doesn’t degrade the performance
of our proposed model too much, indicating the
effectiveness of our method.

4.7 A Case Study

In Table 6, we provide a realistic example to illus-
trate the advantage of our robust NMT system on
erroneous ASR output. For this case, the syntactic
structure and meaning of the original sentence are
destroyed since the original character “数” which
means digit is misrecognized as the character “书”
which means book. “数” and “书” share the same
pronunciation without tones. Human beings gener-
ally have no obstacle to understanding this flawed
sentence with the aid of its correct pronunciation.
The baseline NMT system can hardly avoid the
translation of “书” which is a high-frequency char-
acter with explicit word sense. In contrast, our
robust NMT system can translate this sentence cor-
rectly. We also observe that our system works well
even if the original character “数” is substituted
with other homophones, such as “舒” which means
comfortable. It shows that our system has a pow-
erful ability to recover the minor ASR error. We
consider that the robustness improvement is mainly
attributed to our proposed ASR-specific noise train-
ing and Chinese Pinyin feature.

5 Related Work

It is necessary to enhance the robustness of machine
translation since the ASR system carries misrec-
ognized transcriptions over into the downstream
MT system in the SLT scenario. Prior work at-
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Speech 该 数数数 字 已 经 大 幅 下 降 近 一 半。
gāi shù zı̀ yı̌ jı̄ng dà fú xià jiàng jı̀n yı̄ bàn。

ASR 该 书书书 字 已 经 大 幅 下 降 近 一 半。
gāi shū zı̀ yı̌ jı̄ng dà fú xià jiàng jı̀n yı̄ bàn。

Ref The figure has fallen sharply by almost half.
Baseline The book has fallen by nearly half.
Our Approach The figure has fallen by nearly half.

Table 6: For the same erroneous ASR output, translations of the baseline NMT system and our robust NMT
system.

tempted to induce noise by considering the realistic
ASR outputs as the source corpora used for train-
ing MT systems (Peitz et al., 2012; Tsvetkov et al.,
2014). Although the problem of error propagation
could be alleviated by the promising end-to-end
speech translation models (Serdyuk et al., 2018;
Bérard et al., 2018). Unfortunately, there are few
training data in the form of speech paired with text
translations. In contrast, our approach utilizes the
large-scale written parallel corpora. Recently, Sper-
ber et al. (2017) adapted the NMT model to noise
outputs from ASR, where they introduced artifi-
cially corrupted inputs during the training process
and only achieved minor improvements on noisy
input but harmed the translation quality on clean
text. However, our approach not only significantly
enhances the robustness of NMT on noisy test sets,
but also improves the generalization performance.

In the context of NMT, a similar approach was
very recently proposed by Cheng et al. (2018),
where they proposed two methods of construct-
ing adversarial samples with minor perturbations
to train NMT models more robust by supervising
both the encoder and decoder to represent simi-
larly for both the perturbed input sentence and its
original counterpart. In contrast, our approach has
several advantages: 1) our method of construct-
ing noise examples is efficient yet straightforward
without expensive computation of words similar-
ity at training time; 2) our method has only one
hyper-parameter without putting too much effort
into performance tuning; 3) the training of our ap-
proach performs efficiently without pre-training of
NMT models and complicated discriminator; 4) our
approach achieves a stable performance on noise
input with different amount of errors.

Our approach is motivated by the work of NMT
incorporated with linguistic input features (Sen-
nrich and Haddow, 2016). Chinese linguis-
tic features, such as radicals and Pinyin, have

been demonstrated effective to Chinese-sourced
NMT (Liu et al., 2019; Zhang and Matsumoto,
2017; Du and Way, 2017) and Chinese ASR (Chan
and Lane, 2016). We also incorporate Pinyin as an
additional input feature in the robust NMT model,
aiming at improving the robustness of NMT fur-
ther.

6 Conclusion

Voice input has become popular recently and as
a result, machine translation systems have to deal
with the input from the results of ASR systems
which contains recognition errors. In this paper we
aim to improve the robustness of NMT when its
input contains ASR errors from two aspects. One
is from the perspective of data by adding simulated
ASR errors to the training data so that the training
data and the test data have a consistent distribution.
The other is from the perspective of the model itself.
Our method takes measures to handle two types of
the most widely existent ASR errors: substitution
errors between the words with similar pronunci-
ation (SP errors) and substitution errors between
homophone words (HM errors). For SP errors, we
make use of the context pronunciation information
to correct the embedding of Pinyin words. For HM
errors, we use pronunciation information directly
to amend the encoding of source words. Experi-
ment results prove the effectiveness of our method
and the ablation study indicates that our method
can handle both the types of errors well. Experi-
ments also show that our method is stable during
training and more robust to the errors.
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