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Abstract

In neural semantic parsing, sentences are
mapped to meaning representations using
encoder—decoder frameworks. In this paper,
we propose to apply the Transformer architec-
ture, instead of recurrent neural networks, to
this task. Experiments in two data sets from
different domains and with different levels of
difficulty show that our model achieved better
results than strong baselines in certain settings
and competitive results across all our experi-
ments.

1 Introduction

Semantic parsing maps natural language sentences
to meaning representations including, but not lim-
ited to, logical formulas, Structured Query Lan-
guage (SQL) queries, or executable codes. In re-
cent years, end-to-end neural semantic parsing has
achieved good results (Dong and Lapata, 2016; Jia
and Liang, 2016a; Ling et al., 2016; Dong and La-
pata, 2018; Finegan-Dollak et al., 2018). The main
advantage of these models is that they do not re-
quire intermediate representations, lexicons, man-
ually designed templates, or handcrafted features.

Current neural semantic parsing models use
encoder—decoder architectures with Recurrent
Neural Networks (RNNs). One drawback of
RNNSs is their inability to capture long distance
relationships between input tokens or between in-
put and output tokens (Yu et al., 2019). Hence,
to model dependencies disregarding their distance,
the best performing models also include some
kind of an attention mechanism (Vaswani et al.,
2017), which allows to model dependencies more
accurately; specifically, the Transformer archi-
tecture introduced in this last reference has be-
come the new state-of-the-art for sequence-to-
sequence problems.

The Transformer architecture consists of a self-
attention mechanism and does not include recur-
rent layers. Unlike RNNs, in which sequences

are processed sequentially — word by word —
Transformer models process the entire sentence as
a whole. This characteristic is particularly bene-
ficial in capturing long distance dependencies as
the self-attention mechanism sees all the words
at once. Despite the success of Transformer, to
the best of our knowledge, prior to Li (2019) that
founded our paper, this framework has never been
applied to semantic parsing before. Thus, in this
paper, we propose the Transformer architecture for
semantic parsing.

A well-known limitation of sequence-to-
sequence models is their inability to learn
competitive parameter values for words that are
rare in a given data set. To alleviate this problem,
a common method is to anonymise entities with
their respective types. For example, city names
such as Denver are anonymised as ci0 and later,
as part of post-processing, put back in the output
utterance.  Neural semantic parsing models
are usually trained and tested using data sets
where variables are identified and anonymised
beforehand — as in the example above — which
considerably reduces the difficulty of the semantic
parsing task (Finegan-Dollak et al., 2018). As a
result, many input sentences of the test set are
seen prematurely while training.

Consequently, we have a twofold approach to
evaluate our model more extensively in this work
and demonstrate its contributions to semantic pars-
ing: First, we use non-anonymised versions of two
data sets for semantic parsing from different do-
mains, as well as different data splits. Second, we
test the ability of our model to compose new out-
put meaning representations. These experiments
give evidence of the Transformer model outper-
forming strong baselines in certain settings. Its re-
sults are competitive on other settings across the
data sets.

The rest of the short paper is organised as fol-
lows: Section 2 includes the related work in neu-



ral semantic parsing. Section 3 describes our
model architecture, data sets, and experimental
setup. Section 4 introduces our experimental re-
sults. Section 5 concludes our study.

2 Related Work

Encoder—decoder architectures based on neural
networks have been applied in the past five years
(i.e., up to, and including, 2019) to semantic pars-
ing, but they have typically learnt from sentences
paired with meaning representations without using
explicit syntactic knowledge. Dong and Lapata
(2016) have proposed two models with an atten-
tion mechanism as follows: the first model gener-
ates sequences and the second one generates trees
as logical formulae that are hierarchically struc-
tured. Both models include an attention mech-
anism over a RNN that has the ability of focus-
ing on a subset of input tokens or features. They
also provide soft alignments between the input
sentences and the logical formulae. Later, Dong
and Lapata (2018) have proposed to use a two-
step (coarse-to-fine) decoder to better model the
compositionality of the logical formulae. Finally,
to overcome the limitations of semantic parsing
data sets being small and domain-dependent, sev-
eral methods, such as multi-task learning (Susanto
and Lu, 2017; Herzig and Berant, 2017; Fan et al.,
2017), transfer learning (Kennardi et al., 2019;
Damonte et al., 2019) , and data augmentation
(Jia and Liang, 2016a; Kocisky et al., 2016), have
been applied.

However, the aforementioned models cannot
address the fact that the distance between tokens
is not always an indication of a weak relation-
ship. This problem becomes significantly worse
for long sentences paired with long logical formu-
lae. Thus, we propose to use a Transformer-based
model in which token relations are not affected by
the (long) distance.

As mentioned, data sets for semantic parsing
are small and neural models do not tend to be
good at learning the appropriate parameters for the
long tail of rare words. To mitigate this problem,
a common method is to apply variable or entity
anonymisation as a pre-processing step. Later, the
entities are put in the output sequence in a post-
processing step. Another strategy is to use Pointer
networks (Vinyals et al., 2015) where input tokens
are copied to the output sequence at each decoding
step. Moreover, attention-based copying (Jia and

Liang, 2016b) refers to a mechanism in which the
decoder can either choose to copy over a word to
the output sequence or to pick from a softmax over
the entire vocabulary. In our study, we use two
data sets from different domains with and with-
out variable anonymisation, and different splits to
reflect diffing complexity levels of the semantic
parsing task.

3 Methods

As our model architecture, we have implemented a
self-attention neural semantic parsing model with
the mechanism of Transformer (see Vaswani et al.
(2017, Figure 1) for further information). As in
other state-of-the-art sequence-to-sequence archi-
tectures, Transformer is essentially an encoder—
decoder structure with blocks for encoding and de-
coding. Similar to other neural generation mod-
els with attention, the output of the last layer of
the encoder is used as part of the input of each
layer of the decoder. The most significant dif-
ference between Transformer and other sequence-
to-sequence models is that Transformer uses nei-
ther Convolutional Neural Networks (CNNs) nor
RNNs. Instead, it uses self-attention, which re-
duces path lengths within the network, thus min-
imising the loss of information due to computa-
tions.

Identical encoder blocks consist of multi-head
self-attention and fully-connected feed-forward
layers. After each layer there is a residual module,
followed by a normalisation step. This produces a
512-dimensional output.

Each of identical decoder blocks has a multi-
head self-attention layer, fully-connected feed-
forward layer, and multi-head attention layer over
the output of the encoder stack. Again, a resid-
ual module and normalisation step are applied to
each output layer. Multi-head self-attention layers
in encoding and decoding are similar, except in the
latter one adds a mask operation between scaling
and the softmax activation function. The reason
for adding this look-ahead mask is to avoid that
at the timestamp ¢, the tokens after ¢ are used for
predicting token at ¢ .

In most Natural Language Processing tasks, the
model should capture the order and position in-
formation from the sequential inputs. This is one
of the advantages of RNNs and CNNs. Thus,
our model includes a position embedding in the
source and target inputs as in Vaswani et al.



Table 1: Example sentences and their corresponding
logical formulae. Abbreviations: anon — anonymised,
ground_transport — GT, quest — question,

Data set Input Output
ATIS ground transport  (lambda $0
in ci0 e (and GT)
(to_city
ci0)))
ATIS ground transport  (lambda
non—-anon in Denver 50 e (and
quest-split (GT $0)
(to_city $0
denver)))
GEO how many citi- (population:i
zen in sO s0)
GEO how many citi- (population
non—anon zens in Alabama alabama)
quest-split
GEO how many citi- (population
non—anon zens in Boulder  boulder)

query-split

Table 2: Number of training (Train), development
(Dev), and test (Test) examples

Data set Train Dev Test
ATIS 4,434 491 448
ATIS non—-anon 4,029 504 504
GEO 600 0 280
GEO non-anon 583 15 279
quest-split

GEO non-anon 543 148 186

query-split

(2017). Furthermore, word embeddings are ran-
domly initialised for source and target inputs to
treat them equally.

We use the Adam optimiser. The learning rate is
set to 3x 104, The dimension of the self-attention
model is 1,024. From 6 to 8 encoder and decoder
blocks are used. The dropout rate is 0.4 and maxi-
mum number of epochs 720 with early stopping.

We have used two semantic parsing data sets
— namely ATIS with queries from a flight book-
ing system (Price, 1990; Dahl et al., 1994; Zettle-
moyer and Collins, 2007) and GEO with queries
about US geographical information (Zelle and

Table 3: Vocabulary (vocab) size for sentences and log-
ical forms in the ATIS and GEO training sets. Entity
anonymisation has a bigger impact in the vocab size of
the input (I) than in the vocab size of the output (O).

Data set Ivocab O vocab
ATIS 166 433
ATIS non—-anon 444 887
GEO 51 120
GEO non—-anon quest-split 141 243
GEO non-anon query-split 149 254

Table 4: The accuracy [%] on ATIS and GEO on
anononymised test sets

Model ATIS GEO
Statistical Baselines

7C07 (Zettlemoyer and Collins, 2007) 84.6 86.07
TISP (Zhao and Huang, 2015) 84.2 88.9
Neural Baselines

Seq2Seq + Attention (Dong and Lapata,  84.15 84.6
2016)

Seq2Tree + Attention (Dong and Lap- 86.9 87.1
ata, 2016)

ASN (Rabinovich et al., 2017) 85.3 85.7
ASN + Attention (Rabinovich et al., 859 87.1
2017)

coarse2fine (Dong and Lapata, 2018) 87.7 88.2
Our Neurals

Bi-GRU 85.93 86.42
Transformer 87.95 86.78

Mooney, 1996; Zettlemoyer and Collins, 2005) —
for evaluation. The meaning representation of data
sets is lambda calculus.

There are two types of data set splits:
question-split and query-split. In the
former, training and testing examples are divided
based on questions, thus based on the input se-
quence. In the latter, training and test examples
are divided according to the similarity of their
meaning representations, thus based on output se-
quences. In other words, training and testing ex-
amples in query—-split are strictly controlled
to have a more diverse set of logical formulae.
Therefore, its use is more appropriate when evalu-
ating the model’s capability to compose output se-
quences (i.e., lambda calculus expressions here).

For each split, data sets might contain vari-
ables with or without anonymisation (Tables 1
and 2, resulting in two versions of the first data
set (i.e., ATIS question-split and ATIS
question-split non-anonymised) and
three versions of the second data set (i.e., GEO
question—-split, GEO question-split
non—anonymised, and GEO query-spit
non—-anonymised). Versions of GEO without
anonymisation are from Kennardi et al. (2019) and
splits originate from Finegan-Dollak et al. (2018).

As output logical formulae cannot be partially
correct, we report the exact match by computing

# of correct formulae

Accuracy = - .
y # test examples in the test set

4 Results

Our self-attention neural semantic parsing model
became the new state-of-the-art on ATIS with



Table 5: The accuracy [%] on non-anononymised (NA)
ATIS and GEO test sets

Model ATIS GEO GEO
NA NA NA
quest query
split split
Seq2Seq + Attention 72.02 67.39 41.94
(Dong and Lapata,
2016)
coarse2fine (Dong and 79.1 72.4 52.69
Lapata, 2018)
Bi-GRU 73.41 724 56.45
Transformer 75.99 75.27 63.98
Table 6: Difficult examples
Data set Input Output
ATIS fare code fbO0 what doe that b0
mean
what type of plane is a acO ac0
GEO what is the average population density:i sO

per square km in sO

what is the length of the rOinsO  len:i 10

its accuracy of 87.95% (Table 4). However, the
best result on GEO was by a statistical seman-
tic parser called Type-Driven Incremental Seman-
tic Parsing (TISP) (Zhao and Huang, 2015). The
result was explained by our model overfitting on
GEO that has fewer examples than ATIS, regard-
less of us using a smaller self-attention model on
GEO that on ATIS (i.e., 8 vs. 16 heads). As
expected, regardless of the model, results entity
with anonymisation were always better than with-
out (Table 5). On ATIS (GEO), this difference
was approximately 10% (at least 15%). The GEO
query-split task — with more diverse input
and output instances — was harder than the GEO
question-split task. Results indicated that
our model is capable of capturing relationships by
learning token attributes as opposed to only one-
to-one mappings from a token in a sentence to a
token in a logical formula.

Thus, Transformer was powerful in seman-
tic parsing. The model outperformed its baselines
on ATIS, GEO question split, and GEO query split
with the best accuracy values of 87.95%, 75.27%,
63.98%, respectively. Our implementation of Bi-
GRU was also competitive, achieving better re-
sults than the baseline model from (Dong and La-
pata, 2016) across these data and outperforming
all baselines on GEO query-split. We argued
that Transformers are better at capturing long dis-
tance dependencies a the model process an sen-
tence is process as a whole, instead of word by

word. However, the Transformer implemented in
this research is known to have an upper limit to the
distances over it can easily learn relationships (Dai
et al., 2019).

Token generation was an important feature in
our comparisons although theoretically the differ-
ence between Seq2Seq’s Long Short-Term Mem-
ory (LSTM) and our basic model’s Bi-Directional
Gated Recurrent Units (Bi-GRU, which performed
substantially worse) should have been minor.
Seq2Seq used a greedy search! for token gen-
eration while all other models beam searched,’
which tends to be a better choice for sequence-to-
sequence models.

Table 6 shows example instances that were dif-
ficult for every model. There was a considerable
difference between the length of input sentences
(Input column) and their corresponding logical
forms (Output column). This was explained by
sequence-to-sequence models’ tendency to not
choose the end of sequence (<eos>) when begin-
ning the generation process, because of them hav-
ing learnt that logical formulae are usually longer
than one or two tokens (i.e., the probability of
<eos> is low in the beginning of decoding which
makes the mapping from long inputs to short out-
puts inaccurate).

5 Conclusion and Future Work

We evaluated the Transformer architecture for se-
mantic parsing. The model was extensively eval-
uated with two data sets from different domains
— with and without anonymisation — across a
range of complexity levels. Experiments shows
Transformer is competitive with other state-of-the-
art models and outperformed strong baselines in
some settings.

For future work, it would be interesting to de-
sign a tree-structure self-attention model. As log-
ical forms are tree-structures, adding some con-
straints in the decoder to enforce tree-based de-
coding would be of particular interest.

!Greedy search generates the next token with the highest
probability relating to the current output sequence. While
this strategy is suitable for the current timestamp, it may be a
sub-optimal choice to construct the full output formula.

?Beam search has k-best output sequences each time and
it considers all options of combining those sequences and all
candidates in the vocabulary. Then, it chooses k-best output
sequences to generate the end of sequence.
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