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Abstract
Evaluating image captions is very challenging
partially due to the fact that there are mul-
tiple correct captions for every single image.
Most of the existing one-to-one metrics oper-
ate by penalizing mismatches between refer-
ence and generative caption without consider-
ing the intrinsic variance between ground truth
captions. It usually leads to over-penalization
and thus a bad correlation to human judg-
ment. Recently, the latest one-to-one metric
BERTScore can achieve high human correla-
tion in system-level tasks while some issues
can be fixed for better performance. In this
paper, we propose a novel metric based on
BERTScore that could handle such a challenge
and extend BERTScore with a few new fea-
tures appropriately for image captioning eval-
uation. The experimental results show that our
metric achieves state-of-the-art human judg-
ment correlation.

1 Introduction

Image captioning is one of the key visual-linguistic
tasks that asks for generated captions with specific
images. Researchers look forward to inexpensive
evaluation metrics that closely resemble human
judgment, which remains a challenging task since
most of the metrics can hardly get close to human
judgment.

Image captioning is a one-to-many task since
each image can correspond to many possible cap-
tions. Different captions may focus on different
parts of the image; this not only creates a challenge
for generating the captions (Dai et al., 2017; Venu-
gopalan et al., 2017), but also for evaluating them.
Most of the existing one-to-one evaluation metrics,
however, overlook such a challenge. These one-
to-one metrics (Lin, 2004; Vedantam et al., 2015;
Zhang et al., 2019) ignore other reference captions
since the score is computed by comparing the can-
didate capture with one single reference caption.

Figure 1: Intrinsic variance exists in a set of ground
truth captions for an image. Differences between two
references are commonly caused by two reasons: dif-
ferent concerns or different descriptions. Different con-
cerns mean different expressions between references
are caused by different regions of interest in an image,
while different descriptions mean references focus on
the same part but use different ways to explain it. One-
to-one metrics can hardly deal with the cases caused
by different concerns. For example, they may regard
Cand as a good caption compared with Ref1; while
regard Cand as a bad caption compared with Ref2 or
Ref3.

When there are multiple reference captions, prior
works compute individual scores for each reference
caption and pool these scores together afterward.
Intrinsic variance exists in a set of ground truth
captions for an image, since different captions may
have different concerns or descriptions. It’s chal-
lenging to find a remedy for such over-penalization
if the metric looks at only one single reference
caption.

BERTScore (Zhang et al., 2019) is the latest
one-to-one metric that computes token-level cosine
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similarity between two sentences by contextual em-
beddings of pre-trained models, and greedily picks
and adds up cosine values as a score. It reaches
high performance in machine translation tasks and
a system-level image captioning evaluation task.

In one-to-one evaluation, although it is hard to
consider all references directly, it is possible to
combine references into a single one using con-
textual embedding from the pre-trained language
model. In this work, we propose a metric where all
of the references are combined as a new compre-
hensive embedding by detecting the mismatches
between two contextual embeddings. To achieve
this goal, we add the concept of mismatch into
cosine similarity by a threshold for mismatch de-
tection and proper penalization. Also, our metric
considers the importance of different words, and
our research shows that adding a stop word list is
an efficient way.

Using various image captioning evaluation
datasets with human annotations like Microsoft
COCO (Lin et al., 2014), Flickr8k (Hodosh et al.,
2013), COMPOSITE (Aditya et al., 2015) and
PASCAL-50S (Vedantam et al., 2015), the experi-
mental results show that our metric achieves state-
of-the-art correlation in several tasks, especially
in caption-level tasks. Our main contribution is a
novel metric that can detect mismatches among
captions, build a combined caption with multi-
references, and achieve high human correlation
in image captioning evaluation tasks. The code for
our metric is released at here1.

2 Related work

2.1 Automated caption evaluation
For captions evaluation, a traditional method is
scoring by human experts, which is a precise but
expensive way. Current image captioning models
are evaluated by automatic metrics, which com-
pute the similarity between generated captions and
ground truth captions.

Currently, most widely used caption metrics
are n-gram matching metrics such as BLEU, ME-
TEOR, ROUGE, CIDEr. BLEU (Papineni et al.,
2002) is a precision-based n-gram overlap match-
ing metric that counts the number of overlap n-
grams among all of references and the candidate.
Several modifications can be applied to improve
BELU, such as different n-gram (e.g. n=1,2,3,4),

1https://github.com/ck0123/improved-bertscore-for-
image-captioning-evaluation

brevity penalty for a short candidate, and geomet-
rical average. BLEU is a fast, low-cost metric
but has a low correlation with human judgment.
METEOR (Denkowski and Lavie, 2014) computes
both precision and recall in unigram, and consider
more factors such as word stems, synonyms, and
paraphrases. ROUGE (Lin, 2004) is a package
of measures for automatic text summaries evalua-
tion: ROUGE-N uses n-gram co-occurrence statis-
tics; ROUGE-L uses the longest common sub-
sequence; ROUGE-W uses weighted longest com-
mon sub-sequence; ROUGE-S uses skip-bigram
co-occurrence statistics. CIDEr (Vedantam et al.,
2015) represents a sentence as an n-grams vec-
tor with tf-idf (term frequency-inverse document
frequency), and compute the cosine similarity be-
tween reference and candidate.

LEIC (Cui et al., 2018) uses a trained neural
model to predict whether a caption is generated by
humans. LEIC is trained with COCO images data
and uses data augmentation, which helps to achieve
a high human correlation. However, LEIC suffers
from high computational cost to train in the COCO
data. SPICE (Anderson et al., 2016) computes
F1 score according to the scene graph created by
captions. SPICE reaches a high correlation with
human judgment while suffers from long repetitive
sentence evaluation (Liu et al., 2017).

2.2 Pre-trained language models and
BERTScore

Thanks to the development of a pre-trained lan-
guage model, better sentence representation can be
used in diverse kinds of NLP tasks. Previous works
mainly focus on linguistic representation such as
word embedding (Mikolov et al., 2013; Penning-
ton et al., 2014; Goldberg and Levy, 2014), which
are only word-level embedding without positional
information. After the success of Transformer
(Vaswani et al., 2017) , a series of language model
approaches are proposed such as GPT (Radford
et al., 2018), BERT (Devlin et al., 2018), GPT-2
(Radford et al., 2019), XLNET (Yang et al., 2019),
XLM (Lample and Conneau, 2019), RoBERTa (Liu
et al., 2019). These approaches learn from a huge
number of unlabeled text data as a pre-trained pro-
cess and can fine-tune in downstream tasks with a
few epochs.

BERTScore is the latest one-to-one matching
metric for text similarity. Benefiting from the
contextual embedding of the pretrained language
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Figure 2: This figure explains the differences between an error and different concerns when mismatches occur. We
show an image as nine parts grid chart (3 × 3). In error case, caption1 focuses on three parts while b3 cannot
represent the part that matches a1. In different-concerns cases, two captions can represent well in different parts
of the same image. However, a mismatch occurs since a3 and b3 attend to a different part of the image.

models, BERTScore measures two texts similar-
ity by token-level cosine similarity computing and
greedily pick strategy: (1) feed reference text
and candidate text into pre-trained model, and ex-
tract two contextual embeddings r = [r1, .., rn],
c = [c1, , .., cm]; (2) compute the cosine similar-
ity matrix between r and c by r×c

‖r‖‖c‖ ; (3) greedily
pick the maximum value from cosine similarity ma-
trix for each reference token as a matching value;
(4) collect all the matching values with optional
inverse document frequency weights.

Inverse document frequency (idf) computes a
score for word frequency in the whole corpus.
Given N documents [s1, .., sN ] and each word
w, idf score is :

idf(w) = −lg 1

N

N∑
i=1

I[w ∈ s]

where I[·] is an indicator function and lg is the base
10 logarithm.

The recall of BERTScore (BS for short) is :

BS =

∑
ri∈r idf(ri)maxcj∈cr

>
i cj∑

ri∈r idf(ri)

BERTScore can adequately deal with differ-
ent descriptions by knowledge from a pre-trained
model and achieves high performance in both
machine translation, image captioning evaluation
tasks. However, as a one-to-one metric approach, it
still suffers from different-concerns problems. An-
other pitfall in BERTScore comes from the strategy
“greedy pick”: when no candidate word attends
to a specific reference word, this reference word

still gets value by picking a maximum cosine value
greedily, which causes under-penalization.

Inspired by BERTScore, our metric treats the
mismatches between captions carefully, and try
to give a proper score for the similarity between
captions.

3 Method

Proper scoring for generated captions should con-
sider the information about multi-references and
avoid the wrong penalization. In this section, we
provide the idea about references combination and
fix some under or over penalization issues for co-
sine similarity-based metrics.

3.1 Preliminary concept of references
combination

Token-level mismatches lead to two kinds of prob-
lems: different descriptions and different concerns.
We introduce these two concepts in Figure 2. Some
methods are available for description problems like
thesaurus or similarity with contextual embedding,
while few of methods handle the different-concerns
problem in multi-references cases.

The common ways for one-to-one text metrics to
deal with multi-references cases are pooling the re-
sults by some strategies like average or maximum.
Maximum picks the maximum of results, which
can get a higher score than average meanwhile ig-
nores other references directly. Average merges all
the results with each reference, which can consider
all references. Although average slightly reduce the
impact of different concerns, both of the two over-
penalize the generated caption since they already
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Figure 3: Combination of references comes from a phenomenon that: mismatches between two ground truth
captions can’t be errors but different concerns. After the greedy matching process, we collect all the mismatch
tokens and create a combined contextual embedding as a combined caption. For example, the threshold value
β is 0.4, and all the tokens in Ref2 can’t match a3 with a value bigger than 0.4. After the combination of all
references, our metric provides a better recall score between the combined caption and the candidate caption with
idf weighted.

regard those mismatches from different concerns
as errors during the one-to-one text evaluation pro-
cess.

Different from average and maximum strategies,
the strategy of our metric is to combine reference
captions. The combination works based on a fact
that: all of the reference captions are ground truth
captions so that the mismatches between references
should not be errors, but considering different con-
cerns (cosine similarity with contextual embedding
also ensures that mismatches are not from errors).

Once we choose a base reference caption and
pick up all the mismatches among base and others,
the combination among the base and mismatches
contains all the information in references without
duplicate.

After that, the evaluation between the candidate
caption and the combined caption does not suffer
from the problems from inter references variance
any more.

3.2 Mismatch detection with overlap and
cosine similarity

It is hard to define the “differences” between cap-
tions clearly. To simplify the problem, we regard
mismatches in token-level between two embed-
dings as differences between two captions.

Mismatch is a concept from n-gram overlap
matching metrics like BLEU. We find a mismatch
when a word from one sentence cannot be found in

the other sentence. Although mismatch is a clear
concept to word-level comparison, overlap-based
mismatch results in some problems like synonyms.
Meanwhile, cosine similarity-based metrics like
BERTScore can address this problem quite well.
BERTScore uses a pre-trained language model’s
contextual embedding and regard cosine similarity
between two tokens as their similarity. Therefore,
the match values change from overlap’s discrete
value (0 or 1) to cosine’s continuous value (0 to 1)
with semantic and positional information, which
make similarity values more precise.

However, a weakness of cosine similarity is that
we cannot distinguish match and mismatch directly
since the concept of mismatch does not exist in co-
sine similarity. To achieve references combination,
we simply set a threshold function ϕ for distinguish
the mismatch: when the cosine value is bigger than
the threshold, we keep it; otherwise, we set it to 0,
which is shown as follows.

ϕ(x, β) =

{
x x > β

0.0 x ≤ β
(1)

where x is the cosine value and β is the threshold
value.
S is the improved “greedy pick” function for

each ri reference token with threshold:

S(ri, c, β) = ϕ(maxcj∈cr
>
i cj , β) (2)

where r = [r1, .., rn] and c = [c1, .., cm] are con-
textual embedding. We call this process “cut” for
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removing low cosine values. The standard “cosine
& greedy pick” process is a case when the thresh-
old value β equals to 0. Then we can get the greedy
recall similarity with threshold indicator:

R =

∑
ri∈r idf(ri)S(ri, c, β)∑

ri∈r idf(ri)sgn(S(ri, c, β))
(3)

where sgn is the sign function.
With a threshold indicator, our metric acquires

the ability to detect mismatches. Furthermore,
since we cut all the low cosine value, the bad im-
pact of greedy pick (mentioned in Section 2) will
be eliminated, which means our metric provides a
more reasonable similarity for each token pair.

Empirically for a pre-trained language model,
the threshold value in different tasks is similar due
to the same architecture and the same widely pre-
training process in an ample amount of text data.
In this work, we use the threshold value 0.4 for
BERT (base) and 0.83 for RoBERTa (large) as the
recommended settings.

3.3 The combination of references
Contextual embeddings are extracted from the pre-
trained model. Since the inputs of the model con-
tain both token embedding and position embedding,
contextual embedding for each token also contains
its semantic and positional information. Therefore,
the change of tokens’ position does not change the
inner positional information for each token. For ex-
ample, [embed A, embed B] is the contextual em-
bedding sentence generated from [word A, word
B]. Both [embed A, embed B] and [embed B, em-
bed A] (only switch tokens’ position) still provide
same positional information.

Using this characteristic, we can now easily com-
bine all of the references with the following steps:
(1) choose a random reference caption embedding
as a base, A; (2) compute the similarity between
A and another reference B with a threshold; (3)
collect those tokens from B that mismatch compar-
ing with A, B′; (4) concatenate A and B′ as a new
base caption A; (5) repeat steps above until used
all the references;
Rcomb computes the recall score for combined

reference and candidate. Figure 3 shows references
combination Comb and the computation of Rcomb .

Rcomb = R(Comb([r1, .., rM ]), c) (4)

where M is the number of references.

3.4 Importance of different words

For proper scoring, our metric also focuses on a
problem that token-level matching sometimes does
not mean similarity between captions. A bird stand-
ing on the blue handrail and A bird flying on the
blue sky are describing different images with only
two words different but five words the same. The
meaning of a caption is sensitive to the replacement
of essential components like subject, predicate, ob-
ject, while some replacement (like a → the) are
not.

The problem is: in matching metric, we only
focus on the match and mismatch while ignoring
the importance of each word in the sentence. It
is hard to provide optimal importance with each
word and pick the important ones; in contrast, the
removal of unimportant words is more comfortable
to achieve.

In this work, our metric removes all the stop
words and computes an another greedy cosine score
as an additional score without idf weight, Rrm :

Rrm =

∑
ri∈r′ S(ri, c

′, β)

|r′|
(5)

where r′ and c′ are embeddings without stop words
and |r′| means the length of sentence r′ .

Although taking idf weight into consideration is
convenient, using the stop word removal addition-
ally is still necessary. The definition of idf points
out that idf is an indicator of frequency, while fre-
quency does not equate to importance. Take COCO
caption corpus as an example: all the idf weights
of common subjects are low such as man, dog,
girl, etc; while those of playfully, sleepy are high.
However, there is no doubt that mismatches occur
in these common subjects will change the meaning
dramatically.

3.5 Summary and metric formula

In this section, we discussed the mismatches be-
tween references, under-penalization of “greedy
pick”, and the importance of words. Moreover,
we showed our idea about captions combination,
greedy recall similarity with threshold indicator,
and stop word removal. Including all of formu-
las above, the final expression of our metric is the
product of Rcomb and Rrm :

Score = Rcomb × Rrm (6)
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Type Metric M1 M2

Task-agnostic

ROUGE-L 0.062 (0.846) 0.215 (0.503)
BLEU-1 0.029 (0.927) 0.165 (0.607)
BLEU-4 0.236 (0.459) 0.380 (0.222)
CIDEr 0.440 (0.151) 0.539 (0.071)
METEOR 0.703 (0.011) 0.701 (0.011)
BS (BERT-base) 0.807 (0.001) 0.735 (0.006)
BS (RoBERTa-large) 0.873 (0.000) 0.841 (0.000)

Ours (BERT) 0.875 (0.000) 0.797 (0.002)
Ours (RoBERTa) 0.932 (0.000) 0.869 (0.000)

Task-specific
SPICE 0.715 (0.009) 0.688 (0.013)
LEIC 0.939* (0.000) 0.949* (0.000)

Table 1: Pearson correlation of system level metrics scores with human judgment in 2015 COCO Captioning
Challenge. We use 12 teams results on validation set with “Karpathy split”. M1: the percentage of captions that
are evaluated as better or equal to human captions; M2: the percentage of captions that are indistinguishable from
human caption. BS means BERTScore and score with * are cited from (Cui et al., 2018).

4 Experiments

The most convincing way for metric evaluation is
the human correlation in caption-level and system-
level tasks. In this section, we evaluate our metric
in four typical image captioning evaluation datasets
with standard metrics. We also consider the impact
of each part in our metric by ablation experiment
and key part replacements.

4.1 Dataset
Microsoft COCO 2014 COCO dataset contains
123,293 images with 82,783 images in training set,
40,504 images in the validation set and 40,775 im-
ages in the test set. Each image has five human-
annotated captions as ground truth captions.

In 2015 COCO Captioning Challenge (Chen
et al., 2015), submissions of the challenge are eval-
uated by human judgments with five kinds of met-
rics: M1, percentage of captions that are evaluated
as better or equal to human caption; M2, percentage
of captions that pass the Turing Test; M3, average
correctness of the captions on a scale 1-5 (incorrect
- correct); M4, the average amount of detail of the
captions on a scale 1-5 (lack of details - very de-
tailed); M5, percentage of captions that are similar
to human description.

Flickr 8K Flickr 8K dataset contains 8,092 im-
ages with five human-generated captions for each
image. Flickr 8K provides an annotation called Ex-
pert Annotation, and each row contains one image,
one candidate caption from Flickr 8K dataset (it
may matches this image or not), and three expert

scores for the image-caption pair. Scores range
from 1: indicating that the caption does not de-
scribe the image at all to 4: indicating that the
caption describes the image.

COMPOSITE The COMPOSITE dataset con-
tains 11985 human judgments from Flickr 8K,
Flickr 30K, and COCO captions re-coined. Can-
didate captions come from human and two cap-
tion models scoring by Amazon Mechanical Turk
(AMT) workers. All the captions score a 5-point
scale from 1 (The description has no relevance to
the image) to 5 (The description relates perfectly
to the image).

PASCAL-50S PASCAL-50S dataset has 1000
images from UIUC PASCAL Sentence Dataset,
and each image has 50 reference captions annotated
by AMT worker. PASCAL-50S includes over 4000
candidate captions pair with human judgments. Dif-
ferent from COCO and Flickr format, PASCAL-
50S consists of the triplet: 〈A,B,C〉. A is the
reference sentence from an image, and B, C are
two candidate sentences. AMT workers are asked
Which of the two sentences, B or C, is more simi-
lar to A?. This kind of question is more accessible
for workers to judge than provide correct scores.
Candidate sentences come from human-written, or
model generated, and four kinds of paired ways:
human-correct (HC), human-incorrect (HI), human-
model (HM), and model-model (MM).
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Metric M1 M2

BLEU-1 0.307 0.338
ROUGE-L 0.062 0.215
ROUGE-L (cat) 0.096 0.180
BLEU-1 (cat) 0.351 0.175
METEOR (cat) 0.662 0.571
METEOR 0.703 0.701

BS(BERT-base) 0.807 0.735
Ours (Unigram) 0.809 0.714
Ours (BERT+T) 0.822 0.741
Ours (BERT+T+cat+R) 0.857 0.783
Ours (BERT+TB) 0.867 0.755
Ours (BERT+TBR) 0.875 0.797

Table 2: We provide the ablation study and the replace-
ment study in 2015 COCO Captioning dataset. As an
additional experiment, we also compare concatenation
with average in some standard metrics like: BLEU-1,
ROUGE-L and METEOR. Abbreviation: BS means
BERTScore, T means cut, B means combine, R means
remove, cat means concatenation of references.

4.2 Compared Metrics

For comparison, we use common standard metrics
in our scoring tasks, such as BLEU-1, ROUGE-L,
METEOR, CIDEr, and SPICE. All these metrics
are implemented in MS COCO evaluation tool.2

We also use the original BERTscore to check the
improvement of our metrics. To be more convinc-
ing, we compare with the current SOTA training-
based approach LEIC in COCO captioning 2015
and Flickr 8K.

4.3 Baselines

Two metrics are implemented as baselines: (1) uni-
gram overlap matching metric and (2) references
concatenation metric with BERT. Unigram overlap
matching metric is implemented for verifying the
importance of contextual embedding from the pre-
trained language model. References concatenation
metric with BERT is implemented for verifying the
importance of references combination.

Unigram overlap matching metric. In our un-
igram overlap matching metric, we remove con-
textual embedding from the pre-trained language
model and only use unigram overlap matching.
Different from continuous value methods like
BERTScore, it is easy for overlap matching to dis-
tinguish the match and mismatch (1 or 0). In com-

2https://github.com/tylin/coco-caption

Flickr 8K COMPOSITE

BLEU-1 0.318 0.282
BLEU-4 0.140 0.199
ROUGE-L 0.323 0.313
BS (RoBERTa) 0.367 0.392
BS (BERT) 0.393 0.399
METEOR 0.436 0.381
CIDEr 0.447 0.387
SPICE 0.458 0.418
LEIC 0.466* -
Ours (RoBERTa) 0.451 0.449
Ours (Unigram) 0.471 0.420
Ours (BERT) 0.481 0.423

Inter-human 0.736* -

Table 3: In caption-level experiments, we compute
the Kendall correlation between human judgments and
scores of metrics. Two dataset results are given: Flickr
8K and COMPOSITE. Both our unigram metric and
BERT based metric outperform other metrics. Scores
with * are cited from (Cui et al., 2018)

bination part, we collect all the mismatch words
and combine them with the base reference caption.
To reduce the impact of unimportant words, we
remove stop words from the combined caption di-
rectly.

References concatenation. We also regard the
concatenation of references as another baseline
comparing with our combination method. The
concatenation of references combines all the in-
formation from references as well. The difference
between concatenation and our combination is the
duplicate tokens in majority references. In this
metric, we follow all the steps of our metric with
BERT, except the combination.

4.4 System-Level Correlation

In system-level evaluation, we use twelve teams
of human judgment results from COCO 2015 Cap-
tioning Challenge. We use data from “Karpathy
splits” (Karpathy and Fei-Fei, 2015), which con-
tains 113,287 train images, 5000 test images, and
5000 validation images. Each image has 5 refer-
ences human captions. Following prior works (An-
derson et al., 2016; Cui et al., 2018), we compute
the Pearson correlation with human judgment. In
the pre-trained model selection for BERTScore, we
choose BERT (base), which is the most common
model in the set of transformer language models,
and RoBERTa (large), which is an optimized ver-



992

HC HI HM MM All

BLEU-1 53.1 94.7 90.9 56.9 73.9
BLEU-4 53.3 92.8 85.2 60.5 73.0
ROUGE-L 55.6 95.1 93.3 57.7 75.4
METEOR 61.4 97.2 94.9 64.5 79.5
CIDEr 55.0 98.0 91.0 64.6 77.2
SPICE 57.7 96.1 88.3 65.3 76.9
Ours (RBT) 62.5 97.7 95.0 59.4 78.7
BS (BERT) 64.4 97.9 96.6 59.0 79.5
Ours (BERT) 65.4 98.1 96.4 60.3 80.1

Table 4: In PASCAL-50S, candidate sentences come
from human written or model generated. There are
4 kinds of paired ways: human-correct (HC), human-
incorrect (HI), human-model (HM), and model-model
(MM). Ours (BERT) outperforms in HC, HI and HM.
Abbreviation: RBT means RoBERTa.

sion of BERT.

The experimental results in Table 1 show that
our metrics with both BERT and with RoBERTa
perform better than BERTScore and other standard
metrics. What is more, our metric with RoBERTa
can reach a high correlation of 0.932 with human
judgment, which is even close to the training-based
task-specific metric LEIC with image features.

4.5 Ablation and replacement

To check the influence of each part, we provide
both ablation study and replacement study in 2015
COCO Captioning dataset. The results are showed
in Table 2.

In ablation study, we use our metric with BERT
and remove remove, combine and cut one by one.
The result shows that each part of our metric is
useful, and combine is the most influential part.

In the replacement study, we compare our metric
with the unigram metric and concatenation metric
to check the influence of contextual embedding
and combination. The comparison between Ours
(Unigram) and Ours (BERT+TBR) shows that con-
textual embedding is better than unigram match-
ing in the system-level correlation task. The com-
parison between Ours (BERT+T+cat+R) and Ours
(BERT+TBR) shows that the combination process
is better than concatenation directly. Furthermore,
we also show the comparison between concatena-
tion and average in some standard metrics.

Model Ours (BERT) CIDEr-D

AoAnet 0.3529 1.296
M2-Transformer 0.3481 1.321
SAT 0.3296 0.893
CNN+LSTM 0.3055 0.946
NeuralTalk 0.2845 0.692

Table 5: We present some results on current state-of-
the-art models (M2-Transformer and AoAnet) for im-
age captioning models with respect to CIDEr-D. The
experimental results show that: on both our metric and
CIDEr-D, current models perform better. Abbreviation:
SAT means Show, Attend and Tell.

4.6 Caption-Level Correlation

In caption-level evaluation tasks, we compute
Kendall’s correlation (Kendall, 1938) between met-
rics results and expert judgments.

In Flickr 8K, we use Expert Annotation with
5822 samples, including 158 correct image-caption
pairs where the candidate caption equals one of
captions in references set. Following the prior
work (Anderson et al., 2016), we use 5664 sam-
ples and exclude those correct image-caption pairs.
In COMPOSITE, captions are estimated by two
kinds of standards: correctness and throughness,
and we only focus on correctnesss in this work.

The experimental results in Table 3 show that
our metric is quite suitable for caption-level eval-
uation in image captioning. Our metric outper-
forms other metrics (including training-based met-
ric LEIC in Flickr 8K). Another interesting fact is
that the unigram metric also has high performance
in caption-level correlation tasks. In COMPOSITE,
our unigram metric is comparable to our metric
with BERT.

In PASCAL-50S, we use five references for met-
rics computation, which is comparable with previ-
ous experiments. The results in Table 4 show that
in four kinds of caption pairs, our metric performs
better than others in human-correct (HC), human-
incorrect (HI), human-model (HM) classification.

5 More model results on our metric

In table 5, We evaluate some current state-of-the-art
image captioning models reported from Codalab
competition: Meshed-Memory-Transformer (Cor-
nia et al., 2020), AoAnet (Huang et al., 2019).3

Some of models in 2015 COCO Captioning Chal-

3https://competitions.codalab.org/competitions/3221
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lenge are listed for comparison: (1) Show, At-
tend and Tell (Xu et al., 2015); (2) CNN+LSTM
(Vinyals et al., 2015); (3) NeuralTalk (Karpathy
and Fei-Fei, 2015). The result shows that: on our
metric, current models perform better than previ-
ous models. It is worth noting that different judg-
ments exist between AoAnet and M2-Transformer
on our metric and CIDEr-D. According to our ob-
servation, several captions (1558/5000) generated
by M2-Transformer are incomplete, like a bed-
room with a bed and a tv in a or a wooden door
with a skateboard on a. It may explain why M2-
Transformer is a little worse than AoAnet on our
metric.

6 Conclusion

In this work, we study the intrinsic variance among
ground truth captions in image captioning evalua-
tion. We propose an improved matching metrics
based on BERTScore, which can combine all of
the references for taking full advantage of multi-
references. Our metric also benefits from stop word
removal by reducing the impact of stop words. The
experimental results show that our metric can reach
state-of-the-art human correlation in several evalu-
ation tasks.
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