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Abstract

Simultaneous Translation is a great challenge
in which translation starts before the source
sentence finished. Most studies take transcrip-
tion as input and focus on balancing trans-
lation quality and latency for each sentence.
However, most ASR systems can not pro-
vide accurate sentence boundaries in realtime.
Thus it is a key problem to segment sentences
for the word streaming before translation. In
this paper, we propose a novel method for
sentence boundary detection that takes it as a
multi-class classification task under the end-
to-end pre-training framework. Experiments
show significant improvements both in terms
of translation quality and latency.

1 Introduction

Simultaneous Translation aims to translate the
speech of a source language into a target language
as quickly as possible without interrupting the
speaker. Typically, a simultaneous translation sys-
tem is comprised of an auto-speech-recognition
(ASR) model and a machine translation (MT)
model. The ASR model transforms the audio signal
into the text of source language and the MT model
translates the source text into the target language.

Recent studies on simultaneous translation (Cho
and Esipova, 2016; Ma et al., 2019; Arivazhagan
et al., 2019) focus on the trade-off between trans-
lation quality and latency. They explore a policy
that determines when to begin translating with the
input of a stream of transcription. However, there
is a gap between transcription and ASR that some
ASR model doesn’t provide punctuations or can-
not provide accurate punctuation in realtime, while
the transcription is always well-formed. See Fig-
ure 1 for illustration. Without sentence boundaries,
the state-of-the-art wait-k model takes insufficient
text as input and produces an incorrect translation.

Therefore, sentence boundary detection (or sen-
tence segmentation) 1 plays an important role to
narrow the gap between the ASR and transcrip-
tion. A good segmentation will not only improve
translation quality but also reduce latency.

Studies of sentence segmentation falls into one
of the following two bins:

• The strategy performs segmentation from a
speech perspective. Fügen et al. (2007) and
Bangalore et al. (2012) used prosodic pauses
in speech recognition as segmentation bound-
aries. This method is effective in dialogue
scenarios, with clear silence during the conver-
sation. However, it does not work well in long
speech audio, such as lecture scenarios. Ac-
cording to Venuti (2012), silence-based chunk-
ing accounts for only 6.6%, 10%, and 17.1%
in English, French, and German, respectively.
Indicating that in most cases, it cannot effec-
tively detect boundaries for streaming words.

• The strategy takes segmentation as a standard
text processing problem. The studies consid-
ered the problem as classification or sequence
labeling, based on SVM, (Sridhar et al., 2013)
conditional random filed (CRFs) (Lu and Ng,
2010; Wang et al., 2012; Ueffing et al., 2013).
Other researches utilized language model, ei-
ther based on N-gram (Wang et al., 2016)
or recurrent neural network (RNN)(Tilk and
Alumäe, 2015).

In this paper, we use classification to solve the
problem of sentence segmentation from the per-
spective of text. Instead of predicting a sentence
boundary for a certain position, we propose a multi-
position boundary prediction approach. Specifi-
cally, for a source text x = {x1, ..., xT }, we calcu-
late the probability of predicting sentence boundary

1We use both terms interchangeably in this paper.
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src One of two things is going to happen . Either it ’s going to …

Reference Eines von zwei Dingen wird passieren. Entweder wird ...

wait3 Eines von zwei Dingen wird passieren. Entweder wird …

src without 

boundary
One of two things is going to happen either it ’s going to …

wait3 Eines von zwei Dingen wird passieren entweder es ist geht dass …

Figure 1: An English-to-German example that translates from a streaming source with and without sentence bound-
aries. We take the wait-K model (Ma et al., 2019) for illustration, K=3 here. The wait3 model first performs three
READ (wait) action at the beginning of each sentence (as shown in blue), and then alternating one READ with
one WRITE action in the following steps. Given the input source without sentence boundaries (in the 4thline), the
wait3 model (in the 5thline) doesn’t take the three READ action at the beginning of following sentences. There-
fore, the English phrase “it’s going to”, which should have been translated as “wird”, produced a meaningless
translation “es ist geht dass” with limited context during wait3 model inference.

after xt , t = T, T − 1, ..., T −M . Thus the la-
tency of translation can be controlled within L+M
words, where L is the length of the sentence. In-
spired by the recent pre-training techniques (Devlin
et al., 2019; Sun et al., 2019) that successfully used
in many NLP tasks, we used a pre-trained model for
initialization and fine-tune the model on the source
side of the sentence. Overall, the contributions are
as follows:

• We propose a novel sentence segmentation
method based on pre-trained language repre-
sentations, which have been successfully used
in various NLP tasks.

• Our method dynamically predicts the bound-
ary at multiple locations, rather than a specific
location, achieving high accuracy with low
latency.

2 Background

Recent studies show that the pre-training and fine-
tuning framework achieves significant improve-
ments in various NLP tasks. Generally, a model
is first pre-trained on large unlabeled data. After
that, on the fine-tuning step, the model is initialized
by the parameters obtained by the pre-training step
and fine-tuned using labeled data for specific tasks.

Devlin et al. (2019) proposed a generalized
framework BERT, to learn language representa-
tions based on a deep Transformer (Vaswani et al.,
2017) encoder. Rather than traditionally train a
language model from-left-to-right or from-right-
to-left, they proposed a masked language model
(MLM) that randomly replace some tokens in a
sequence by a placeholder (mask) and trained the
model to predict the original tokens. They also
pre-train the model for the next sentence prediction

(NSP) task that is to predict whether a sentence is
the subsequent sentence of the first sentence. Sun
et al. (2019) proposed a pre-training framework
ERNIE, by integrating more knowledge. Rather
than masking single tokens, they proposed to mask
a group of words on different levels, such as enti-
ties, phrases, etc. The model achieves state-of-the-
art performances on many NLP tasks.

In this paper, we train our model under the
ERNIE framework.

3 Our Method

Given a streaming input x = {x1, ..., xt, ..., xT },
the task of sentence segmentation is to determine
whether xt ∈ x is the end of a sentence. Thus the
task can be considered as a classification problem,
that is p(yt|x, θ), where yt ∈ {0, 1}. However,
in simultaneous translation scenario, the latency
is unacceptable if we take the full source text as
contextual information. Thus we should limit the
context size and make a decision dynamically.

As the input is a word streaming, the sentence
boundary detection problem can be transformed as,
whether there exists a sentence boundary until the
current word xt. Thus we can use the word stream-
ing as a context to make a prediction. We propose a
multi-class classification model to predict the prob-
ability of a few words before xt as sentence bound-
aries (Section 3.1). We use the ERNIE framework
to first pre-train a language representation and then
fine-tune it to sentence boundary detection (Section
3.2). We also propose a dynamic voted inference
strategy (Section 3.3).

3.1 The Model

For a streaming input x = {x1, ..., xt}, our goal
is to detect whether there is a sentence boundary



3

𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑡𝑡−2 𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜 … ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡

𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸0 𝐸𝐸1 𝐸𝐸2 … 𝐸𝐸𝑡𝑡−2 𝐸𝐸𝑡𝑡−1 𝐸𝐸𝑡𝑡

…

…

…

𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶

ϕ 0 − 1 − 2Classes 
𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡𝑆𝑆𝑎𝑎𝑥𝑥

Masked
Language

Model

𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡 ". "
𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 ". " 𝐼𝐼𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜". " 𝐸𝐸𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡

Figure 2: Illustration of the dynamic classification
model. M = 2 means there are 4 classes. We use
ERNIE to train a classifier. Class φ means that there is
no sentence boundary in the stream till now. Class −m
m = 0, 1, 2 means that xt−m is the end of a sentence
and we then put a period after it.

till the current word xt from last sentence bound-
ary. Rather than a binary classification that detects
whether xt is a sentence boundary, we propose a
multi-class method. The classes are as follows:

y =



φ, no sentence boundary detected

0, xt is the end of a sentence

−1, xt−1 is the end of a sentence

...

−M, xt−M is the end of a sentence

where M is the maximum offset size to the current
state. Thus, we have M + 2 classes.

See Figure 2 for illustration. We set M = 2,
indicating that the model predicts 4 classes for the
input stream. If the output class is φ, meaning that
the model does not detect any sentence boundary.
Thus the model will continue receiving new words.
If the output class is 0, indicating that the current
word xt is the end of a sentence and we put a period
after the word. Similarly, class −m denotes to add
a sentence boundary after xt−m. While a sentence
boundary is detected, the sentence will be extracted
from the stream and sent to the MT system as an
input for translation. The sentence detection then
continues from xt−m+1.

Each time our system receives a new word xt,
the classifier predicts probabilities for the lastM+1
words as sentence boundaries. If the output class
is φ, the classifier receives a new word xt+1, and
recompute the probabilities for xt+1, xt, xt−1, ...,

xt−M+1. Generally, more contextual information
will help the classifier improve the precision (Sec-
tion 4.5).

3.2 Training Objective
Our training data is extracted from paragraphs.
Question marks, exclamation marks, and semi-
colons are mapped to periods and all other punctu-
ation symbols are removed from the corpora. Then
for every two adjacent sentences in a paragraph,
we concatenate them to form a long sequence, x.
We record the position of the period as r and then
remove the period from the sequence.

For x = (x1, x2, ..., xN ) with N words, we gen-
erate r +M samples for t = 1, 2, ..., (r +M), in
the form of < (x1, ..., xt), yt >, where yt is the
label that:

yt =

{
φ, if t < r
−(t− r), if t ∈ [r, r +M ]

}
(1)

Note that if the length of the second sentence is
less than M, we concatenate subsequent sentences
until r+M samples are collected. Then we define
the loss function as follows:

J (θ) =
∑

(x,r)∈D

log(

r−1∑
t=1

p(yt = φ|x≤t; θ)

+
r+M∑
t=r

p(yt = −(t− r))|x≤t; θ))

(2)

where D is the dataset that contains pairs of con-
catenated sentences x and its corresponding posi-
tion of the removed periods r. M is a hyperparam-
eter denotes the number of waiting words.

Note that our method differs from previous work
in the manner of classification. Sridhar et al. (2013)
predicts whether a word xt labeled as the end of a
sentence or not by a binary classification:

p(yt = 0|xt+2
t−2) + p(yt = 1|xt+2

t−2) = 1 (3)

where yt = 0 means xt is not the end of a sentence
and yt = 1 means xt is the end. xt+2

t−2 denotes 5
words xt−2, xt−1, ..., xt+2.

Some other language-model based work (Wang
et al., 2016) calculates probabilities over all words
in the vocabulary including the period:∑

w∈V ∪“.”
p(yt = w|x≤t) = 1 (4)

and decides whether xt is a sentence boundary by
comparing the probability of yt =“.” and yt =
xt+1.
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Figure 3: Our voting algorithm for online prediction
with M equals to 2. Input the stream text till xt, the
overall probability of add a sentence boundary after
xt−2 is averaged by the M + 1 probabilities in red,
while for xt−1 (in green) and xt (in blue), the number
of deterministic probability is less than M + 1.

The performance of these methods is limited by
incomplete semantics, without considering global
boundary detection. In our methods, we leverage
more future words and restrict classes globally:

p(yt = φ|x≤t) +
M∑

m=0

p(yt = −m|x≤t) = 1 (5)

The restriction is motivated that in a lecture sce-
nario, where a sentence could not be very short that
contains only 1 or 2 words. Thus, the probability
distribution prohibits that adjacent words to be the
end of sentences at the same time.

3.3 Dynamic Inference

At inference time, we predict sentence boundaries
sequentially with a dynamic voting strategy. Each
time a new word xt is received, we predict the prob-
ability of M + 1 classes as shown in the bottom of
Figure 3, then calculate if the probability of previ-
ous M + 1 positions (xt−M , xt−M+1, xt) is larger
then a threshold θTh. If yes, we add a sentence
boundary at the corresponding position. Otherwise,
we continue to receive new words.

Note that the probability is adopted as the voted
probability. While the probability of adding a sen-
tence boundary after xt−M hasM+1 probabilities
to calculate the average, the number of probabili-
ties to determine whether it is a sentence boundary
at subsequent positions is less than M + 1. Here
we use the voted average of existing probabilities.
Specifically, to judge whether xt′ is a sentence

Dataset Sentences Tokens/s

Train
WMT 14 4.4M 23.22
IWSLT 14 0.19M 20.26

Test
IWSLT
2010-2014

7040 19.03

Table 1: Experimental Corpora without punctuation.
Token/s denotes the number of tokens per sentence in
English.

boundary, it needs t− t′ + 1 probabilities:

1

t− t′ + 1

t−t′∑
m=0

p(y = −m|x1, ..., xt+m) (6)

where t′ ∈ [t−M, t].
If more than one sentence boundary probabilities

for xt−M , ..., xt exceeds the threshold θTh at the
same time, we choose the front-most position as
a sentence boundary. This is consistent with our
training process, that is, if there is a sample of two
or more sentence boundaries, we ignore the fol-
lowing and label the class yt according to the first
boundary. This is because we generate samples
with each period in the original paragraph as de-
picted in Section 3.2. From another point of view,
the strategy can also compensate for some incor-
rect suppression of adjacent boundaries, thereby
improving online prediction accuracy.

4 Experiment

Experiments are conducted on English-German
(En-De) simultaneous translation. We evaluate 1)
the F-score2 of sentence boundary detection and 2)
case-sensitive tokenized 4-gram BLEU (Papineni
et al., 2002) as the final translation effect of the
segmented sentences. To reduce the impact of the
ASR system, we use the transcription without punc-
tuation in both training and evaluation.

The datasets used in our experiments are listed
in Table 1. We use two parallel corpus from ma-
chine translation task: WMT 143 and IWSLT 14
4. WMT 14 is a text translation corpus including
4.4M sentences, mainly on news and web sources.
And IWSLT 14 is a speech translation corpus of
TED lectures with transcribed text and correspond-
ing translation. Here we only use the text part in
it, containing 0.19M sentences in the training set.

2harmonic average of the precision and recall
3http://www.statmt.org/wmt14/translation-task.html
4https://wit3.fbk.eu/
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Method Hyperparameter F-score BLEU avgCW maxCW
Oracle NA 1.0 22.76 NA NA
N-gram N=5, θTh = e0.0 0.46 17.83 6.64 56
N-gram N=5, θTh = e2.0 0.48 19.20 13.43 161
T-LSTM d=256 0.55 20.46 10.14 53

dynamic-force θl = 40, θTh = 0.5 0.74 22.01 14.43 40
dynamic-base θTh = 0.5 0.74 21.93 14.58 50

Table 2: Segmentation Performance trained on IWSLT2014. All methods are conducted with future words M
equals to 1.

We train the machine translation model on WMT
14 with the base version of the Transformer model
(Vaswani et al., 2017), achieving a BLEU score of
27.2 on newstest2014. And our sentence boundary
detection model is trained on the source transcrip-
tion of IWSLT 14 unless otherwise specified (Sec-
tion 4.3). To evaluate the system performance, we
merge the IWSLT test set of 4 years (2010-2014)
to construct a big test set of 7040 sentences. The
overall statistics of our dataset is shown in Table 1.

We evaluate our model and two existing methods
listed below:

• dynamic-base is our proposed method that
detect sentence boundaries dynamically using
a multi-class classification.

• dynamic-force adds a constraint on dynamic-
base. In order to keep in line with (Wang
et al., 2016), we add a constraint that sentence
should be force segmented if longer than θl.

• N-gram is the method using an N-gram lan-
guage model to compare the probability of
adding vs. not adding a boundary at xt af-
ter receiving xt−N+1, ..., xt. We implement
according to (Wang et al., 2016).

• T-LSTM uses a RNN-based classification
model with two classes. We implement a uni-
directional RNN and perform training accord-
ing to (Tilk and Alumäe, 2015)5.

Our classifier in dynamic-base and dynamic-
force is trained under ERNIE base framework.
We use the released 6 parameters obtained at pre-
training step as initialization. In the fine-tuning
stage, we use a learning rate of 2e−5.

5we only keep the two classes of period and φ in this work
6https://github.com/PaddlePaddle/ERNIE

4.1 Overall Results

Table 2 reports the results of source sentence seg-
mentation on En-De translation, where the latency
is measured by Consecutive Wait (CW) (Gu et al.,
2017), the number of words between two translate
actions. To eliminate the impact of the different
policies in simultaneous translation, we only exe-
cute translation at the end of each sentence. There-
fore, the CW here denotes the sentence length L
plus the number of future words M . We calculate
its average and maximum value as “avgCW” and
“maxCW”, respectively. Better performance expect
high F-score, BLEU, and low latency (CW). The
translation effect obtained by using the groundtruth
period as the sentence segmentation is shown in
the first line of Oracle.

The N-gram method calculate the probability
of add (padd) and not add (pnot) period at each
position, and decide whether to chunk by compar-
ing whether padd/pnot exceeds θTh. The N-gram
method without threshold tuning (with θTh = e0.0)
divides sentences into small pieces, achieving the
lowest average latency of 6.64. However, the F-
score of segmentation is very low because of the
incomplete essence of the n-gram feature. Notable,
the precision and recall differs much (precision =
0.33, recall = 0.78) in this setup. Therefore, we
need to choose a better threshold by grid search
(Wang et al., 2016). With θTh equals to e2.0, the
F-score of N-gram method increased a little bit
(0.46→ 0.48), with a more balanced precision and
recall (precision = 0.51, recall = 0.48). How-
ever, the max latency runs out of control, resulting
in a maximum of 161 words in a sentence. We also
tried to shorten the latency of the N-gram method
by force segmentation (Wang et al., 2016), but the
result was very poor (precision = 0.33, recall =
0.40).

The T-LSTM method with the hidden size of
256 performs better than N-gram, but the F-score
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Figure 4: Performance evaluated on IWSLT14 testset for different training sample building strategies.

and BLEU is still limited. On the contrary, our
dynamic-based approaches with M = 1 achieve
the best F-score at 0.74 and the final translation is
very close to the result of Oracle. In particular, the
precision and recall reached about 0.72 and 0.77 in
both dynamic-force and dynamic-base, respectively.
Accurate sentence segmentation brings better per-
formance in translation, bringing an improvement
of 1.55 over T-LSTM. Moreover, our approach is
not inferior in terms of latency. Both average la-
tency and max latency is controlled at a relatively
low level.

It is interesting to note that, dynamic-force per-
forms better than dynamic-base, in terms of la-
tency and BLEU. This suggests the effectiveness of
the force segmentation strategy, that is, select the
chunking location with a sentence length limitation
will not affect the accuracy of segmentation, and
would enhance the translation effect.

4.2 Magic in Data Processing

According to Section 3.2, the order between sen-
tences of original corpora would affect the gen-
eration of training samples. In this section, we
investigate the effect of various data reordering
strategies.

A basic method is to use the original sentence
order of speech corpora, denote as Basic. However,
the samples generated is limited, which makes the
model easy to over-fit. To overcome this problem,
we adopt two methods to expand data scale: 1) Du-
plicate the original data multiple times or 2) Add
Synthetic adjacent sentences, through randomly se-
lecting two sentences from the corpora. These two
methods greatly expand the total amount of data,
but the gain to the model is uncertain. As an alter-
native, we explore a Sort method, to sort sentences

according to alphabetic order.

The performance of the four training data orga-
nization methods is shown in Figure 4, all built
on IWSLT2014 and conducted under the setup of
M = 1 and θl = 40. It is clear that Basic, Dupli-
cate and Synthetic are all involved in the problem
of over-fitting. They quickly achieved their best
results and then gradually declined. Surprisingly,
the Sort approach is prominent in both segmenta-
tion accuracy and translation performance. This
may be due to the following reasons: 1) Sentence
classification is not a difficult task, especially when
M = 1 for 3-class classification (y ∈ [φ, 0,−1]),
making the task easy to over-fit. 2) Compared with
Basic, Duplicate is more abundant in the sample
combination in batch training, but there is no es-
sential difference between the two methods. 3)
Synthetic hardly profits our model, because the syn-
thesized data may be very simple due to random
selection. 4) Sort may simulate difficult cases in
real scenes and train them pertinently, bringing it
a poor performance at start but not prone to over-
fit. There are many samples with identical head
and tail words in the sorted data, such as: “and it
gives me a lot of hope ‖ and ...” and “that means
there’s literally thousands of new ideas ‖ that ... ”.
Even human beings find it difficult to determine
whether the words before ‖ is sentence boundaries
of these samples. In Basic, Duplicate and Synthetic
methods, such samples are usually submerged in
a large quantity of simple samples. However, the
data organization mode of Sort greatly strengthens
the model’s ability to learn these difficult samples.

There is no need to worry that the Sort method
cannot cover simple samples. Because we sort by
rows in source file, and some of the rows contain
multiple sentences (an average of 1.01 sentences
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Method F-score BLEU avgCW maxCW
N-gram 0.48 19.58 15.60 156
T-LSTM 0.56 20.77 15.65 51
dyn-force 0.68 21.48 15.53 40
dyn-base 0.68 21.40 16.08 46

Table 3: Segmentation Performance trained on
WMT14. All methods are conducted with future words
M equals to 1. N-gram uses grid-search to get the best
hyperparamters. dyn is short for dynamic and dynamic-
force adopts θl = 40.

per row), which are in real speech order. We ar-
gue that these sentences are sufficient to model the
classification of simple samples, based on the rapid
overfit performance of the other three methods.

4.3 Out-of-Domain vs. In-Domain

Next, we turn to the question that how does the do-
main of training corpus affects results. With the test
set unchanged, we compare the sentence boundary
detections model trained on out-of-domain corpora
WMT 14 and in-domain corpora IWSLT 14, re-
spectively.

As mentioned before, WMT 14 is a larger text
translation corpus mainly on news and web sources.
But the test set comes from IWSLT, which contains
transcriptions of TED lectures of various directions.
Intuitively, larger dataset provides more diverse
samples, but due to domain changes, it does not
necessarily lead to improvements in accuracy.

The performance of various models trained on
WMT14 is shown in Table 3. Dynamic-force also
achieves the best translation performance with a
relatively small latency on average and limited the
max latency within 40 words. However, it under-
performs the same model trained on IWSLT2014
(as shown in Table 2), demonstrating its sensitivity
to the training domain.

On the contrary, N-gram and T-LSTM is hardly
affected. For N-gram, one possible reason is the be-
fore mentioned weakness of the N-gram: segmen-
tation depends on only N previous words, which
is more steady compared to the whole sentence,
thus eliminating the perturbation of whole sentence
brought by the domain variation. For T-LSTM, it
even improves a little compared with its in-domain
performance. This may be due to the lack of train-
ing samples. 0.19M sentences of IWSLT2014 is
insufficient to fit the parameters of T-LSTM. Thus
the model would benefit from increasing the cor-
pus size. However, our method needs less data in

θl F-score BLEU avgCW
10 0.40 16.27 5.85
20 0.58 20.34 9.74
40 0.74 22.01 14.43
80 0.73 21.60 15.15

Table 4: Segmentation Performance of dynamic-force
trained on IWSLT2014. All methods are conducted
with future words M equals to 1.

training because our model has been pre-trained.
Based on a powerful representation, we need only a
small amount of training data in fine-tuning, which
is best aligned with the test set in the domain.

4.4 Length of window θl

Next, we discuss the effect of changing θ. The
performance of dynamic-force with varying θl is
shown in Table 4. Smaller θl brings shorter latency,
as well as worse performance. The effect is ex-
tremely poor with θl = 10. There are two possible
reasons: 1) Constraint sentence length less than θl
is too harsh under small θl, 2) The discrepancy be-
tween the unrestricted training and length-restricted
testing causes the poor effect.

We first focus on the second possible reason.
While the difference between dynamic-base and
dynamic-force is only in prediction, we want to
know whether we can achieve better results by con-
trolling the length of training samples. Accordingly,
we only use the samples shorter than a fixed value:
θl in training phrase. At inference time, we use
both dynamic-force with the same sentence length
constraint θl and dynamic-base to predict sentence
boundaries. As elaborated in Figure 5, For each
pair of curves with a same θl, dynamic-force and
dynamic-base present similar performance. This
demonstrates the main reason for the poor perfor-
mance with small θl is not the training-testing dis-
crepancy but lies in the first reason that the force
constraint is too harsh.

Moreover, it is interesting to find that the per-
formance of θl = 80 is similar with θl = 40 at
the beginning but falls a little during training. This
probably because the setup with θl = 40 can filter
some inaccurate cases, as the average number of
words in IWSLT2014 training set is 20.26.

4.5 Number of Future Words M
We investigate whether can we achieve better per-
formance with more or less future words. We ex-
periment with M from 0 to 5. The result is shown
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Figure 5: Translation performance on IWSLT2014 test-
set. “θl-Force” denotes to set the sentence length
threshold to θl in both training sample generation and
prediction. “θl-Base” is to set this constraint only in
training samples generation process.

M F-score BLEU avgCW
0 0.66 21.54 13.23
1 0.74 22.01 14.43
2 0.77 22.23 15.24
3 0.79 22.23 16.52
4 0.80 22.29 17.15

Table 5: Segmentation Performance of dynamic-force
trained on IWSLT2014. All methods are conducted
with θl = 40.

in Table 5. Reducing M to zero means that do not
refer to any future words in prediction. This de-
grades performance a lot, proving the effectiveness
of adding future words in prediction. Increase M
from 1 to 2 also promote the performance in both
sentence boundary detection f-score and the sys-
tem BLEU. However, as more future words added
(increase M to 3 and 4), the improvement becomes
less obvious.

5 Related Work

Sentence boundary detection has been explored for
years, but the majority of these work focuses on
offline punctuation restoration, instead of applied
in simultaneous translation. Existing work can be
divided into two classes according to the model
input.

5.1 N-gram based methods

Some work takes a fixed size of words as input.
Focus on utilizing a limited size of the stream-
ing input, they predict the probability of putting a
boundary at a specific position xt by a N-gram lan-

guage model (Wang et al., 2016) or a classification
model (Sridhar et al., 2013; Yarmohammadi et al.,
2013). The language-model based method make de-
cision depends onN words (xt−N+2, ..., xt+1) and
compares its probability with (xt−N+2, ..., xt,“.”).
The classification model takes features of N words
around xt and classifies to two classes denoting xt
is a sentence boundary or not. The main deficiency
of this method is that the dependencies outside the
input window are lost, resulting in low accuracy.

5.2 Whole sentence-based methods
Some other work focuses on restoring punctua-
tion and capitalization using the whole sentence.
To improve the sentence boundary classification
accuracy, some work upgrade the N-gram input
to variable-length input by using recurrent neural
network (RNN) (Tilk and Alumäe, 2015; Salloum
et al., 2017). Some other work takes punctua-
tion restoration as a sequence labeling problem
and investigates using Conditional Random Fields
(CRFs) (Lu and Ng, 2010; Wang et al., 2012; Ueff-
ing et al., 2013). Peitz et al. (2011) and Cho et al.
(2012) treats this problem as a machine translation
task, training to translate non-punctuated transcrip-
tion into punctuated text. However, all these meth-
ods utilize the whole sentence information, which
is not fit for the simultaneous translation scenario.
Moreover, the translation model based methods
require multiple steps of decoding, making it un-
suitable for online prediction.

6 Conclusion

In this paper, we propose an online sentence bound-
ary detection approach. With the input of streaming
words, our model predicts the probability of mul-
tiple positions rather than a certain position. By
adding this adjacent position constraint and using
dynamic prediction, our method achieves higher
accuracy with lower latency.

We also incorporate the pre-trained technique,
ERNIE to implement our classification model. The
empirical results on IWSLT2014 demonstrate that
our approach achieves significant improvements of
0.19 F-score on sentence segmentation and 1.55
BLEU points compared with the language-model
based methods.
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