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Abstract
This study evaluates the robustness of two state-of-the-art deep contextual language representations, ELMo and DistilBERT, on
supervised learning of binary protest news classification (PC) and sentiment analysis (SA) of product reviews. A “cross-context” setting
is enabled using test sets that are distinct from the training data. The models are fine-tuned and fed into a Feed-Forward Neural Network
(FFNN) and a Bidirectional Long Short Term Memory network (BiLSTM). Multinomial Naive Bayes (MNB) and Linear Support Vector
Machine (LSVM) are used as traditional baselines. The results suggest that DistilBERT can transfer generic semantic knowledge to
other domains better than ELMo. DistilBERT is also 30% smaller and 83% faster than ELMo, which suggests superiority for smaller
computational training budgets. When generalization is not the utmost preference and test domain is similar to the training domain, the
traditional machine learning (ML) algorithms can still be considered as more economic alternatives to deep language representations.
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1. Introduction
A challenge the Natural Language Processing (NLP) com-
munity faces today is to leverage NLP systems from a
well-maintained test environment to more realistic scenar-
ios full of dynamism and diversity (Ettinger et al., 2017;
Hürriyetoğlu et al., 2019a). An NLP system should gener-
alize well to data coming from diverse sources differing in
time and space.
In the quest of building generalizable systems, the NLP
community attempts building task-agnostic models in an
unsupervised manner to represent generic syntactic and se-
mantic knowledge of a language. One of the solutions is to
create one big universal language representation and use it
as the initialization point for any NLP task.
One example of unsupervised language representations is
the famous word2vec (Mikolov et al., 2013), which cre-
ates continuous word vectors for each word in the vo-
cabulary derived from a large corpus in a fully unsuper-
vised manner by utilizing context information regarding
the neighboring words. word2vec creates fixed vectors
for each unique word in the vocabulary. In this sense, it
lacks representing the dynamism of the word meaning that
changes depending on the enclosing context.
The contextualization notion is the key to create universal
language representations that can handle the rich syntactic
and semantic space of real-life language usage. In this re-
spect, in the last couple of years, several deep contextual
neural architectures have been proposed, which have been
shown to perform surprisingly well on a diverse range of
downstream NLP tasks (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019).
However, there is still much to do to understand the true
capacity of these representations. The true limits of these
networks must be explored to understand how to build the
next-generation systems. Digging into these models might
even shed light on the general language understanding phe-
nomena itself on a cognitive level (Greenwood, 1992; Kell

et al., 2018). For this reason, exhaustive evaluation and in-
terpretation studies are needed to be performed on as many
different data and task sets as possible.
This study is conducted to contribute to the extrinsic eval-
uation of the robustness of two of these representations,
namely, ELMo and DistilBERT, by testing them on a bi-
nary classification of cross-context socio-political and lo-
cal news data, where the source and target data differ in
the originating country and domain (Hürriyetoğlu et al.,
2019a).
This study aims to answer the following questions:

1. How robust are ELMo and DistilBERT in the cross-
context socio-political news classification?

2. Are contextual representations better in the cross-
context than much smaller and faster traditional base-
lines?

3. Which one is more scalable in terms of model size and
training time: ELMo or DistilBERT?

The following conclusions are reached under the limita-
tions of the experimental setup (See Section 3.):

1. DistilBERT is more robust than ELMo in the cross-
context.

2. Both ELMo and DistilBERT outperform the baselines,
namely, Multinomial Naive Bayes (MNB) and Linear
Support Vector Machine (LSVM), in generalizing to
the cross-context.

3. DistilBERT is more efficient than ELMo with 30%
smaller size and on average for the two addressed
tasks, 83% faster training and testing time.

4. Traditional methods like MNB and LSVM can still
compete with contextual embeddings when training
and test data do not differ much.
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This study compares language representations and model
performance on both a sentiment analysis task and a re-
cently proposed task set that is realized around a recent
news data set: classifying protest news on local news
data sets consisting of multiple sentences and coming
from different country sources. A “cross-country” eval-
uation setting is realized by testing a model on a news
text coming from a different country than the training data
(Hürriyetoğlu et al., 2019a). While this study is one among
many that compare word representations for text classifi-
cation, this study diverges from most previous works by
evaluating cross-context performance in a novel domain.

2. Tasks and Data
The transfer capacity of ELMo and DistilBERT are ex-
plored under the light of two distinct text classification
tasks, each realized under a cross-context experimental set-
ting. One is a document-level binary text classification task
that is to classify English news articles from local newspa-
pers of India and China (Hürriyetoğlu et al., 2019a). The
other is to classify sentence-level Rotten Tomatoes movie
(Pang and Lee, 2005) and customer reviews (Hu and Liu,
2004).
The “null context” refers to the India news and movie re-
views data sets. The “cross-context” refers to the China
news and customer reviews data sets. For both tasks, the
null context data splits abide by the 75% - 10% - 15% pro-
portions for training, test, and development sets, respec-
tively. All cross-context data are used to test models trained
on null-context data’s train portion.

2.1. Protest News Classification
The task was designed as an auxiliary task for an active re-
search project (Hürriyetoğlu et al., 2019a), the main moti-
vation of which is to automate creation of protest events
database from diverse sources using NLP and Machine
Learning (ML) to enable a comparative political and so-
ciological study. A shared task set, namely, CLEF-2019
Lab ProtestNews on Extracting Protests from News, was
accordingly organized to address the challenge of building
NLP tools that are generalizable to different test data. A
cross-country evaluation setting was realized by training a
model on local newspapers of India and testing the model
on local newspapers of China.
The data consists of local India and China document-level
news articles in the English language. Training, valida-
tion, and test splits are provided by the shared task orga-
nizers. Each news article is annotated as whether it is about
a protest event or not. As illustrated in Table 1, the India
data is imbalanced with 22% protest class, the China data
is even more imbalanced with 5% protest class.

2.2. Challenges of Political Context
In previous work, it is seen that the classification of con-
tentious political events could be confusing to even domain
experts and the inter-annotator agreement could be surpris-
ingly low (King and Lowe, 2003). That confusion mostly
comes from the ambiguity in political terms. How a polit-
ical event could be interpreted can highly depend on local
culture, language usage, time, space and actors. Adding

Data Subset Size Protest Ratio
Ntrain 3430 0.22
Ndev 457 0.22
Ntest 687 0.22
Ctest 1800 0.05

Table 1: Protest news data statistics. Ntrain, Ndev, and
Ntest refer to training, development, and test splits of the
null context data of the tasks, respectively. Ctest refers to
the cross-context data.

the style and biases of the author of the news text, even a
single annotator may not be completely sure of his/her an-
notations, let alone agreeing with fellow annotators.
Within the context of contentious politics, “protest” can be
very broadly defined as engaging in a political dissent via
numerous actions such as demonstrating for rights, rallying
for political change, conducting a hunger strike, boycotting
rights, and so forth.

Figure 1: India news sample.

2.2.1. Local News Data
Political events are strongly connected to their local con-
text. Concerning protest news classification (PC), it should
be noted that protests might manifest through different
kinds of actions in different cultures. In Figure 1, the news
mentions a protest activity as “Goonda act”, which is a term
used in the Indian subcontinent for a hired criminal. In this
sense, analyzing local data of many countries can be useful
and mostly becomes a necessity to converge to a realistic
model of what protest means both globally and locally.

2.2.2. Small Data
Contextual language representations are known to have the
potential to substantially reduce the required training data
size to create satisfactory models via task-specific fine-
tuning on small data. As illustrated in Table 1. the protest
news data is also fairly small, with the number of training
samples less than 10000 (both local and cross-country data
sets).

2.2.3. Long Text
The protest news data set consists of fairly long samples
with 300 tokens on average.1 This may affect the model
performance in two different ways: A model may fail to
learn long term relationships within the text or a model may
simply not be able to utilize the whole text due to memory

1Here,“token” is used as a generic term for a unit output of a
sequence tokenization process.
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issues. In this case, very important parts of the data might
be lost. For example, the news sample in Figure 2 was clas-
sified falsely as “non-protest”, since the “protest” keyword
was clipped due to the limitation to maximum number of
tokens.

Figure 2: China news sample.

2.3. Sentiment Analysis
The other task addressed in this paper is to classify
sentence-level Rotten Tomatoes movie (MR) (Pang and
Lee, 2005) and customer reviews (CR) (Hu and Liu, 2004)
as “positive” or “negative”. The models are trained and
tested on sentence-level MR (Pang and Lee, 2005) in the
null context, and tested on sentence-level CR (Hu and Liu,
2004) in the cross-context.
Both sentiment data sets were exhaustively used earlier
(Kiros et al., 2015; Zhao et al., 2015; Conneau et al., 2017;
Conneau and Kiela, 2018; Logeswaran and Lee, 2018; Hill
et al., 2016). But in none of these studies a cross-context
setting is realized. They obtained the result via direct su-
pervision on the target tasks.

Data Subset Size Positive Ratio
Ntrain 7974 0.5
Ndev 1088 0.5
Ntest 1600 0.5
Ctest 3771 0.64

Table 2: Sentiment data statistics. Ntrain: Training split
of MR data set. Ndev: Development split of MR data set.
Ntest: Test split of MR data set. Ctest: CR data set as the
cross-context test data.

3. Experimental Setup
Four experiments are applied to better understand the cross-
context performance of the models. The classifiers are im-
plemented in the Python programming language using the
PyTorch library.2

2https://pytorch.org/

3.1. ELMo
ELMo (Peters et al., 2018) is a deep context-dependent rep-
resentation learned from the internal states of a deep bidi-
rectional language model that is acquired by the joint train-
ing of two LSTM layers on both directions. This study
makes use of the original pretrained ELMo model with 2
layer bidirectional LSTM layers with 4096 units and 512-
dimensional projections, with a total of 93.6 million param-
eters. ELMo’s hidden LSTM layers are weighted averaged
and then fed into the classifier layers.

3.2. DistilBERT
DistilBERT (Sanh et al., 2019) is created by applying
knowledge distillation to BERT (Devlin et al., 2019),
specifically the bert-base-uncased model. To create
a smaller version of BERT, DistilBERT’s creators removed
the token-type embeddings and the pooler from the archi-
tecture and reduced the number of layers by a factor of 2.
In this study, DistilBERT’s last four hidden layers are sim-
ply averaged and fed into the classifier layers, which is a
suggested usage of BERT for text classification tasks.
In this study, distilbert-base-uncased3 with 66
million parameters is compared to the original ELMo
model with 93.6 million parameters.4

3.3. Classifiers
The classifier architectures are kept simple to focus on what
information can be easily extracted from ELMo and Distil-
BERT. First, a 2-layer FFNN with 512 hidden units is used.
Then, to better understand the effect of adding task-trained
contextualization, a 2-layer BiLSTM with 512 hidden units
is added before the linear output layer. The default maxi-
mum sequence length is 256 tokens for PC, 60 tokens for
SA. ELMo gets that many full tokens, whereas DistilBERT
gets that many WordPiece (Wu et al., 2016) outputs. The
architectures are visualized in Figure 3.

3.4. Baseline Models
Optimized LSVM and MNB scores are reported as base-
lines.5 LSVM takes the input as tf-idf (term frequency -
inverse document frequency) vectors, whereas MNB as a
sparse vector of token counts.
The baseline models are much simpler than the neural clas-
sifiers described in Figure 3. The baseline models utilize
simple word representations which do not preserve word
order and context information. By comparing traditional
ML algorithms to heavily pretrained large contextual net-
works, we aim at understanding if the overhead of the deep
contextual models is worth to undertake in this task.

3.5. Tokenization
Except for DistilBERT, the sequences are tokenized by
Spacy’s en-core-web-sm tokenizer6. DistilBERT uses

3https://github.com/huggingface/
transformers

4https://allennlp.org/elmo, accessed in March
2020.

5https://scikit-learn.org/stable/, accessed in
March 2020.

6https://spacy.io/.

https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://allennlp.org/elmo
https://scikit-learn.org/stable/
https://spacy.io/
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Figure 3: Classifier architecture. These are two distinct
classifiers only visualized intersecting on the common lay-
ers.

WordPiece tokenization. The first 256 tokens and 60 to-
kens per sample are given as input to the classifiers for the
PC and sentiment analysis (SA) tasks, respectively. Note
that the usage of two different tokenizers causes a mismatch
between the input of DistilBERT and other models. But
WordPiece tokenization is preferred for DistilBERT as it is
the default tokenizer of it. No text pre-processing is per-
formed on the texts (such as casing, stop word removal,
stemming, etc.). Out-of-sample tokens are not specially
treated in training FFNN and BiLSTM since ELMo and
DistilBERT already take care of those: the former with
character-based tokenization, the latter with WordPiece to-
kenization. In baseline models, out-of-vocabulary tokens
were simply not propagated to the classifier.

3.6. Hyper-parameter Tuning
The hyper-parameters of each distinct model are optimized
on the validation data with the Tree-structured Parzen Es-
timator algorithm. The implementation of the algorithm is
provided by the hyperopt package.7

The hyper-parameter tuning for the baselines was straight-
forward, for there were few possible hyper-parameters to
be tuned as seen in Table 4.

7https://github.com/hyperopt/hyperopt,
accessed in March 2020.

HParam Range
learning rate 5e-5, 1e-3, 1e-1
learning rate decay 0, 0.5
dropout 0, 0.25, 0.5
L2 0, 0.01
Use ReLu? True, False

Table 3: Hyper-parameter space.

Model HParam Range
MNB alpha 0, 0.25, 0.5, 0.75, 1
MNB fit-prior True, False
LSVM loss hinge, squared hinge
LSVM tolerance 1e-2, 1e-3, 1e-4
LSVM C 0.5, 1

Table 4: Hyper-parameter space of the baselines.

3.7. Training
The training is done on a single V100 NVIDIA GPU with
16 GB RAM. The classifiers are trained for 10 epochs with
the Adam optimizer (Kingma and Ba, 2014) using step de-
cay with the patience of 3 epochs. The best model is check-
pointed regarding the development set F-score. Then the
checkpoints are evaluated on the test data. This procedure
is repeated for each classifier with 5 random seeds and the
average scores are reported.

3.8. Experiments
All experiments report both null and cross-context results
for each task. Each experiment focuses on a particular vari-
ation on the classifier architecture that possibly affects the
results in its way. First, both ELMo and DistilBERT are
used as fixed (with frozen weights) word vectors and fed
into FFNN. Then, they are fine-tuned to the training data
sets together with the FFNN classifier. In the third setting,
both models are kept frozen (the weights of the language
models are not updated during training), but this time paired
with a BiLSTM instead of an FFNN. Lastly, they are com-
pared under the combined effect of fine-tuning contextual
embeddings and pairing with a 2-layer BiLSTM.
Macro averaged F-score (β = 1) is used as the primary
evaluation metric in both tasks since it provides a more ro-
bust evaluation for class-imbalanced data. Also as an ad-
ditional metric, the F-score drop between null and cross-
context is tracked in percentages. That is, for example, if
model x null context F-score is fn and its cross-context set-
ting F-score is fc, then the drop in F-score is calculated as
(fn− cn)/fn ∗100. This metric helps reveal the true cross-
context performance in some cases where absolute F-scores
fail to do so.
The dropout rate of the classifier (FFNN or BiLSTM),
learning rate, learning rate decay, L2 norm, and whether
to use ReLU or not, are the hyper-parameters that were
tuned for each model. Hyper-parameters of ELMo and Dis-
tilBERT are kept unchanged.

4. Experiment Results
In this section, ELMo and DistilBERT are compared us-
ing various classification architectures on two cross-context

https://github.com/hyperopt/hyperopt
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text classification tasks.

4.1. Experiment 1 - Frozen Embeddings
Table 5 shows that frozen DistilBERT is on par with or ex-
ceeding frozen ELMo in the null context (India and MR test
sets). On the other hand, DistilBERT outperforms ELMo
in the cross-contexts (China and CR sets) with a smaller
“Drop” score in both tasks.

Task Model Ntest Ctest Drop
PC ELMo 256 83.6 75.2 10
PC DBERT 256 83.8 76.8 8.2
SA ELMo 78 63.6 18.4
SA DBERT 79 66.8 15.4

Table 5: Experiment 1 results. Frozen ELMo and Distil-
BERT combined with FFNN.

4.2. Experiment 2 - Fine-tuned Embeddings
In this stage, ELMo and DistilBERT are fine-tuned on the
training data sets together with the FFNN classifier.
Fine-tuned ELMo does not fit into a single GPU with 256
tokens per input sample. In this case, ELMo could manage
up to 150 tokens per input. For a fair comparison, Distil-
BERT is trained twice, first with 150 tokens of input, and
then as a separate model, with 256 tokens of input.

Task Model Ntest Ctest Drop
PC ELMo ft 150 83 72.2 13
PC DBERT ft 150 80 71 11.3
PC DBERT ft 256 83.2 76.4 8.2
SA ELMo ft 76.2 69 9.6
SA DBERT ft 79 68 14

Table 6: Experiment 2 results. Fine-tuned ELMo and Dis-
tilBERT combined with FFNN.

As illustrated in Table 6, when the context is restricted to
150 tokens, fine-tuned ELMo outperforms DistilBERT, but
falls behind in 256 tokens especially in cross-context. On
the other hand, in SA, DistilBERT surpasses ELMo in the
null context, but falls behind in the cross-context. This in-
dicates that in SA, fine-tuning made ELMo more robust to
context change in the test set.

4.3. Experiment 3 - External Contextualization
via BiLSTM

In this experiment, both models are kept frozen, but this
time paired with a BiLSTM instead of an FFNN. BiLSTM
adds contextualization on the focused task, thus it is ex-
pected to improve results.

Task Model Ntest Ctest Drop
PC ELMo 256 81.6 72.4 11.2
PC DBERT 256 84.2 78.4 7
SA ELMo 79 67 15.2
SA DBERT 80 70.2 12.4

Table 7: Experiment 3 results. Frozen ELMo and Distil-
BERT combined with BiLSTM.

As Table 7 illustrates, in both tasks DistilBERT outper-
forms ELMo when paired with a 2-layer BiLSTM. The gap
is more visible in the cross-context performance: Distil-
BERT surpasses ELMo 6 points with a 78.4 Ctest F-score
on the PC task.

4.4. Experiment 4 - Combining Fine-tuning with
BiLSTM

In this experiment, ELMo and DistilBERT are compared
under the combined effect of fine-tuning and the usage of
2-layer BiLSTM. In PC, ELMo could handle at most 150
tokens per input. Therefore, the comparison is done under
that much of a sequence length.

Task Model Ntest Ctest Drop
PC ELMo ft 150 82 72 12.2
PC DBERT ft 150 81.8 72.2 11.8
SA ELMo ft 78.2 67.4 13.8
SA DBERT ft 80 70.2 12.4

Table 8: Experiment 4 results. Fine-tuned ELMo and Dis-
tilBERT combined with BiLSTM.

In Experiment 2, DistilBERT was underperforming on se-
quences of length 150 in PC. Now, as illustrated in Table
8 DistilBERT catches up with ELMo. This indicates that
DistilBERT benefits from BiLSTM.

4.5. Comparison to Baselines
For fairness, both ELMo’s and DistilBERT’s best and
worst-performing configurations are compared to the
hyper-parameter-tuned MNB and LSVM baselines. The
best performing models are indicated with the keywords
“highest”, the worst-performing with “lowest” in Table 10.
Two models are reported as the “highest” of ELMo in SA
as one owns better “Drop” scores.

Task Model Tag Model Name
PC ELMo (lowest) ELMo + BiLSTM 256
PC ELMo (highest) ELMo 256
PC DBERT (lowest) DBERT ft 256 (lowest)
PC DBERT (highest) DBERT 256
SA ELMo (lowest) ELMo
SA ELMo (highest 1) ELMo ft
SA ELMo (highest 2) ELMo + BiLSTM
SA DBERT (lowest) DBERT
SA DBERT (highest) DBERT ft + BiLSTM

Table 9: Names of worst and best performing models.

Table 10 demonstrates that in PC, while LSVM cannot
catch up with any model, MNB performs fairly on par with
ELMo’s worst-performing model. Apart from that, MNB
is effectively surpassed by the best of ELMo and Distil-
BERT in all categories. In SA, MNB is inferior to all mod-
els. The results of LSVM and ELMo’s lowest are close to
each other. But the best of ELMo and all variants of Distil-
BERT surpass the LSVM baseline with an apparent gap in
the cross-context robustness.
It is also visible that DistilBERT outperforms ELMo on
both tasks with both of its worst-performing and best-
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Task Model Ntest Ctest Drop
PC LSVM 256 79 64 19
PC MNB 256 80 73 9
PC ELMo (lowest) 81.6 72.4 11.2
PC ELMo (highest) 83.6 75.2 10
PC DBERT (lowest) 83.2 76.4 8.2
PC DBERT (highest) 83.8 76.8 8.2
SA MNB 78 57 27
SA LSVM 77 62 19
SA ELMo (lowest) 78 63.6 18.4
SA ELMo (highest 1) 76.2 69 9.6
SA ELMo (highest 2) 79 67 15.2
SA DBERT (lowest) 79 66.8 15.4
SA DBERT (highest) 80 70.2 12.4

Table 10: Comparison with the baselines.

performing variants. This can be viewed as an indicator
of the possible superiority of DistilBERT.

4.6. Average Scores
To view the experiments from a wider perspective, the mod-
els are also compared under the arithmetic average of all
variations. As Table 11 displays, ELMo is found to be su-
perior to DistilBERT on average when both use only 150
tokens of protest news input.8 But in SA when full context
is available DistilBERT performs better regardless of short
sequence length. On average of common variations, Dis-
tilBERT is dominant in both tasks. This can be seen as an
indicator of DistilBERT’s overall superiority.

Task Average Ntest Ctest Drop
PC ELMo 150 81.95 73.25 10.55
PC DBERT 150 80.95 72.8 10
PC ELMo 82.17 73.43 10.57
PC DBERT 81.97 74.4 9.2
SA ELMo 77.85 66.75 14.25
SA DBERT 79.5 68.8 13.6

Table 11: Average scores of ELMo and DistilBERT.

4.7. Training Time and Model Size
Training times and model sizes are compared by averag-
ing all model configurations common to ELMo and Dis-
tilBERT. Training and inference time are summed up to a
single number. According to Table 12, DistilBERT is 30%
smaller and 83% faster than ELMo on the average of both
tasks. In terms of classifier size (excluding embeddings)
DistilBERT is 13% smaller than ELMo. On the other hand,
MNB and LSVM are far more efficient than DistilBERT in
size and speed by being 99% smaller and 96% faster.

4.8. New State-of-the-art in CLEF-2019 Lab
ProtestNews

Combining contextual embeddings with standard shallow
neural networks (FFNN and BiLSTM) and applying hyper-

8For fairness, DistilBERT’s fine-tuned models making use of
256 length input are excluded from the computation because there
is no equivalent model on the ELMo side.

Task Model ESize MSize Ttime
PC MNB - 1.1 12
PC ELMo 358 75.55 1690
PC DBERT 254 65.8 318
SA LSVM - 0.133 10
SA ELMo 358 75.55 979
SA DBERT 254 65.8 237

Table 12: Average training time and model sizes of ELMo
and DistilBERT. ESize: Embedding size. MSize: Model
size. TTime: Train time. Sizes are in Megabytes. Train
time is in seconds.

parameter tuning helped outrun the prior results in the
CLEF-2019 Lab ProtestNews in cross-context while get-
ting comparable results in null context. As shown in Table
13, F-score in China test set increased from 65 to 76.8 F-
score; “Drop” is diminished from 22% to 8.2%.

Model Ntest Ctest Drop
(Radford, 2019) 83 65 22
DBERT 256 83.8 76.8 8.2

Table 13: Comparison with CLEF-2019 Lab ProtestNews
results. The prior state-of-the-art is exceeded in cross-
context.

5. Randomization Test
The randomization test (Yeh, 2000) is applied to the results
to check if the models significantly differ in terms of scores.
The randomization test is performed by calculating p-
values for all combinations of predictions obtained by train-
ing with different seeds. For example, when two mod-
els of ELMo and DistilBERT are compared, 25 differ-
ent p-values are produced by using 25 different pairs of 5
ELMo and 5 DistilBERT outcomes. The harmonic mean of
these p-values is used as the ultimate statistic of the test to
smooth the disproportional effect of large p-values occuring
in arithmetic mean.
The harmonic mean of a series equals to zero if the se-
ries contains any zero value. For more realistic evaluation,
the harmonic mean of non-zero p-values are also reported
(Ntest-p, Ctest-p, Drop-p). For example, if a randomization
output contains at least one zero value, the true harmonic
mean becomes automatically zero. In that case, we also in-
clude the harmonic mean found after excluding zero values.
The results are reported in Tables 14 and 15 by separating
those alternative results by / (e.g. 0/0.01). Nevertheless,
zero values should not be entirely ignored since their ex-
istence points out that rejection of the null hypothesis is
indeed very much probable.
It should be noted that for PC two-tailed randomization
tests general statistics (both positive and negative class)
show that there is no significant difference between ELMo
and DistilBERT’s Ntest and Ctest performance (p = 0.38
and p = 0.59, respectively). But, since negative class ratio
is much larger than positive class ratio in protest news data
(see Table 1), it dominates two-tailed tests. We conducted
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one-tailed test only with positive (protest) class instances in
PC task to get more realistic results for the positive class.
Tables 14 and 15 suggest that, according to the randomiza-
tion tests, DistilBERT is significantly better (α = 0.05) in
both null and cross-context for positive class in PC and both
classes in SA. ELMo, in turn, is observed to be superior to
the baselines in cross-context. But ELMo is on par with the
baselines in null context.

Models Task Ntest-p Ctest-p Drop-p
ELMo-DBERT PC 0/0.01 0/0.004 0/0.006
ELMo-MNB PC 0.007 0/0.009 0.004

Table 14: PC - One-tailed randomization test p-value re-
sults on the best performing model variations of ELMo,
DistilBERT, and MNB. A value is made bold if it can reject
the null hypothesis. Ntest-p, Ctest-p, and Drop-p stand for
”positive (protest) class statistics.”

Models Task Ctest Drop
ELMo-DBERT SA 0/0.017 0.02/0.02
ELMo-LSVM SA 0/0 0/0.009

Table 15: SA - One-tailed randomization test p-value re-
sults on the best performing model variations of ELMo,
DistilBERT, and LSVM. A value is made bold if it can re-
ject the null hypothesis.

6. Related Work
This section overviews the previous work that is focused on
understanding the generalization capacity of the contextual
language representations.

6.1. Evaluating Transfer Capacity of Language
Models

The evaluation studies before this work are generally de-
signed around a diverse set of downstream tasks (Devlin
et al., 2019; Liu et al., 2019; Tenney et al., 2019; Peters
et al., 2019) or ablation studies (Liu et al., 2019). Sun et
al. (2019) focus on the effective tuning methods of pre-
trained representations, while Howard and Ruder (2018)
propose a set of parameter tuning techniques specifically
to leverage text classification performance. Han and Eisen-
stein (2019) apply unsupervised domain adaptation by fur-
ther pretraining contextual representations on the masked
language model on the target domain. Tenney et al. (2019)
observed that contextual embeddings substantially improve
over traditional baselines on learning the syntactic structure
of text, but that there is only a small improvement in learn-
ing semantics on token and sentence level tasks.

6.2. Cross-context Protest Event Text Analysis
A task set (Hürriyetoğlu et al., 2019a) was proposed to col-
lect protest event information from news texts to create sys-
tems that learn transferable information to extract relevant
information from multiple countries with the ultimate mo-
tivation to create tools to enable comparative sociology and
political studies on social protest phenomena. The task set

consists of three tasks: news articles classification, event
sentence detection, and event information extraction.
The protest news classification task was realized in the
CLEF-2019 Lab ProtestNews on Extracting Protests from
News (Hürriyetoğlu et al., 2019c) in the context of gen-
eralizable natural language processing9. From the results
gathered from 12 teams, it was observed that Neural Net-
works obtained the best results and a significant drop in
cross-country performance is observed on the news from
China (Hürriyetoğlu et al., 2019b). The best performing
model on average for the null and cross-context trained a
BiLSTM with fastText (Joulin et al., 2017; Mikolov
et al., 2018) embeddings on a multitask learning objec-
tive (Radford, 2019). Safaya (2019) attained the smallest
score drop between null and cross-contexts using BiGRU
and word2vec. Another study utilized ELMo with a fully
connected multi-layer Neural Network, reaching compara-
ble results (Maslennikova, 2019).

6.3. Sentiment Analysis
Sentiment analysis is a frequently studied classification
task. MR and CR are a couple of exhaustively used data
sets for this task. Successful models on this task involve
combining word2vec with self-adaptive hierarchical sen-
tence representations (Zhao et al., 2015); sentence repre-
sentations that are learned by supervised training on a Nat-
ural Language Inference data (Conneau et al., 2017; Bow-
man et al., 2015); and a multi-channel system consisting of
two bi-directional recurrent neural networks fed by tunable
word vectors (Logeswaran and Lee, 2018).

7. Discussion
DistilBERT is better at utilizing longer sequences than
ELMo. Fine-tuned ELMo cannot handle as many tokens
as DistilBERT can, due to excessive RAM usage. This
deteriorates ELMo’s performance, especially in the cross-
context. Moreover, fine-tuning causes training ELMo to
take 1.5X longer, while the effect is negligible in Distil-
BERT.
Null context performance and cross-context performance
do not necessarily grow together. For some specific config-
urations, when DistilBERT outran ELMo in the null con-
text, ELMo happened to outperform DistilBERT in the
cross-context or vice versa. Similarly, fine-tuning could
improve null context performance, but caused a drop in the
cross-context performance. Even usage of longer context
can cause such an effect. These observations indicate that
it is important to check the robustness of a model on multi-
ple dimensions to understand true generalization power.
It should be emphasized that the limitations of the experi-
mental setup and the scope must always be noted when the
observations of this study are concerned. All conclusions
are valid only under the specific experimental setup of this
study, comprising the aforementioned binary classification
tasks and the data sets. The results might be completely dif-
ferent, even in the case when the models are pretrained with

9http://clef2019.clef-initiative.eu/, ac-
cessed in December 2019.

http://clef2019.clef-initiative.eu/
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other corpora. So it must be underlined that the compari-
son results are special to the model-unlabeled data combi-
nations (ELMo combined with One Billion Word Bench-
mark, DistilBERT combined with English Wikipedia and
Toronto BookCorpus).

8. Conclusion

In this study, ELMo and DistilBERT are compared on their
fine-tuning performance on two binary text classification
tasks. The main focus was to see how much can these mod-
els be benefited from in a practical way without any modi-
fication to the pretraining outputs.
Overall, DistilBERT is found to generalize better than
ELMo on the cross-context setting. While DistilBERT and
ELMo seem to have close performance in terms of absolute
F-score, DistilBERT apparently outperforms ELMo in F-
score drop in percentages. In addition, DistilBERT is 30%
smaller in embedding size and 83% faster in training time
than ELMo. No significant difference could be detected
between ELMo and DistilBERT in the null context. The
baselines are outran by both models in the cross-context
robustness. But the baselines could occasionally get com-
parable results with ELMo in the null context. Also, they
are very economic with 99% smaller size and 96% faster
training and testing time when compared to DistilBERT.
As a result, when the transfer power of a model is a prior-
ity, it is worth to prefer contextual neural models over tradi-
tional ML methods despite much longer training times and
memory overhead. On the other hand, traditional ML meth-
ods might still be preferred as low-cost options when there
is no anticipated discrepancy between training and test data.

9. Future Work

The main focus in this study was to compare ELMo and
DistilBERT without any intervention to the pretrained mod-
els, although the models were actually pretrained on en-
tirely different corpora - ELMo on One Billion Words
Benchmark (Chelba et al., 2013), DistilBERT on English
Wikipedia and Toronto BookCorpus (Zhu et al., 2015).
If the models were also pretrained from scratch on the
same corpus, it would be ensured that they utilize the same
knowledge to learn the context. This would enable a fairer
comparison.
By leveraging unsupervised data into training, classifiers
could adapt to many different cross-context settings more
effectively and much faster. Unsupervised domain adapta-
tion seems to be a wise direction to take (Han and Eisen-
stein, 2019).
Currently NLP evaluation and comparison studies are re-
alized under varying conditions defined by specific prior-
ities and research interests of every other study, including
this particular one. This prevents making proper compar-
isons between observations of studies, which could enable
progress based on a much more confident common ground.
Defining standard evaluation pipelines to be adopted within
the NLP field in general can be a way to overcome this
dilemma.
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B., Duruşan, F., Mutlu, O., and Akdemir, A. (2019b).
Overview of clef 2019 lab protestnews: Extracting
protests from news in a cross-context setting. In Fabio
Crestani, et al., editors, Experimental IR Meets Multilin-
guality, Multimodality, and Interaction, pages 425–432,
Cham. Springer International Publishing.

Hürriyetoğlu, A., Yörük, E., Yüret, D., Yörük, E., Yoltar,
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