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Abstract 

This study investigates the robustness and 

stability of a likelihood ratio–based (LR-

based) forensic text comparison (FTC) sys-

tem against the size of background popula-

tion data. Focus is centred on a score-based 

approach for estimating authorship LRs. 

Each document is represented with a bag-

of-words model, and the Cosine distance is 

used as the score-generating function. A set 

of population data that differed in the num-

ber of scores was synthesised 20 times us-

ing the Monte-Carol simulation technique. 

The FTC system’s performance with differ-

ent population sizes was evaluated by a gra-

dient metric of the log–LR cost (Cllr). The 

experimental results revealed two out-

comes: 1) that the score-based approach is 

rather robust against a small population 

size—in that, with the scores obtained from 

the 40~60 authors in the database, the sta-

bility and the performance of the system 

become fairly comparable to the system 

with a maximum number of authors (720); 

and 2) that poor performance in terms of 

Cllr, which occurred because of limited 

background population data, is largely due 

to poor calibration. The results also indi-

cated that the score-based approach is more 

robust against data scarcity than the fea-

ture-based approach; however, this finding 

obliges further study. 

1 Introduction: The Likelihood Ratio 

Framework and Forensic Text Com-

parison 

The likelihood ratio (LR) conceptual framework 

has been studied for its effect on various types of 

forensic evidence; it was mathematically shown 

that, with some very reasonable assumptions, the 

LR is the only way of assessing the uncertainty 

inherited in evidential evaluation (Aitken, 2018; 

Aitken and Taroni, 2004; Good, 1991). It is be-

coming recognised as the logical and legally cor-

rect framework for both analysing forensic evi-

dence and presenting it in court (Balding, 2005; 

Evett et al., 1998; Marquis et al., 2011; Morrison, 

2009; Neumann et al., 2007). Yet, some argue that 

the LR is one possible tool for communicating to 

decision makers (Lund and Iyer, 2017: 1). Alt-

hough forensic text comparison (FTC) currently 

lags behind other forensic sciences, some studies 

have demonstrated that linguistic text evidence 

can be properly analysed using the LR framework 

(Ishihara, 2014, 2017a, 2017b). 

In the LR framework, instead of assessing the 

probabilities of two competing hypotheses given 

the evidence, the probabilities of observing the ev-

idence (E) are assessed given the hypotheses: the 

prosecution hypothesis (Hp) against the defence 

hypothesis (Hd) (Aitken and Stoney, 1991; Aitken 

and Taroni, 2004; Robertson et al., 2016). There-

fore, the LR can be defined as in Equation (1). 

LR=
p(E|Hp)

p(E|Hd)
 (1) 

In the case of FTC, the LR is the ratio between 

the two conditional probabilities of the measured 

difference (considered the evidence E) between the 

source-known texts (i.e., from the suspect) and the 

source-questioned texts (i.e., from the offender): 

one represents the probability of the evidence if 

they had been produced by the same author (Hp), 

and the other represents the probability of observ-

ing the same evidence if they had originated from 

different authors (Hd).  

Thus, the evidence E, which is the measured dif-

ference between two texts (x,y) can be expressed as 

Δ(x,y). A bag-of-words model is used to represent 

each text in this study. Thus x and y stand for the 

vectors of relative word frequencies (𝑤𝑖
𝑗
,  𝑖 ∈

{1⋯𝑁}, 𝑗 ∈ {𝑥, 𝑦} ) of the texts to be compared 

(x= {𝑤1
𝑥, 𝑤2

𝑥⋯𝑤𝑁
𝑥}   and y= {𝑤1

𝑦
, 𝑤2

𝑦
⋯𝑤𝑁

𝑦
} ). 
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Thus, Equation (1) can be rewritten as Equation 

(2), where f denotes a probability density function. 

LR=
𝑓(𝛥(𝑥, 𝑦)|𝐻𝑝)

𝑓(𝛥(𝑥, 𝑦)|𝐻𝑑)

=
𝑓(∆({𝑤1

𝑥 , 𝑤2
𝑥⋯𝑤𝑁

𝑥}, {𝑤1
𝑦
, 𝑤2

𝑦
⋯𝑤𝑁

𝑦
})|𝐻𝑝)

𝑓(∆({𝑤1
𝑥 , 𝑤2

𝑥⋯𝑤𝑁
𝑥}, {𝑤1

𝑦
, 𝑤2

𝑦
⋯𝑤𝑁

𝑦
})|𝐻𝑑)

 
(2) 

The probability density functions under Hp and 

Hd need to be trained from a data set of scores.  

Once a forensic scientist has estimated the LR as 

the weight of the evidence, the LR is then inter-

preted as a multiplicative factor by which the 

Bayesian theorem is used to update the prior odds 

(the factfinder’s prior beliefs about the hypotheses) 

to the posterior odds (the factfinder’s beliefs after 

observing the evidence). The factfinder (e.g., jury 

or judge) is thus responsible for quantifying the 

prior odds of the hypotheses, and the forensic sci-

entist is responsible for estimating the LR. That is, 

the ultimate decision of a case (i.e., guilty or not 

guilty) is determined by the factfinder, who must 

update the prior odds to the posterior odds with the 

LR. 

In this study, LRs are estimated using a score-

based approach that has been extensively studied 

with several evidence types (Bolck et al., 2015; 

Hepler et al., 2012; Ramos et al., 2017). An alter-

native to the score-based approach is the feature-

based approach, which has been applied to author-

ship text evidence (Ishihara, 2014). In score-based 

approaches, the likelihood of the score—which is 

usually quantified as a similarity/difference or a 

distance between paired samples that can be repre-

sented in the form of feature vector—is assessed 

against the probabilistic distributions from the 

same-source and different-source scores. This pro-

cess is called score-to-LR conversion. The conver-

sion model must be constructed with relevant train-

ing data; naturally, the more the data, the more ac-

curately the system can perform. 

The types and conditions of the linguistic evi-

dence used in criminal cases are all unique. It is of-

ten the case that relevant data for the case must be 

collected in a customised manner from scratch to 

train the score-to-LR conversion model. However, 

forensic scientists usually cannot afford to collect 

such a large number of data. Therefore, it is crucial 

that forensic scientists know how the FTC system’s 

performance is influenced by the number of data. 

 
1 Available at http://bit.ly/1OjFRhJ. 

For this purpose, a series of experiments was con-

ducted with the data that were synthesised by a 

Monte-Carlo simulation technique. 

2 Experiment Design 

Two sets of experiments were conducted, with the 

first set aiming to identify the conditions under 

which the FTC system optimally performs (see 

Section 3.1). 

In the second set, with the best-performing con-

ditions set, the FTC system’s performance is as-

sessed by altering the data number for training the 

score-to-LR conversion model (see Section 3.2). 

The database, pre-processing of data, logistic–re-

gression calibration and assessment metrics are 

also discussed in this section. 

2.1 Database 

The current study used a portion of the Amazon 

Product Data Authorship Verification Corpus 1 

(Halvani et al., 2017), which contained 21,534 

product reviews from 3,228 reviewers. The review 

texts were equalised to be approximately 4kB in 

size, which corresponds to approximately 750 

words in length. The reviewers contributed multi-

ple product reviews for Amazon, but only those 

who produced six or more reviews were selected 

from the corpus, resulting in 2,160 reviewers. Only 

the first six reviews of each reviewer were selected 

for the two sets of experiments. 

To compare a source-questioned (offender) sam-

ple and a source-known (suspect) sample, the six 

reviews were first separated into two groups: the 

first three and the last three, from which three doc-

uments that differed in word length (750, 1,500 and 

2,250 words) were created by concatenating them. 

The first review text of each group was used as it 

originally appeared (i.e., as a document of 750 

words). The first and second texts were also con-

catenated into a document of 1,500 words. All 

three texts were then combined into a document of 

2,250 words. Documents of different word lengths 

were prepared for testing the correlation between 

the number of words and the system’s perfor-

mance. 

2.2 Database Partition 

The entire database was divided into the three mu-

tually exclusive sub-databases of ‘test’, ‘back-
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ground’ and ‘development’, each of which com-

prised documents from 720 authors (=2,160/3). 

The documents from the test database were used to 

assess the system’s performance by generating 

same-author (SA) and different-author (DA) com-

parisons. From the 720 authors from the test data-

base, each of whom had two documents for each 

word length, 720 SA comparisons and 517,680 DA 

comparisons (720C2×2) were possible for each word 

length. 

The documents from the background database 

were used to obtain SA and DA scores, which were 

in turn used to train the score-to-LR conversion 

model. The composition of the background data-

base was identical in quantity to that of the test da-

tabase. That is, 720 SA scores and 517,680 DA 

scores could be obtained from the background da-

tabase. 

The resultant LRs after the score-to-LR conver-

sion may not have been calibrated due to various 

reasons. In this case, the uncalibrated LRs had to 

be converted to interpretable LRs through a pro-

cess of calibration. A typical and robust model for 

the calibration procedure is logistic regression 

(Morrison, 2013), and the development database 

was used to train the logistic regression. A more de-

tailed explanation for logistic–regression calibra-

tion is provided in Section 2.4. 

2.3 Tokenisation and a Bag-of-Words Model 

Documents were tokenised with the tokens() func-

tion in the quanteda library (Benoit et al., 2018) of 

the R statistical package in the default setting. That 

is, all characters were changed to lower case and 

punctuation marks were not removed; the punctu-

ation marks were thus considered single-word to-

kens. No stemming algorithm was applied. 

The 420 most frequent words appearing in the 

entire dataset were selected as components for the 

bag-of-words model. The relative frequencies of 

the words in the model were then calculated for 

each document. These relative frequencies were 

used instead of word counts because the length of 

each document varied. The word frequencies of the 

bag-of-words vector were z-score normalised to 

equalise the amount of information across the 

words in the vector. If this step was not taken, then 

the information that was encoded in the frequently 

occurring words would substantially and unevenly 

influence the outcomes of the experiments, as word 

frequencies follow the distribution described by 

Zipf’s law (Zipf, 1932). 

2.4 Logistic–Regression Calibration 

The LRs that are estimated using the score-

based approach are usually well calibrated; they 

can thus be interpreted as the weight of evidence. 

As will be reported in Section 4, LRs become less 

calibrated when the background data are limited.  

Figure 1 contains two Tippett plots which show 

the magnitude of the LRs derived from a simula-

tion under a specific experimental condition (ran-

domly generated scores from 10 authors for 2,250 

words). Tippett plots show the cumulative propor-

tion of the LRs of the SA comparisons, which are 

plotted rising from the left, as well as of the LRs of 

the DA comparisons, plotted rising from the right. 

For the Tippett plots, the cumulative proportion of 

trails is plotted on the Y-axis against the log10 LRs 

on the X-axis. The intersection of the two curves is 

the equal error rate (EER) which indicates the op-

erating point at which the miss and false alarm 

rates are equal. As can be seen from Figure 1a, the 

intersection of the two curves is not aligned with 

log10LR=0. That means, the derived LRs are not 

well calibrated; thus they cannot be interpreted as 

the weight of evidence.  

These uncalibrated LRs must be converted to 

calibrated LRs to be interpreted as the weight of 

evidence. A logistic–regression calibration 

(Brümmer and du Preez, 2006) is employed for this 

purpose. Logistic-regression calibration is oper-

ated by applying linear shifting and scaling to the 

uncalibrated LRs, in the log odds space, relative to 

a decision boundary; its aim is to minimise the 

magnitude and incidence of uncalibrated LRs that 

are known to misleadingly support the incorrect 

hypothesis, and also to maximise the values of un-

calibrated LRs correctly supporting the hypothe-

ses. A logistic-regression line, the weights of which 

are estimated on the basis of the LRs derived from 

a training database, is used to monotonically shift 

and scale the uncalibrated LRs to the calibrated 

LRs. By way of exemplification, assuming a lo-

gistic-regression line of the type y=ax+b (where x 

is the uncalibrated LR and y is the calibrated LR, 

and the weights, a and b, are estimated on the basis 

of the (uncalibrated) LRs derived from the devel-

opment database), the formula y=ax+b is used to 

shift by the amount of b, and scale by the amount 

of a, the uncalibrated LRs to the calibrated LRs. 

The LRs presented in Figure 1b are the outcome of 

the application of logistic-regression calibration to 

the LRs given in Figure 1a.  



4 

2.5 Performance Evaluation 

It is common to assess the performance of any 

identification or classification system based on its 

accuracy and error rates. However, accuracy and 

error rates are binary and categorical (e.g., correct 

or incorrect); this is not suitable for the nature of 

LR, which is gradient and continuous.  

A more appropriate metric for assessing LR-

based systems is arguably the log–LR cost (Cllr) 

(Brümmer and du Preez, 2006), which was origi-

nally developed for LR-based automatic speaker 

recognition systems. Cllr can be obtained through 

Equation (3). 

𝐶𝑙𝑙𝑟 =
1

2

(

 
 
[
1

𝑁𝑆𝐴
∑ 𝑙𝑜𝑔2 (1 +

1

𝐿𝑅𝑖
)

𝑁𝑆𝐴

𝑖 
]

+ [
1

𝑁𝐷𝐴
∑ 𝑙𝑜𝑔2(1 + 𝐿𝑅𝑗)

𝑁𝐷𝐴

𝑗
]
)

 
 

 (3) 

𝑁𝑆𝐴 and 𝑁𝐷𝐴 refer to the number of SA and DA 

comparisons, respectively. LRi and LRj refer to the 

linear LRs that are derived from these SA and DA 

comparisons. In this metric, all LRs (except ±infin-

ity) are attributed penalties in proportion to their 

magnitudes, with the LRs that support the counter-

factual hypotheses being more severely penalised. 

The Cllr is based on information theory, and if the 

Cllr value is higher than one, then the system is per-

forming worse than not utilising the evidence at all. 

The Cllr is a metric that assesses a system’s over-

all validity. It comprises two components: discrim-

ination loss (Cllr
min) and calibration loss (Cllr

cal): 

Cllr=Cllr
min+Cllr

cal. The Cllr
min is a theoretical mini-

mum Cllr value that can be obtained through pool 

adjacent violators algorithms (Brümmer and du 

Preez, 2006). 

3 Experiments 

3.1 Preparatory Experiments and Outcomes 

A series of FTC experiments was conducted 

with a score-based LR approach to identify under 

what conditions the system would yield the best 

outcome. In these experiments, scores were meas-

ured with Cosine distance, with the bag-of-words 

model consisting of N most frequent words. The 

scores were then converted to their LRs based on 

the conversion model that was trained by the scores 

calculated from the SA and DA comparisons, 

which were compiled from the background data-

base. The size (N) of the bag-of-words vector is in-

cremented from N=20 to N=420 by 20 to identify 

the best-performing N. The Normal, Log-Normal, 

Weibull and Gamma models were tried as possible 

conversion models, but only the model that fit the 

data best in terms of the Akaike information crite-

rion (AIC) (Akaike, 1974) was selected for each 

experiment (separately for the SA and DA models). 

Cosine distance was used because of its superior 

performance to other measures (Evert et al., 2017; 

Smith and Aldridge, 2011). 

The Cllr values are plotted as a function of the 

feature number (N) in Figure 2, separately for 750, 

1,500 and 2,250 words. Regardless of the word 

length, the system performed best with N=260. The 

overall trend for the Cllr trajectory is similar across 

the word lengths, revealing a relatively large im-

provement in performance as the N increased from 

20 to 120 and the Cllr values started converging to-

wards N=260. After N=260, the performance re-

mained relatively unchanged, indicating that the 

inclusion of less-frequent words did not contribute 

to the improvement. 

 

Figure 1: Example Tippett plots showing uncali-

brated (Panel a) and calibrated (b) LRs. Black=SA 

LRs; Grey=DA LRs; Solid curves=uncalibrated 

LRs; Dotted curves=calibrated LRs. 
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The best-fitted models when N=260 are outlined 

in Table 1 and are used for the Monte-Carlo simu-

lation. 

3.2 Experiments with the Monte-Carlo Sim-

ulation 

In the preparatory experiment, the score-to-LR 

conversion models were trained with the data in the 

background database, which comprised texts writ-

ten by 720 authors. Using the model as the basis, 

the scores of X number of authors (X=[5, 10, 20, 

30, 40, 60, 80, …, 720]) were randomly generated 

20 times to build the conversion models.  

The Normal, Log-Normal, Weibull and Gamma 

parametric models were fitted to the scores that 

were randomly generated separately for SA and 

DA comparisons in the maximum likelihood esti-

mation method. The best-fitted model was chosen 

according to its AIC values. 

Figure 3 illustrates the simulation process for the 

length of 750 words. Out of the texts written by 720 

authors from the background database, 720 SA and 

517,680 DA scores were estimated. These scores 

are plotted as histograms: the white histogram rep-

resents SA and the grey histogram represents DA. 

Their fitted models (Weibull) are presented as solid 

red and blue curves, respectively. From these two 

models, the scores for the SA and DA compari-

sons—which are possible from 30 authors (i.e., 30 

SA and 870 SA scores)—were randomly generated 

20 times. Their models are represented by thin 

black curves. These models were used for the 

score-to-LR conversion. 

 

Figure 3: Illustration of a Monte-Carlo simulation 

with the base SA and DA scores, of which the his-

tograms are white and grey, respectively. The red 

and blue curves are models of the SA and DA 

scores, respectively. The thin lines represent the 

models of the 20 sets of randomly generated scores 

from 30 authors. 

4 Results and Discussions 

The boxplots presented in Figure 4 reveal the de-

gree of fluctuations in the Cllr values of the 20 sim-

ulations; they also indicate how the Cllr values con-

verge as the number of authors increases.  

Regardless of the word length, the FTC system’s 

performance substantially fluctuates when the 

background database only comprises the text sam-

ples from 5~10 authors; that is, the performance is 

not stable. However, this instability quickly recov-

ers if the text samples are collected from 20 or 

more authors. This is a positive finding in terms of 

FTC’s practical application, as forensic scientists 

cannot afford the time and money required to col-

lect a large number of data that are relevant to each 

case if they cannot find an already-existing dataset 

that is suitable to the case. 

 

Figure 2: Cllr values plotted as a function of the number of features, separately for the word lengths of 750, 

1,500 and 2,250. The large circles indicate the best Cllr. 

 SA scores DA scores 

750 Weibull Weibull 

1500 Weibull Normal 

2250 Weibull Normal 

Table 1: Best-fitted parametric models for the SA 

and DA scores. 
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It is evident from Figure 4 (black circles) that the 

system’s overall performance improves exponen-

tially from N=5 to N=40, resulting in the outcome 

in which the performance with N=40 is nearly 

compatible with its performance with N=720. 

To further investigate the reasons underlying the 

fluctuations in performance (especially with the 

small number of N), the Cllr
min and Cllr

cal values 

(discrimination loss and calibration loss, respec-

tively) are plotted separately in Figures 5 and 6, re-

spectively. They are presented in the same manner 

as Figure 4. As can be observed in Figure 5, being 

apart from the word length of 750, the system’s dis-

criminability is highly stable, even with small Ns. 

Specifically, regarding the word length of 2,250, 

Figure 5c reveals that the Cllr
min values are constant 

and far less fluctuated, as they are not affected by 

the number of authors in the background database. 

That is, in terms of discrimination performance, 

when many words (e.g., 1,500 and 2,550 words) 

are available, the system is robust and stable 

against a small background population size. 

In contrast, Figure 6 indicates that the Cllr
cal val-

ues exhibit a highly similar trend to that of the Cllr 

values that are plotted in Figure 4—in that, a great 

variability in the Cllr
cal values is observed when the 

number of authors is small (e.g., N=5~10); how-

ever, this variability begins converging rapidly 

with more authors. This signifies that the Cllr
cal val-

ues also demonstrate a quick recovery with more 

authors. The observations drawn from Figures 5 

and 6 reveal that the poor performance associated 

with a small number of authors (N=5~10), as indi-

cated by the Cllr values from Figure 4, is not due to 

the system’s poor discriminability, but due to poor 

calibration. 

 

 

 

Figure 4: Boxplots displaying the degree of fluctuation in Cllr values as a function of the size of the background 

database. Black circles indicate the mean Cllr values for each size of the background database. 
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Following this interpretation, logistic–regres-

sion calibration was applied to all LRs, in which a 

gain in overall performance was expected. The Cllr 

values of the calibrated LRs are again plotted as 

boxplots in Figure 7. It is apparent from Figure 7 

that the system’s performance has noticeably im-

proved in both stability and accuracy; the degree of 

fluctuations in the Cllr values is lessened and the 

mean Cllr values are lower, even with small Ns. 

Ishihara (2016) previously investigated how 

background population size affected the perfor-

mance of an LR-based FTC system. In the experi-

ments, the LRs were estimated using the multivar-

iate kernel density (MVKD) LR formula (Aitken 

and Lucy, 2004), with two to eight stylometric fea-

tures. Texts collected from 140 authors were used 

to extract necessary statistical information for a 

Monte-Carlo simulation, for which a mixture 

Gaussian model was used. The MVKD is a type of 

feature-based approach for estimating LRs. The 

population size was incremented by 10 from 10 au-

thors to 140 authors. 

Although a direct comparison between the cur-

rent study and Ishihara’s (2016) study cannot be 

validly made, some noticeable differences can still 

be highlighted. The number of features (2~8) used 

in Ishihara’s study was far smaller than that of the 

current study (260), and Ishihara reported a great 

improvement in Cllr (from 10 to 50~60 authors), af-

ter which a small but continuous improvement 

could be observed with more authors. He also re-

ported a relatively high variability in Cllr, even with 

a large number of authors (e.g., 140). 

 

 

 

Figure 5: Boxplots displaying the degree of fluctuation in Cllr
min values as a function of the size of the back-

ground database. Black circles indicate the mean Cllr
min values for each size of the background database. 



8 

In light of these comparative observations, the 

FTC system’s performance appears to reach its op-

timum with a smaller population size for the score-

based approach rather than for the feature-based 

approach. Further, the fluctuation in performance 

also begins converging with a lesser number of 

background data for the score-based approach than 

for the feature-based approach. The relative robust-

ness of the score-based approach that the current 

study revealed for linguistic text evidence aligns 

with the findings in previous studies regarding 

other types of evidence (Aitken, 2018; Bolck et al., 

2015). However, the difference in performance be-

tween the score- and feature-based approaches 

must be further investigated under mutually com-

parable conditions. 

Based on Figure 7, it can be concluded that lo-

gistic–regression calibration leads to an improve-

ment in terms of the system’s stability and validity. 

For training the logistic–regression weights, the 

development database that comprised the texts 

from 720 authors was employed. It is evident that 

the calibration performance also mainly relies on 

the quantity of the data in the development data-

base. The positive outcome after applying the cali-

bration is likely attributable to the amount of data 

in the development database. Therefore, it is perti-

nent to analyse how the development database’s 

size influences the FTC system’s performance, as 

the application of calibration appears to be essen-

tial when the background database is substantially 

small in number (e.g., 5~10 authors). 

 

 

 

Figure 6: Boxplots showing the degree of fluctuation in Cllr
cal as a function of the size of the background data-

base. Black circles indicate the mean Cllr
cal values for each size of the background database. 
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5 Conclusion and Further Study 

The robustness and stability of a score-based LR 

FTC system with a bag-of-words model were in-

vestigated with different numbers of background 

population data, which were synthesised by a 

Monte-Carol simulation. The experiments’ results 

revealed that the score-based FTC system is fairly 

robust and stable in performance against the lim-

ited number of background population data. For 

example, with 40~60 authors, the performance is 

both nearly compatible and as stable as with 720 

authors. This is a beneficial finding for FTC prac-

titioners. Additionally, the instability and subopti-

mal performance observed in terms of Cllr with a 

small number of data (e.g., 5~20 authors) were 

mainly attributed to poor calibration (i.e., the de-

rived LRs were not calibrated) rather than to the 

poor discriminability potential.  

A comparison with the outcomes of previous 

studies indicates that the score-based approach 

may be more robust against a limited number of 

background population data than a feature-based 

approach; however, this point warrants further 

study. 
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Figure 7: Boxplots revealing the fluctuation of Cllr after logistic–regression calibration. 
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