
THUMT: An Open-Source Toolkit for Neural
Machine Translation

Zhixing Tan†, Jiacheng Zhang†, Xuancheng Huang†, Gang Chen†, Shuo Wang†,
Maosong Sun†‡, Huanbo Luan†, and Yang Liu†‡ ∗
†Institute for Artificial Intelligence
Department of Computer Science and Technology, Tsinghua University
Beijing National Research Center for Information Science and Technology
‡Beijing Academy of Artificial Intelligence

Abstract
THUMT is an open-source toolkit for neural machine translation (NMT) developed by the
Natural Language Processing Group at Tsinghua University. The toolkit is easy to use, mod-
ify and extend while provides the latest advances in NMT research and production. THUMT
implements several standard NMT models and supports distributed training across multiple ma-
chines, fast inference, and model visualization. Experiments on English-German and Chinese-
English datasets show that THUMT can obtain results that are comparable to state-of-the-art
NMT systems.

1 Introduction

Machine translation (MT), which investigates the use of computers to translate human lan-
guages automatically, is an important task in natural language processing and artificial intel-
ligence communities. With the availability of bilingual machine-readable texts, data-driven
approaches to machine translation have gained wide popularity since the 1990s (Hutchins and
Lovtskii, 2000). Recent several years have witnessed the rapid development of end-to-end neu-
ral machine translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2014; Vaswani et al.,
2017). Capable of learning representations from data, NMT has quickly replaced conventional
statistical machine translation (SMT) (Brown et al., 1993; Koehn et al., 2003; Chiang, 2005) to
become the new de facto method in practical MT systems (Wu et al., 2016).

This paper introduces THUMT, an open-source NMT toolkit targeting both academia and
industry. THUMT originally developed with Theano (Theano Development Team, 2016) and
begins its launch in June 2017. With the emerging of new deep learning frameworks, THUMT
added TensorFlow (Abadi et al., 2016) implementation in October 2017 and PyTorch (Paszke
et al., 2019) implementation in August 2019. The current status of the three implementations
are as follows:

• THUMT-Theano (Zhang et al., 2017): the original project developed with Theano, which
is no longer updated because MLA put an end to Theano. It implemented the stan-
dard attention-based model (RNNsearch) (Bahdanau et al., 2014), minimum risk train-
ing (MRT) (Shen et al., 2015) for optimizing model parameters with respect to evaluation
metrics, semi-supervised training (SST) (Cheng et al., 2016) for exploiting monolingual

∗Corresponding author.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 116

Features Theano TensorFlow PyTorch
Models RNNsearch Seq2Seq, RNNsearch, Transformer Transformer
Criterions MLE, MRT, SST MLE MLE
Optimizers SGD, Adadelta, Adam Adam SGD, Adadelta, Adam
LRP Yes Yes No
Gradient Aggregation No Yes Yes
Distributed Training No Yes Yes
Mixed-Precision No Yes Yes
TensorBoard No Yes Yes

Table 1: Available features in different implementations.

corpora to learn bi-directional translation models, and layer-wise relevance propagation
(LRP) (Ding et al., 2017) for visualizing and analyzing RNNsearch.

• THUMT-TensorFlow: an implementation focuses on performance. It implemented the
sequence-to-sequence model (Seq2Seq) (Sutskever et al., 2014), the standard attention-
based model (RNNsearch) (Bahdanau et al., 2014), the Transformer model (Trans-
former) (Vaswani et al., 2017), and LRP visualization for RNNsearch and Transformer.
It also added new features such as multi-GPU training, distributed training, ensemble in-
ference, and TensorBoard visualization.

• THUMT-PyTorch: a new implementation developed with PyTorch, which is more flexible
and easier to use by the virtue of dynamic eager execution. It implemented the Transformer
model and also supports multi-GPU training, distributed training, ensemble inference, and
TensorBoard visualization.

THUMT is developed by the Tsinghua Natural Language Processing Group. The latest
source code is available at GitHub 1 and is dual licensed. Open-source licensing is under the
BSD-3-Clause, which allows free use for research purposes. THUMT has been used in many
researches as well as several production MT systems.

2 Features

The primary goal of THUMT is to provide a toolkit that is easy to run and modify while fea-
turing the latest deep learning techniques. The design of THUMT is highly modular. It is easy
to add new models, optimizers, and learning rate schedules to THUMT. The toolkit provides
command-line interface to train and infer from an NMT model, and also supports multi-GPU
training, distributed training as well as mixed-precision training to make full use of the modern
hardware features. Table 1 lists available features in different implementations. We will give a
brief introduction to the components and features provided by the toolkit.

2.1 Models
THUMT implemented three mainstream NMT models: Seq2Seq (Sutskever et al., 2014),
RNNsearch (Bahdanau et al., 2014), and Transformer (Vaswani et al., 2017). Seq2Seq uses
a recurrent neural network (RNN) to encode the input sentence into a fixed-size hidden rep-
resentation and uses another RNN to generate translation conditioned on the representation.
RNNsearch exploits variable representation with attention mechanism and achieves significant
improvements over Seq2Seq model. Transformer uses deep self-attention layers instead of RNN
layers in both encoder and decoder. It achieves the best performance among the three models.

1https://github.com/THUNLP-MT/THUMT

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 117

https://github.com/THUNLP-MT/THUMT

THUMT also implemented relative position embedding (Shaw et al., 2018) in its Trans-
former implementation. Instead of adding absolute positions to its input, this approach consid-
ers relative positions in the self-attention mechanism. We offer two options in our Tensorflow
implementation, one can turn on or off the relative position embedding and set the desired
maximum relative distance. Note that we only implement relative position embedding in self-
attention but not in encoder-decoder attention.

2.2 Training

THUMT supports both single machine multi-GPU training and multi-machine distributed train-
ing. THUMT-TensorFlow uses the Horovod (Sergeev and Del Balso, 2018) toolkit for dis-
tributed training while THUMT-PyTorch adopts torch.distributed module to achieve
the same functionality.

Modern NMT models (e.g. Transformer) usually require using large batch sizes during
training. However, it is normally impractical to fit a large batch into a single GPU device. To
alleviate this problem, we allow THUMT to split the batch into several smaller batches and
collect the gradient on each batch independently. Then we aggregate the gradients and perform
optimization. Gradient aggregation simulates large batch size training with multiple small batch
training, which significantly reduce the memory requirement for training NMT models.

The latest GPU (e.g. Nvidia V100) supports half-precision computation which signifi-
cantly improve the training speed and reduce the memory requirement. However, training with
half-precision is less stable than single-precision because of the reduced precision. To address
this problem, THUMT implemented mixed-precision training which uses half-precision in the
forward pass while switches to single-precision in the backward pass to maintain numerical
stability. Furthermore, THUMT also apply dynamic loss scaling during the forward pass to
increase the numerical precision.

THUMT provides different optimizers, learning rate schedules, and validation functional-
ity for users to control the training process. These options can be easily changed through the
command-line interface. New optimizers and learning rate schedules can be easily integrated
into THUMT with minor modifications.

2.3 Inference

THUMT supports beam-search and random sampling during inference. The user can specify
the batch size, beam size, and length penalty before decoding. Apart from beam-search, the
user can also choose to employ random sampling, which samples a word from multinomial
distribution at each step. THUMT also supports decoding with half-precision to speed up the
inference stage.

Model averaging is beneficial to the performance of neural machine translation models.
THUMT provides an additional script to carry out model averaging. The users can either av-
erage the lastest n checkpoints or the top-n best checkpoints sorted by validation scores into a
single checkpoint.

Model ensemble is another way to improve the performance of neural machine transla-
tion. THUMT can ensemble multiple NMT models regardless of their architecture, provided all
models share the same vocabulary. When performing inference, if the number of checkpoints
assigned by the users is more than one, THUMT will perform model ensemble automatically by
calculating an arithmetic mean of the log-probabilities provided by all checkpoints. Normally,
model ensemble can achieve significant improvements. However, it requires more memory and
computations.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 118

Figure 1: Visualization with LRP for the Transformer Model.

2.4 Visualization
Although NMT achieves state-of-the-art translation performance, it is hard to understand how
it works because all internal information is represented as real-valued vectors or matrices. To
address this problem, THUMT features a visualization tool to use layer-wise relevance propaga-
tion (LRP) (Bach et al., 2015) to visualize and interpret neural machine translation models (Ding
et al., 2017).

Figure 1 shows an example of visualizing the Transformer model. Although the trans-
former model uses attention mechanisms extensively, it is hard to determine the most repre-
sentative head. For LRP, it is possible to calculate the global relevance between source words
and target words, which helps analyze the internal workings of NMT. Please refer to Ding et al.
(2017) for more details.

3 Experiments

3.1 Setup
We evaluate THUMT on English-German and Chinese-English translation tasks. The evalua-
tion metric is case-sensitive BLEU (Papineni et al., 2002). Following Vaswani et al. (2017),
translations are generated via beam-search with a beam size of 4 and a length penalty of 0.6.

For English-German, we use the WMT14 training corpus which contains 4.5M sentence
pairs with 103M English words and 96M German words. We also use a shared source-
target vocabulary of about 37000 tokens encoded by BPE (Sennrich et al., 2016). We use
newstest2014 as the test set.

For Chinese-English translation, we use the training corpus provided by WMT18 2. The
corpus consists of 24M sentence pairs with 509M Chinese words and 576M English words. We
use 32K BPE operations to build vocabularies. The test set is newstest2017.

We train the Transformer model on the two datasets. Unless otherwise noted, the setting
is the same as Vaswani et al. (2017). All models are trained on 4 machines interconnected with
InfiniBand, and each machine has 8 GTX 2080Ti GPUs.

2http://data.statmt.org/wmt18/translation-task/preprocessed/zh-en

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 119

http://data.statmt.org/wmt18/translation-task/preprocessed/zh-en

Model Size Speed (tokens/sec)
Training Inference

Transformer Base 60K 620
Transformer Big 35K 550

Table 2: Speed of THUMT, evaluated on WMT14 English-German (En-De). Speed of training
is reported with a 8-GPU setting and speed of inference is reported with a single GPU setting.

Direction Model Size Steps GPUs BS/GPU Precision BLEU

En→ De Transformer (Vaswani et al., 2017) Base 100K 8 - FP32 27.30
Big 300K 8 - FP32 28.40

Zh→ En Transformer (Hassan et al., 2018) Big - - - FP32 24.20

En→ De Transformer

Base 100K 4 2×4096 FP16 26.85
Base 100K 8 4096 FP16 26.76
Base 100K 4 2×4096 FP32 26.91
Base 100K 8 4096 FP32 26.95
Base 85K 8 2×4096 FP16 27.40
Big 300K 8 4096 FP16 28.71
Big 20K 16 8×4096 FP16 28.68
Big 25K 32 8×2048 FP16 28.51

Zh→ En Transformer Big 300K 8 2×4096 FP16 24.07

Table 3: Benchmarks on WMT14 English-German (En-De) and WMT18 Chinese-English (Zh-
En) datasets. We use “2×4096” to denote aggregating gradients for 2 steps with 4096 batch
size per step. “FP32” and “FP16” denote training with single-precision and mixed-precision,
respectively. We use distributed settings enable training with more than 8 GPUs.

3.2 Results
Table 2 shows the speed of THUMT. The speed of training is reported with a 8-GPU setting and
the speed of inference is reported with a single GPU setting. The training speed of Transformer
model is around 35K to 60K tokens per second, depending on the model size. It takes about 1
day to train a Transformer big model with 32 GPUs. The inference speed is about 620 tokens per
second for the base Transformer model and 550 tokens per second for the big model. Currently,
THUMT does not support inference with CPUs, and we plan to add this functionality in the
future.

Table 3 shows the results on English-German and Chinese-English translation. For
English-German, we trained Transformer base/big models with several different settings by
varying model sizes, training steps, and number of GPUs. All Transformer big models per-
formed better than Transformer base models. When we trained the Transformer base model
using mixed-precision (FP16) instead of single-precision (FP32), the performance only drops
slightly. As the number of tokens in each mini-batch increases from 32,768 to 65,536, the per-
formance improves from 26.95 to 27.40 even though the training steps reduce from 100K to
85K. For Chinese-English, we trained a Transformer big model using mixed-precision in 300K
steps, and the number of tokens in mini-batch is 65,536. The BLEU score on the test dataset is
24.07. The models trained using THUMT are comparable to those reported by Vaswani et al.
(2017) and Hassan et al. (2018) in terms of BLEU score.

4 Conclusion and Future works

We have introduced a new open-source toolkit for NMT that supports mainstream models, dis-
tributed training, and fast inference. The toolkit also features a visualization tool for analyz-

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 120

ing the translation process of THUMT. The toolkit is freely available at http://thumt.
thunlp.org.

Currently, the users still rely on external tools to prepare the training corpus. We plan to
add preprocessing functionality to make THUMT self-contained. We will continually add new
features to THUMT to make it a better toolkit for both research and production.

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFB0202204),
National Natural Science Foundation of China (No. 61925601, No. 61761166008, No.
61772302), Beijing Academy of Artificial Intelligence, and the NExT++ project supported by
the National Research Foundation, Prime Ministers Office, Singapore under its IRC@Singapore
Funding Initiative.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning.
In Proceedings of OSDI.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W. (2015). On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propaga-
tion. PloS one.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics of
statistical machine translation: Parameter estimation. Computational linguistics.

Cheng, Y., Xu, W., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016). Semi-supervised
learning for neural machine translation. arXiv preprint arXiv:1606.04596.

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine translation. In
Proceedings of ACL.

Ding, Y., Liu, Y., Luan, H., and Sun, M. (2017). Visualizing and understanding neural machine
translation. In Proceedings of ACL.

Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., Huang, X., Junczys-
Dowmunt, M., Lewis, W., Li, M., et al. (2018). Achieving human parity on automatic chinese
to english news translation. arXiv preprint arXiv:1803.05567.

Hutchins, J. and Lovtskii, E. (2000). Petr petrovich troyanskii (1894–1950): A forgotten pioneer
of mechanical translation. Machine translation, 15(3):187–221.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceedings
of NAACL.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002). Bleu: A method for automatic evalua-
tion of machine translation. In Proceedings of ACL.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. In Proceedings of NIPS.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 121

http://thumt.thunlp.org
http://thumt.thunlp.org

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with
subword units. In Proceedings of ACL.

Sergeev, A. and Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799.

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-attention with relative position represen-
tations. In Proceedings of NAACL-HLT.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2015). Minimum risk training
for neural machine translation. arXiv preprint arXiv:1512.02433.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Proceedings of NIPS.

Theano Development Team (2016). Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In Proceedings of NIPS.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., et al. (2016). Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144.

Zhang, J., Ding, Y., Shen, S., Cheng, Y., Sun, M., Luan, H., and Liu, Y. (2017). Thumt: An
open source toolkit for neural machine translation. arXiv preprint arXiv:1706.06415.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 122

	Introduction
	Features
	Models
	Training
	Inference
	Visualization

	Experiments
	Setup
	Results

	Conclusion and Future works

