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Abstract

Lexica distinguishing all morphologically re-
lated forms of each lexeme are crucial to many
language technologies, yet building them is
expensive. We propose Frugal Paradigm
Completion, an approach that predicts all re-
lated forms in a morphological paradigm from
as few manually provided forms as possi-
ble. It induces typological information dur-
ing training which it uses to determine the
best sources at test time. We evaluate our
language-agnostic approach on 7 diverse lan-
guages. Compared to popular alternative ap-
proaches, our Frugal Paradigm Completion
approach reduces manual labor by 16-63% and
is the most robust to typological variation.

1 Introduction

From syntactic parsing (Seeker and Kuhn, 2013)
to text-to-speech (Zen et al., 2016; Wan et al.,
2019), many linguistic technologies rely on accu-
rate lexica decorated with morphological informa-
tion. Yet, building such lexica requires much hu-
man effort (Buckwalter, 2002; Tadié¢ and Fulgosi,
2003; Forsberg et al., 2006; Sagot, 2010; Eskan-
der et al., 2013). We present a language-agnostic
method for minimizing the manual labor required
to add new paradigms to an existing lexicon.

Formally, let each lexicon entry, or realization,
be a triple (P, C, f). P marks membership in some
paradigm P of morphologically related words, C
defines a cell in P as a bundle of morphosyn-
tactic features, and f is the form realizing C in
P. Hence, paradigm SING can be expressed (in
the UniMorph schema (Kirov et al., 2018)) as a
set of realizations: {(SING, NFIN, sing), (SING,
3.SG.PRES, sings), ... }.

For each paradigm to be added to the lexicon,
e.g., FLY, we aim to select as few sources as pos-
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sible to be manually realized, e.g., {(FLY, NFIN,
/), (FLY, PST, flew)} such that the forms realiz-
ing the remaining cells can be predicted, i.e., flies,
flying, flown. Here, sources are manually provided
realizations. Targets are realizations whose forms
must be predicted from sources. Our work dif-
fers from traditional paradigm completion (Durrett
and DeNero, 2013) in that sources are not given
blindly, but the system must strategically select
which sources it wants to be given at test time.

Paradigm completion from one source is typ-
ically non-deterministic due to multiple inflec-
tion classes realizing different exponents in some
cells, e.g., suffixing +ed generates the past tense
for WALK, but not for SING or FLY which
are members of different classes. Hence, many
works discuss paradigm completion in the con-
text of (implicit) inflection class disambiguation
(Ackerman et al., 2009; Montermini and Bonami,
2013; Beniamine et al., 2018). Finkel and Stump
(2007) propose three approaches to select the
fewest sources required to deterministically iden-
tify class.  Yet, neural sequence models can
often complete paradigms accurately from less
sources without fully disambiguating inflection
class (Kann and Schiitze, 2016; Aharoni and Gold-
berg, 2017; Wu and Cotterell, 2019). See Elsner
et al. (2019) for an overview of the application of
neural sequence models to morphological theory.

We propose Frugal Paradigm Completion
(FPC), inspired by work on inflection class dis-
ambiguation and neural sequence modeling. We
train a source selection agent (SSA) to induce ty-
pological knowledge regarding the distribution of
complexity in paradigms and use this to request
informative source cells to be realized by an or-
acle. Sources are fed to a predictor to generate
target forms. For each paradigm, SSA iteratively
requests sources until the oracle confirms all cells
have been realized correctly.
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We introduce a novel metric, auto-rate, to quan-
tify the manual labour (performed by the oracle)
needed to complete each paradigm. Using this
metric, we demonstrate that FPC reduces labor by
63% over predicting targets from lemmata, and
47% over predicting them from the smallest set of
sources that fully disambiguates inflection class.
We propose a new typology for discussing the
organization of complexity in paradigms which
helps explain why strategies perform better or
worse on certain languages while FPC, being sen-
sitive to typological variation, performs robustly.

After discussing related paradigm completion
approaches in Section 2, we describe FPC in Sec-
tion 3. Section 4 covers all data and experimental
set up details. We discuss results in Section 5 and
analyze FPC’s behavior in Section 6.

2 Paradigm Completion Approaches

Here we discuss several paradigm completion ap-
proaches related to FPC.

Lemma-based Paradigm Completion The
standard paradigm completion approach does not
select sources, but assumes one source: the lemma
(Dreyer and Eisner, 2011), whose distinction is
ultimately arbitrary. Yet many have shown that
more informative sources can be chosen (Finkel
and Stump, 2007; Cotterell et al., 2017b; Kann
and Schiitze, 2018).

Most Informative Source For each target form
to be predicted, Kann and Schiitze (2018) select
the source most likely to predict that form. Unlike
FPC, they do not attempt to minimize the number
of unique sources that must be manually realized.

Static Principal Parts To minimize sources
required to fully disambiguate inflection class,
Finkel and Stump (2007); Stump and Finkel
(2013) propose three approaches: static, dynamic,
and adaptive. In the static approach, the same
sources must be used for every paradigm (these
sources are referred to as principal parts in a much
older pedagogical tradition dating back to ancient
Rome with Varro’s de lingua latina (Grinstead,
1916; Ahern, 1990)). Cotterell et al. (2017b)
train a model on static sources and attain near
100% accuracy in Latin verb paradigm comple-
tion. However, they do not consider that one
paradigm may require fewer sources than another,
nor that paradigm completion may require fewer
sources than inflection class disambiguation.

Dynamic Principal Parts Finkel and Stump
(2007)’s dynamic approach selects a minimal set
of sources necessary to fully disambiguate inflec-
tion class which can be unique to that inflection
class. While efficient, this is impractical in that it
requires oracular knowledge of class prior to see-
ing any forms.

Adaptive Principal Parts Finkel and Stump
(2007)’s adaptive approach, like our FPC method,
chooses the same first source cell for each
paradigm P. Subsequent sources are selected con-
ditional on the set of inflection classes P could be-
long to given the sources realized so far. Hence,
the number of sources required per paradigm is
upper bounded by the static approach and lower
bounded by the dynamic.

Our FPC approach is a neural update, inspired
by their adaptive approach. While their implemen-
tation tracks viable inflection classes explicitly
with rules operating on oracularly segmented af-
fixes, we use sequence models operating on whole
words to remove reliance on oracular segmenta-
tion and leverage stem-internal phonology known
to correlate with inflection class (Aronoff, 1992;
Dressler and Thornton, 1996; Dawdy-Hesterberg
and Pierrehumbert, 2014).

3 Frugal Paradigm Completion

This section describes the interactions of the three
FPC components. As illustrated in Figure 1, the
predictor takes a source cell and its realizing form
as input, e.g., 3.SG.PRES: sings, or cell 2: form
2 in the figure. The predictor is composed of
as many sub-predictors as there are cells in the
paradigm, each of which is trained to predict the
entire paradigm from one source cell’s realization.
Cell 2 in the paradigm is grayed out in the figure,
as this was provided as input so it does not have
to be predicted. The predicted paradigm is evalu-
ated by the oracle. If there are no errors, we are
done. Otherwise, based on previous sources, SSA
chooses a new cell to be realized by the oracle and
gives it to the predictor as the next source. Because
cell 3 is chosen in the figure, sub-predictor 3 will
be used to predict the paradigm going forward, and
cells 2 and 3 will both be grayed out. The pro-
cess continues like this until all cells have been
correctly predicted by at least one sub-predictor.
Crucially, during inference, each test paradigm
is empty, i.e., no realization has been seen during
training and no source is available to inflect from
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Figure 1: Schematic representation of the flow of Frugal Paradigm Completion at inference time.

a-priori. Our setup aims to minimize the number
of sources which the SSA must request from the
oracle (typically a human in the loop at inference
time) to predict the remaining paradigm slots cor-
rectly.

3.1 Predictor

The predictor outputs a target form given its cell,
a source form and the source form’s cell as in-
put. To train the predictor, for each possible source
cell, we train a sub-predictor to predict every pos-
sible target form in every paradigm in the training
data given the realization of that source cell in that
paradigm. Details of all sequence model architec-
tures are provided in Section 4.

3.2 Source Selection Agent

SSA’s choice of a cell for a given paradigm de-
pends on all previously selected cells for that
paradigm and their corresponding forms. This al-
lows SSA to learn, e.g., that given a previous En-
glish PST source, PST.PTCP should only be re-
quested as a subsequent source if the PST form
did not take the regular -ed suffix. Otherwise,
PST.PTCP is likely to be regular and unlikely to
contribute new information.

To induce such knowledge, we train SSA on an
oracle policy of ideal source selections extracted
from the train set (Ross et al., 2011; Ross and Bag-
nell, 2014; Welleck et al., 2019).1 To extract the
oracle policy, we divide the training lexicon into
two folds and train one predictor on each, allowing
us to cross-validate each predictor on its held out
fold. For each training paradigm, we test which
target forms can be correctly predicted by which
source cells’ sub-predictors. As shown for SING

"While we borrow the term oracle policy from Imitation
Learning (Ross et al., 2011; Ross and Bagnell, 2014; Welleck
et al., 2019), we mimic the oracle policy with simple se-

quence learning. Our analysis suggests even this may be
more machinery than necessary.

in Figure 2, we use this information to extract min-
imum set covers, i.e., the fewest source cells such
that the union of the subsets they predict correctly
covers the entire paradigm. These covers consti-
tute the oracle policy used to train SSA.

The minimum set cover problem is NP-
complete (Lund and Yannakakis, 1994; Kuhn
et al., 2005), but we approximate it in O(log.|P|)
by iteratively selecting the cell whose subset most
enlarges the union. We break ties by averaging
predictiveness (Equation 1) over both folds, where
fold F' contains |F| paradigms; Py, |P,,| cells;
and Acc(IPy,,, Cyrg, Core) returns 1 if using Cyp’s re-
alization as a source correctly predicts the form
realizing cell Cy, in paradigm P,,.

predictiveness(Cge, F') =
F Py,
|m|:1 lj:l‘ ACC(Pma Cja Csrc) (1)
[ 2] IP,,.|

m=1

At this stage, paradigm covers are dynamic in
that no single cell need be shared by all covers.
Yet, when selecting the first source, SSA has no
previous sources to condition on, making it impos-
sible to predict the first cell. Thus, we get adap-
tive minimum set covers by designating the start
cell to be that which occurs in the most dynamic
covers. Then we re-approximate all covers such
that each includes this cell.” Finally, we rank cells
within each cover by the total number of covers
in which they appear. For each cell in each cover,
we train SSA to predict said cell from all higher
ranked cells and their realizing forms (holding out
2% of them for development).

2We train and test on a single part-of-speech for each lan-
guage, so each paradigm should contain the start cell. For de-
fective paradigms lacking said cell, we back off to the most
frequent cell that exists in the paradigm.
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Given /' NFIN=sing

*\ 3.86G. PRES=sings

PRES . PTCP=singing , PST=sang *\ PST.PTCP=sung

| NFIN=sing
|

1 3.S5G.PRES=sings

| .
, NFIN=sing

| 3.SG.PRES=sings
Targets predicted correctly | PRES. PTCP=singing , PRES . PTCP=singing
\ /

NFIN=sing : }
3.5G.PRES=sings | :
PRES . PTCP=singing , }

| PST=sang \
' PST.PTCP=sung ,' PST.PTCP=sung

Figure 2: Minimum set cover example for SING, which is {NFIN, PST}.

3.3 Oracle

The oracle represents a human-in-the-loop dur-
ing inference, providing requested source realiza-
tions to the predictor and informing SSA when
a paradigm is complete and accurate (Figure 1).
In our implementation, the oracle does not spec-
ify which individual predictions are incorrect, but
it thus must resolve any discrepancies when two
sub-predictors disagree after the fact. We do not
attempt to model the additional cost this incurs,
as it is unclear how to combine it with the pre-
sumably more expensive cost of correcting errors,
which we model instead. This is worth re-visiting
in future work.

4 Experimental Details

We evaluate 4 paradigm completion approaches
on 7 languages. Here we discuss implementation,
data and evaluation details.

4.1 Prediction Architecture

All sequence models in all implementations of
any paradigm completion approach use the Trans-
former architecture (Vaswani et al., 2017). Here
we describe the formatting of input and outputs as
well as our hyperparameters.

Input and Output Formats Following Kann
and Schiitze (2016), input sequences combine
characters and morphosyntactic features. The fol-
lowing is a sample input and output for a single
source FPC sub-predictor specializing in the cell
NFIN:

Input: f ! y out_V.PTCP out_PST
Output: 1 0 w n

For any inflected-form-predicting sequence
model whose input is not limited to realizations of
a single cell—as in, e.g., the static principal parts
approach—source cell features are prepended to
the input as such:

Input:
Output: f 7 o w n

In_NFIN f [ y out_V.PTCP out_PST

For multi-source sequence models, the features
of each source are inserted into the input and the
target features are listed after the first source. We
experimented with several different multi-source
representations and the Transformer performed
fairly similarly with all of them.

Input:  in_NFIN f [ y out_V.PTCP out_PST
InPST fl e w
Output: f1 o0 w n

The FPC’s SSA predicts not a form, but a cell,
conditional on any previously realized sources. To
predict the first source, it is given nothing and will
thus deterministically select the best starting cell
as determined by the oracle policy (see Section
3.2). To predict any subsequent source, it condi-
tions on the realizations of all previously requested
sources for that paradigm. The following exempli-
fies SSA inputs and outputs when predicting the
second source for paradigm FLLY:

Input:
Output: in_V.PTCP in_PST

In_NFIN f [y

Wau et al. (2018) and others have achieved im-
provements by embedding morphosyntactic fea-
tures separately and concatenating them to the en-
coder output prior to feeding it to the decoder.
Our error analysis, however, suggests Transform-
ers handle Kann and Schiitze (2016)-style input
well. More sophisticated feature handling may not
be necessary, but should be investigated in future
work.

Hyperparameters We train all Transformer
models for 100 epochs in batches of 64 with 0.1
dropout probability. The final model is restored
from the epoch with the highest dev accuracy.
We stop early if there is no improvement for 20
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Train Dev  Test
Arabic paradigms 1006 100 100
nouns instances 24160 2260 2352
German paradigms 1031 100 100
verbs  instances 27762 2690 2692
English paradigms 2908 200 201
verbs instances 14522 1000 1001
Russian paradigms 3289 100 100
nouns instances 37423 1133 1137
Latin paradigms 1630 100 100
nouns instances 19150 1180 1174
Hungarian paradigms 1405 100 100
nouns instances 47689 3400 3383
Irish paradigms 549 100 100
nouns instances 6460 1197 1195

Table 1: Number of paradigms and instances by split
for every language and POS considered.

epochs. The only exception is during FPC cross-
validation where sub-predictor models are trained
for only 50 epochs with early stopping after 5
epochs without improvement. This is just to re-
duce computational cost as it is sufficient to induce
an oracle policy. The final sub-predictor models
however (those used at inference time, not those
used to induce the oracle policy), are trained on
the full training data set using the full 100 epochs
with 20 epochs patience for early stopping. As for
Transformer-specific hyperparameters, using the
original notation of Vaswani et al. (2017), we set
N =4, dyoger = 128, dy = 512, and h = 8, scal-
ing down the hyperparameters recommended for
machine translation as our task is less expensive
(Aharoni and Goldberg, 2017; Wu et al., 2018).

4.2 Data Preparation

For every language and part of speech (POS) con-
sidered, we extract train, dev and test sets from
UniMorph (Kirov et al., 2018). Each split contains
full paradigms, though the cells realized in each
may vary due to defectiveness (Corbett, 2005;
Sims, 2015). We filter many gold errors by re-
moving paradigms for which no realization can
be attested in actual text. We use Universal De-
pendencies (UD) (Nivre et al., 2016) to check for
attestations. We also filter overabundant realiza-
tions (multiple forms realizing one cell), keeping

only the most frequent form, as attested in UD.
While some languages allow for overabundance
(Thornton, 2010, 2011), in UniMorph, this often
indicates a gold error.

We randomly divide paradigms into splits such
that train is maximally large and dev and test con-
tain at least 100 paradigms and 1,000 realizations.
Exact quantities are displayed in Table 1. Ara-
bic, German, English, and Russian were used for
development, while Irish, Hungarian, and Latin
were only evaluated after fixing hyperparameters.
The languages considered represent 3 families
and 4 diverse Indo-European branches. They ex-
hibit multiple non-canonical behaviors (Corbett,
2005) and present diverse challenges from non-
concatenative morphology to complex inflection
class systems.

4.3 Evaluation

Paradigm completion is usually evaluated via ex-
act match accuracy on held out target forms (Cot-
terell et al., 2016, 2017a, 2018; McCarthy et al.,
2019). Yet we use as many sources as are nec-
essary to reach 100% accuracy in predicting the
remaining slots, so accuracy is not a meaningful
metric for the FPC. Some theoretical works focus
on the sources required to unambiguously com-
plete a paradigm given some implicit knowledge
of viable inflection classes (Finkel and Stump,
2007; Ackerman and Malouf, 2013). Yet these
tend not to propose actual paradigm completion
models or evaluate their decisions in ambiguous
cases. To evaluate our system and bridge these tra-
ditions, we propose auto-rate:

S auto(P;)
Dic [Pi]
where auto(IP) denotes the number of realizations
correctly predicted while not having been pro-
vided as sources for paradigm PP by the oracle.
Intuitively, auto-rate is like accuracy but it
counts oracularly provided sources as additional
errors since both errors and sources require la-
bor, i.e., sources require manual input and errors,
post-correction. We also report manual cells per
paradigm, i.e., sources plus errors. Of course,
FPC resolves all errors eventually, but other sys-
tems can make errors requiring post-correction.

auto-rate =

2

4.4 Baselines

We compare the FPC method to three baselines.
One is a variant of FPC using a random SSA.
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This allows us to distinguish the benefit of a smart
SSA from that of simply receiving additional feed-
back from an oracle in the loop. Each time a
source must be selected, random SSA chooses ran-
domly without replacement. Its performance is av-
eraged over two runs. The lemma approach base-
line predicts all paradigm forms from one desig-
nated source: the lemma. Finally, for the static
approach baseline, we considered two static ap-
proach implementations. The single-source im-
plementation predicts each target from the source
that is, in theory, its best predictor (Kann and
Schiitze, 2018). The multi-source implementation
concatenates these sources, predicting each target
from the concatenated input. As results are nearly
identical for either implementation, we report re-
sults only for single-source—with the exception of
Latin, as explained presently.

For some languages, there is little theoretical
or pedagogical literature to help identify the best
sources for the static approach. Our single-source
static approach for Arabic nouns predicts singular
and dual forms from SG;NDEF;NOM and plurals
from PL;NDEF;NOM. In theory, any non-plural
plus any plural should be sufficient (Brustad et al.,
2005; Habash, 2010). For German verbs, we pre-
dict present and imperative forms from NFIN and
past forms from IND;PST; 1SG (Grebe et al., 1966).
We predict English present forms from NFIN; PST
and V.PTCP;PST predict themselves. For Russian
nouns, Zaliznyak (1980) argues for five sources,
yet Parker (2016) demonstrates that three are usu-
ally sufficient. We follow the latter, predicting all
nominative or accusative forms from ACC;SG, all
other singulars from INS;SG, and all other plu-
rals from GEN;PL. In preliminary experiments,
we found this to match the accuracy of the five
source approach, thus achieving a higher auto-
rate. For Latin, we could not evaluate a single-
source static implementation as it is unclear which
source cell best predicts each target. The multi-
source static approach for Latin nouns predicts all
forms from NOM;SG and GEN;SG (following the
classical grammatical analyses of Varro, Priscian
and the Roman ars grammatica). For Irish and
Hungarian, we do not evaluate a static approach
as we lack the requisite linguistic knowledge to
determine the best sources.

Accuracy Auto-rate Mcpp
Dev Test Dev Test Dev Test

Arabic nouns
Lemma 62.0 588 593 56.5 9.6 10.7
Static 959 994 895 93.1 29 21

Random Ag. 90.2 909 22 22
FPC 90.2 936 22 15

German verbs

Lemma 87.6 89.0 841 858 43 40
Static 94.1 964 867 889 3.6 3.0

Random Ag. 90.0 92.1 24 19
FPC 91.8 925 20 18
English verbs

Lemma 965 940 767 742 12 13
Static 99.7 984 397 384 30 3.0
Random Ag. 76.0 733 12 14
FPC 773 743 11 13

Russian nouns
Lemma 97.1 956 883 875 1.3 1.5
Static 98.4 983 726 723 32 32

Random Ag. 86.1 843 16 1.8
FPC 885 8.1 13 12

Latin nouns
Lemma 655 516 63.6 496 51 6.7
Static 97.7 96.8 80.8 79.7 23 24

Random Ag. 859 847 1.7 1.8
FPC 890 878 13 14

Hungarian nouns

Lemma 956 909 928 830 25 41
Random Ag. 950 946 1.7 19
FPC 955 952 15 1.6

Irish nouns

Lemma 635 669 56.1 59.6 54 50

Random Ag. 649 682 42 38
FPC 721 696 33 3.6
Table 2: Evaluation of paradigm completion ap-

proaches with metrics defined in Section 4. We do
not report accuracy for FPC or its random agent variant
(Random Ag.), as it is trivially 100% (see Section 4.3).
Mcpp stands for Manual cells per paradigm.

5 Results and Discussion

As shown in Table 2, FPC always ties or beats the
next best approach, while the next best approach
varies by language. On average, FPC reduces la-
bor by 63% over the lemma approach, 47% over
static, 16% over random agent, and 13% over the
next best approach. Its success is mainly due to (1)
making predictions from fewer sources than are
required for fully disambiguating inflection class
and (2) receiving feedback after each source.
Surprisingly, training a sophisticated SSA does
not improve much over using a random agent. We
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argue this is due to an unexpectedly large mar-
gin of error in the agent’s source selection task.
Despite the complexity of source selection strate-
gies required for inflection class disambiguation,
FPC uses lexical frequencies to expect regular-
ity and stem-internal clues to anticipate irregular
classes, requiring a median of just one source per
paradigm for all languages except under-resourced
Irish. Furthermore, inspection of the source selec-
tion minimum set covers reveals that it is often the
case that a paradigm can be completed correctly
from any single source. This is surprising in light
of the precise strategies required for completely
deterministic paradigm completion in Finkel and
Stump (2007)’s framework and in light of Albright
(2002)’s case for the privileged status of a single
form per paradigm, though in our framework with
full words and full paradigms for training, it seems
that many sources can often serve as good enough
singleton principal parts. This supports Bonami
and Beniamine (2016) proposal of gradient princi-
pal part analyses.

6 Analysis

Here, we discuss patterns relating SSA’s first and
second sources chosen (Figures 3a-b and 4a-b) to
the inter-predictability of cells represented by heat
maps (3c and 4c). Maps display the average accu-
racies with which each target (column) can be pre-
dicted from each source (row). We analyze spe-
cific SSA choices and predictor errors in Arabic
and Latin.

The maps (for all languages, see the Ap-
pendix) suggest complexity can be distributed
within paradigms in systematically distinct ways.
Ackerman and Malouf (2013) propose integra-
tive (I-) complexity, using average conditional en-
tropy to describe paradigmatic organization, but
this has been criticized for obscuring differences
in the predictability of sub-paradigm regions (Cot-
terell et al., 2019; Elsner et al., 2019). To remedy
this, we propose a typology for measuring the ex-
tent to which I-complexity is realized via differ-
ent organizational strategies, which is useful for
discussing source selection strategies. Our typol-
ogy describes paradigms in terms of mutual pre-
dictability, the correlation of a map and its trans-
pose, and entropy predictiveness, the negative cor-
relation of cells’ average predictiveness (see Equa-
tion 1) and average predictability, defined here in
comparable terms as:

predictability(Cyg, F') =

F Py
P Sl Ace(Bin, Cug, )

F
S Pl

Intuitively, a paradigm is mutually predictable if
the fact that cell A predicts cell B means that B is
likely to predict A. Such paradigms often feature
regions of mutually predictable cells (as in 3c),
such that an optimal strategy avoids picking mul-
tiple sources from one region. For entropy predic-
tive paradigms, if A is generally more difficult to
predict than B, A is likely to be a better predictor of
the remaining cells (following the information the-
oretic logic that surprisal is informative (Shannon,
1948; Jaeger, 2010)). For such paradigms, the op-
timal strategy selects the source which would have
been the most difficult target to predict.

Unlike Sims (2020)’s graph-theoretic typology
for describing inflection class structure, our typol-
ogy is a two-dimensional description of how the
optimal paradigm completion strategy is affected
by underlying class structure. In this sense, our ty-
pology is complementary to hers and future work
might investigate the relationship between traits
in her typology and mutual predictability or en-
tropy predictiveness. Furthermore, our typology
might be updated to consider the impact of type
frequency (Sims and Parker, 2016) in a framework
where distributional data is available.

Figure 5 demonstrates that cross-linguistic vari-
ation is vast with respect to our typology, as some
languages even exhibit negative entropy predic-
tiveness or mutual predictability. This partly ex-
plains why non-FPC approaches perform errati-
cally: if paradigmatic organization varies by lan-
guage, source selection strategies must be able to
adapt to the data.

3)

6.1 Arabic Error Analysis

Arabic nouns are mutually predictable (Figure 5).
Any singular or dual form can predict another.
Plural forms also predict each other. Yet, in gen-
eral, plurals are less predictive/able (Figure 3c)
due to several inflection classes varying in the plu-
ral. The sound plurals take suffixes while broken
plural classes are realized via non-concatenative
processes. For example, J b rAkb, rider from

root & & |, rk b, takes the broken plural pattern

_ _A _, becoming ¥, rkAb. Yet, having heard
only singular realizations, a human might posit a
sound plural, i.e., x() 9.5 |, rAkbwn, realizing the
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Figure 3: Arabic analysis. (a) and (b) define how
likely each cell is to be a source (white), correctly pre-
dicted (gray), or an error (black) after one (a) or two (b)
sources. (c) shows the predictiveness/ability of source
(rows) and target (columns) cells. Darker cells are less
predictive/able. For a more detailed rendering of this
graphic, please see the appendix.

more productive exponent.

SSA learns an ideal strategy, requesting a sin-
gular source (Figure 3a) and then a plural (3b). In-
terestingly, 6 of 18 sound feminine plurals (most
frequent single class) require multiple sources and
8 of 28 broken plurals do not. Thus, the predic-
tor does not default to regularity, but uses stem-
internal phonology to anticipate irregularity. Most
errors made from the first source posit a viable
broken plural, just not the right one. In future
work, modeling semantics can fix such errors, e.g.,
knowing that _S'l, rAkb is animate makes plural

a) Coverage after 1 source

100 II III Il l. [ ] I. lII Il ] - -
75

o
o

25

b) Coverage after 2 sources

100 ... e g e =

£ $$ & dg PP &S
éﬁ & & ¢ @& F & &£ &

c¢) Inter-predictability heat map

NOM: GEN: DAT: ACC: ABL: VOC: NOM: GEN; DAT. ACC: ABL: VOC;
SG__SG__SG SG S5G SG PL PL PL PL PL PL

NOM; SG ‘

GEN: SG|

DAT: SG|

ACC; SG|

ABL: SG|

VOC; SG

NOM: PL

GEN; PL|

SSPUBAT10TPOId obeisay

DAT; PL|

ACC; PL

.

VOC; PL ‘

HE TR e

Average Predictability

Figure 4: Latin analysis. (a) and (b) define how likely
each cell is to be a source (white), correctly predicted
(gray), or an error (black) after one (a) or two (b)
sources. (c) shows the predictiveness/ability of source
(rows) and target (columns) cells. Darker cells are less
predictive/able. For a more detailed rendering of this
graphic, please see the appendix.

*J \j 3 rwAkb unlikely, as animate nouns seldom
take that inflection class.

For future work, we can pre-train on raw cor-
pora to give our model access to such informa-
tion (Devlin et al., 2019). Indeed Erdmann and
Habash (2018) found distributional information to
benefit inflectional paradigm clustering in Ara-
bic. Though the benefits should generalize as se-
mantics correlates with inflection class in many
languages (Wurzel, 1989; Aronoff, 1992; Har-
ris, 1992; Noyer, 1992; Carstairs-McCarthy, 1994;
Corbett and Fraser, 2000; Kastner, 2019).
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Figure 5: Integrative typology for describing
paradigms by the mutual predictability of cells and the
predictive power of hard-to-predict cells.

Cell 15t grdM o gndN - 3rd 4thM 4PN
NOM;SG a us um varies us 0
GEN;SG  ae 1 1 is as as
DAT;SG ae 0 0 1 ul 0
ACC;SG am um um em um a

ABL;SG a 0 0 em a

[=1]

VOC;SG generally matches NOM;SG
NOM;PL ae 1 a es as ua
GEN;PL arum Orum Orum um uum uum

DAT;PL is 1S s ibus ibus  ibus
ACC;PL as 0s a €es us ua

ABL;PL  is 1s 1s ibus  ibus ibus
VOC;PL

generally matches NOM; PL

Table 3: Plat of the suffixes taken for each Latin nomi-
nal declension.

6.2 Latin Error Analysis

Latin is not mutually predictable with moderate
entropy predictiveness. SSA’s choices are, at
first, opaque, but Table 3 shows that ACC;PL nar-
rows the inflection class to variants of one de-
clension. Remaining ambiguity mostly involves
37 declension nominative and vocative realiza-
tions, which can usually be predicted from the pre-
ferred second source cell, VOC;SG. 44 of 100 test
paradigms were 3™ declension, which required
multiple sources at the highest rate (16 of 44; 2n¢
masculine declension was next highest at 3 of 15).
There was no correlation between declension and
second source chosen, yet high auto-rate suggests
SSA’s choices may not need to condition on previ-
ously realized source forms, but only their cells.
While 77 of 100 paradigms were completed

from a single source, we found paradigms re-
quiring three sources that might be completable
from two using a multi-source FPC implemen-
tation. For example, greges, flocks realizes
GREX.AcC;PL, but the predictor mistakenly
posits xgregium for GEN;PL from this source,
guessing the wrong 3"¢ declension variant. While
second source VOC;SG grex corrects this, it ob-
scures the underlying stem, as x can be an al-
lophone of g or ¢. Thus, we still get an error,
xgrecum. A multi-source predictor could avoid
forgetting the underlying allophone g after seeing
the second source.®> That said, multi-source FPC
is not as simple as multi-source static. Heuristic
sampling of training instances based on the ora-
cle policy yields predictors that only attend to one
source or make bad predictions when only given
one. This is worth exploring further in future work
as there is more evidence of paradigms that are dif-
ficult to handle without jointly encoding sources
in the linguistic literature (Corbett, 2005; Bonami
and Beniamine, 2016).

7 Conclusion

We presented Frugal Paradigm Completion, which
reduces the manual labor required to expand a
morphological lexicon by 16-63% over competi-
tive approaches across 7 languages. We demon-
strated that typologically distinct morphological
systems require unique treatment and benefit from
our SSA, that learns its strategy from data. We
found that inducing this strategy is not as challeng-
ing as previously suggested (Finkel and Stump,
2007). Thus, SSA might be replaced with a less
costly architecture while our model might be im-
proved by conditioning on semantics and jointly
decoding from a variable number of sources.
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A Expanded Results

The figures in this appendix demonstrate the cov-
erage after 1 and 2 sources for every language
considered as well as their inter-predictability heat
maps. Figures are enlarged to show all individual

cells for the reader’s convenience. Hence, the Ara-
bic and Latin figures in this appendix correspond
to Figures 3 and 4 in Section 6, but show more
detail.
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Figure 6: Coverage of Arabic target cells after SSA chooses the first two sources.
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Figure 7: Inter-predictability heat map of Arabic cells.
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Figure 8: Coverage of German target cells after SSA chooses the first two sources.
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German Verb Inter-Predictability
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Figure 9: Inter-predictability heat map of German cells.
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Figure 10: Coverage of English target cells after SSA chooses the first two sources.
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English Verb Inter-Predictability

V. V.
3.5G; PTCP; PTCP; Average
NFIN PRS PRS PST PST Predictiveness

MFIN 0.94

3,5G,PRS

V.PTCP:
PRS

PST

V.PTCP;
PST

Average
Predictability

Figure 11: Inter-predictability heat map of English cells.
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Figure 12: Coverage of Russian target cells after SSA chooses the first two sources.
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Figure 13: Inter-predictability heat map of Russian cells.
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Figure 14: Coverage of Latin target cells after SSA chooses the first two sources.
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Figure 15: Inter-predictability heat map of Latin cells.
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Figure 16: Coverage of Hungarian target cells after SSA chooses the first two sources.
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Hungarian Noun Inter-Predictability

o
SG SG 56 56 SG SG SG SG 5G_ SG_ SG. 56 :{c} SG 3G P PL PL PL PL PL PL PL PL L PL PL
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Figure 17: Inter-predictability heat map of Hungarian cells.
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Figure 18: Coverage of Irish target cells after SSA chooses the first two sources.
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Irish Noun Inter-Predictability
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Figure 19: Inter-predictability heat map of Irish cells.
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