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Abstract

In many languages like Arabic, diacritics are
used to specify pronunciations as well as mean-
ings. Such diacritics are often omitted in
written text, increasing the number of possi-
ble pronunciations and meanings for a word.
This results in a more ambiguous text making
computational processing on such text more
difficult. Diacritic restoration is the task of
restoring missing diacritics in the written text.
Most state-of-the-art diacritic restoration mod-
els are built on character level information
which helps generalize the model to unseen
data, but presumably lose useful information
at the word level. Thus, to compensate for
this loss, we investigate the use of multi-task
learning to jointly optimize diacritic restora-
tion with related NLP problems namely word
segmentation, part-of-speech tagging, and syn-
tactic diacritization. We use Arabic as a case
study since it has sufficient data resources for
tasks that we consider in our joint modeling.
Our joint models significantly outperform the
baselines and are comparable to the state-of-
the-art models that are more complex relying
on morphological analyzers and/or a lot more
data (e.g. dialectal data).

1 Introduction

In contrast to English, some vowels in languages
such as Arabic and Hebrew are not part of the alpha-
bet and diacritics are used for vowel specification.1

In addition to pertaining vowels, diacritics can also
represent other features such as case marking and
phonological gemination in Arabic. Not including
diacritics in the written text in such languages in-
creases the number of possible meanings as well as
pronunciations. Humans rely on the surrounding

∗*The work was conducted while the author was with AWS,
Amazon AI.

1Diacritics are marks that are added above, below, or in-
between the letters to compose a new letter or characterize the
letter with a different sound (Wells, 2000).

context and their previous knowledge to infer the
meanings and/or pronunciations of words. How-
ever, computational models, on the other hand, are
inherently limited to deal with missing diacritics
which pose a challenge for such models due to
increased ambiguity.

Diacritic restoration (or diacritization) is the pro-
cess of restoring these missing diacritics for ev-
ery character in the written texts. It can spec-
ify pronunciation and can be viewed as a relaxed
variant of word sense disambiguation. For exam-
ple, the Arabic word ÕÎ« Elm2 can mean “flag” or
“knowledge”, but the meaning as well as pronun-
ciation is specified when the word is diacritized (
�Õ
�
Î

�
« Ealamu means “flag” while �Õ

�
Î«

� Eilomo means
“knowledge”). As an illustrative example in En-
glish, if we omit the vowels in the word pn, the
word can be read as pan, pin, pun, and pen, each
of these variants have different pronunciations and
meanings if it composes a valid word in the lan-
guage.

The state-of-the-art diacritic restoration models
reached a decent performance over the years using
recurrent or convolutional neural networks in terms
of accuracy (Zalmout and Habash, 2017; Alqahtani
et al., 2019; Orife, 2018) and/or efficiency (Alqah-
tani et al., 2019; Orife, 2018); yet, there is still room
for further improvements. Most of these models
are built on character level information which help
generalize the model to unseen data, but presum-
ably lose some useful information at the word level.
Since word level resources are insufficient to be re-
lied upon for training diacritic restoration models,
we integrate additional linguistic information that
considers word morphology as well as word rela-
tionships within a sentence to partially compensate
for this loss.

2We use Buckwalter Transliteration encoding
http://www.qamus.org/transliteration.htm.
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In this paper, we improve the performance of
diacritic restoration by building a multitask learn-
ing model (i.e. joint modeling). Multitask learning
refers to models that learn more than one task at
the same time, and has recently been shown to pro-
vide good solutions for a number of NLP tasks
(Hashimoto et al., 2016; Kendall et al., 2018).

The use of a multitask learning approach pro-
vides an end-to-end solution, in contrast to generat-
ing the linguistic features for diacritic restoration
as a preprocessing step. In addition, it alleviates
the reliance on other computational and/or data re-
sources to generate these features. Furthermore,
the proposed model is flexible such that a task can
be added or removed depending on the data avail-
ability. This makes the model adaptable to other
languages and dialects.

We consider the following auxiliary tasks to
boost the performance of diacritic restoration: word
segmentation, part-of-speech (POS) tagging, and
syntactic diacritization. We use Arabic as a case
study for our approach since it has sufficient data
resources for tasks that we consider in our joint
modeling.3

The contributions of this paper are twofold:

1. We investigate the benefits of automatically
learning related tasks to boost the perfor-
mance of diacritic restoration;

2. In doing so, we devise a state-of-the-art model
for Arabic diacritic restoration as well as a
framework for improving diacritic restoration
in other languages that include diacritics.

2 Diacritization and Auxiliary Tasks

We formulate the problem of (full) diacritic restora-
tion (DIAC) as follows: given a sequence of char-
acters, we identify the diacritic corresponding to
each character in that sequence from the following
set of diacritics {a, u, i, o, K, F, N, ∼, ∼a, ∼u,
∼i, ∼F, ∼K, and ∼N}. We additionally consider
three auxiliary tasks: syntactic diacritization, part-
of-speech tagging, and word segmentation. Two
of which operate at the word level (syntactic di-
acritization and POS tagging) and the remaining
tasks (diacritic restoration and word segmentation)
operate at the character level. This helps diacritic
restoration utilize information from both charac-

3Other languages that include diacritics lack such re-
sources; however, the same multitask learning framework
can be applied if data resources become available.

ter and word level information, bridging the gap
between the two levels.

Syntactic Diacritization (SYN): This refers to
the task of retrieving diacritics related to the syntac-
tic positions for each word in the sentence, which
is a sub-task of full diacritic restoration. Arabic is
a templatic language where words comprise roots
and patterns in which patterns are typically reflec-
tive of diacritic distributions. Verb patterns are
more or less predictable however nouns tend to be
more complex. Arabic diacritics can be divided
into lexical and inflectional (or syntactic) diacritics.
Lexical diacritics change the meanings of words
as well as their pronunciations and their distribu-
tion is bound by patterns/templates. In contrast,
inflectional diacritics are related to the syntactic
positions of words in the sentence and are added
to the last letter of the main morphemes of words
(word finally), changing their pronunciations.4 In-
flectional diacritics are also affected by word’s root
(e.g. weak roots) and semantic or morphological
properties (e.g. with the same grammatical case,
masculine and feminine plurals take different dia-
critics).

Thus, the same word can be assigned a different
syntactic diacritic reflecting syntactic case, i.e. de-
pending on its relations to the remaining words in
the sentence (e.g. subject or object). For example,
the diacritized variants �Õ

�
Î

�
« Ealama and �Õ

�
Î

�
« Ealamu

which both mean “flag” have the corresponding
syntactic diacritics: a and u, respectively. That
being said, the main trigger for accurate syntac-
tic prediction is the relationships between words,
capturing semantic and most importantly, syntactic
information.

Because Arabic has a unique set of diacritics,
this study formulates syntactic diacritization in the
following way: each word in the input is tagged
with a single diacritic representing its syntactic po-
sition in the sentence.5 The set of diacritics in
syntactic diacritization is the same as the set of dia-
critics for full diacritic restoration. Other languages
that include diacritics can include syntactic related
diacritics but in a different manner and complexity

4Diacritics that are added due to passivization are also
syntactic in nature but are not considered in our syntactic
diacritization task. That said, they are still considered in the
full diacritic restoration model.

5Combinations of diacritics is possible but we combine
valid possibilities together as one single unit in our model.
For example, the diacritics ∼ and a are combined to form an
additional diacritic ∼a.
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compared to Arabic.

Word segmentation (SEG): This refers to the
process of separating affixes from the main unit of
the word. Word segmentation is commonly used
as a preprocessing step for different NLP appli-
cations and its usefulness is apparent in morpho-
logically rich languages. For example, the undi-
acritized word whm Ñëð might be diacritized as

waham∼a
��
Ñ

�
ë

�
ð “and concerned”, waham Ñ

�
ë

�
ð “illu-

sion”, where the first diacritized word consists of
two segments “wa ham∼a”

��
Ñ

�
ë

�
ð while the second

is composed of one word. Word segmentation can
be formulated in the following way: each charac-
ter in the input is tagged following IOB tagging
scheme (B: beginning of a segment; I: inside a
segment; O: out of the segment) (Diab et al., 2004).

Part-Of-Speech Tagging (POS): This refers to
the task of determining the syntactic role of a word
(i.e. part of speech) within a sentence. POS tags are
highly correlated with diacritics (both syntactic and
lexical): knowing one helps determine or reduce
the possible choices of the other. For instance,
the word I.

�
J» ktb in the sentence ktb [someone]

means “books” if we know it to be a noun whereas
the word would be either I.

��
J
�
» katab “someone

wrote” or I.

���
J
�
» kat∼ab “made someone write” if it

is known to be a verb.
POS tagging can be formulated in the following

way: each word in the input is assigned a POS tag
from the Universal Dependencies tagset (Taji et al.,
2017).6

3 Approach

We built a diacritic restoration joint model and
studied the extent to which sharing information
is plausible to improve diacritic restoration perfor-
mance. Our joint model is motivated by the re-
cent success of the hierarchical modeling proposed
in (Hashimoto et al., 2016) such that information
learned from an auxiliary task is passed as input to
the diacritic restoration related layers.7

6Refer to https://universaldependencies.org/. This tagset is
chosen because it includes essential POS tags in the language,
and it is unified across different languages which makes it
suitable to investigate more languages in the future.

7We also experimented with learning tasks sharing some
levels and then diverging to specific layers for each tasks.
However, this did not improve the performance compared to
the diacritic restoration model when we don’t consider any
additional task.

3.1 Input Representation

Since our joint model may involve both character
and word level based tasks, we began our investi-
gation by asking the following question: how to
integrate information between these two levels?
Starting from the randomly initialized character
embeddings as well as a pretrained set of embed-
dings for words, we follow two approaches (Figure
1 visually illustrates the two approaches with an
example).

Figure 1: An example of embedding vectors for the
word cat and its individual characters: c,a, and t. (i) A
character-based representation for the word cat from its
individual characters; (ii) A concatenation for the word
embedding with each of its individual characters.

(1) Character Based Representation: We pass
information learned by character level tasks into
word level tasks by composing a word embedding
from the word’s characters. We first concatenate
the individual embeddings of characters in that
word, and then apply a Bidirectional Long Short
Term Memory (BiLSTM) layer to generate denser
vectors.8 This helps representing morphology and
word composition into the model.

(2) Word-To-Character Representation: To
pass information learned by word level tasks into
character level tasks, we concatenate each word
with each of its composed characters during each
pass, similar to what is described in Watson et al.
(2018)’s study. This helps distinguishing the
individual characters based on the surrounding
context, implicitly capturing additional semantic
and syntactic information.

8We also evaluated the use of a feedforward layer and uni-
directional Long Short Term Memory (LSTM) but a BiLSTM
layer yielded better results.
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Figure 2: The diacritic restoration joint model. All Char Embed entities refer to the same randomly initialized
character embedding learned during the training process. Pretrained embeddings refer to fixed word embeddings
obtained from fastText (Bojanowski et al., 2017). (i) shows the input representation for CharToWord and Word-
ToChar embedding which is the same as in Figure 1. (ii) represents the diacritic restoration joint model; output
labels from each task are concatenated with WordToChar embedding and optionally with segmentation hidden.

3.2 The Joint Model
For all architectures, the main component is BiL-
STM (Hochreiter and Schmidhuber, 1997; Schuster
and Paliwal, 1997), which preserves the temporal
order of the sequence and has been shown to pro-
vide the state-of-the-art performance in terms of
accuracy (Zalmout and Habash, 2017; Alqahtani
et al., 2019). After representing characters through
random initialization and representing words using
pretrained embeddings obtained from fastText (Bo-
janowski et al., 2017), the learning process for each
batch runs as follows:

1. We extract the two additional input represen-
tation described in Section 3.1;

2. We apply BiLSTM for each of the different
tasks separately to obtain their corresponding
outputs;

3. We pass all outputs from all tasks as well as
WordToChar embedding vectors as input to
the diacritic restoration model and obtain our
diacritic outputs.

Figure 2 illustrates the diacritic restoration joint
model. As can be seen, SYN as well as POS
tagging are trained on top of CharToWord repre-
sentation which is basically the concatenation of
the pretrained embedding for each word with the
character-based representations described in Fig-
ure 1. SEG is also trained separately on top of the

character embeddings. We pass the outputs of all
these tasks along with WordToChar representation
to train the BiLSTM diacritic restoration model.
Omitting a task is rather easy, we just remove the
related components for that task to yield the appro-
priate model. We optionally pass the last hidden
layer for SEG along with the remaining input to
the diacritic restoration model.9

4 Experimental Setups

Dataset: We use the Arabic Treebank (ATB)
dataset: parts 1, 2, and 3 and follow the same data
division as Diab et al. (2013). Table 1 illustrates the
data statistics. For word based tasks, we segment
each sentence into space tokenized words. For char-
acter based tasks, we, in addition, add the special
boundary “<w>” between these words, and then
each word is further segmented into its characters,
similar to that in (Alqahtani et al., 2019). We pass
each word through the model along with a spe-
cific number of previous and future words (+/- 10
words).
Parameter Settings: For all tasks, we use 250
hidden units in each direction (500 units in both
directions combined) and 300 as embedding size.
We use 3 hidden layers for tasks except in SEG in

9Passing the last hidden layer for POS tagging and/or SYN
did not improve the performance; the pretrained embeddings
are sufficient to capture important linguistic signals.
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Train Test Dev OOV
502,938 63,168 63,126 7.3%

Table 1: Number of words and out of vocabulary
(OOV) rate for Arabic. OOV rate indicates the percent-
age of undiacritized words in the test set that have not
been observed during training.

which we use only one layer. We use Adam for
learning optimization with a learning rate of 0.001.
We use 20 for epoch size, 16 for batch size, 0.3
for hidden dropout, and 0.5 for embedding dropout.
We initialize the embedding with a uniform distri-
bution [-0.1,0.1] and the hidden layers with normal
distribution. The loss scores for all considered tasks
are combined and then normalized by the number
of tasks in the model.

Evaluation metrics: We use accuracy for all
tasks except diacritic restoration. For diacritic
restoration, the two most typically used metrics are
Word Error Rate (WER) and Diacritic Error Rate
(DER), the percentages of incorrectly diacritized
words and characters, respectively. In order to ap-
proximate errors in the syntactic diacritics, we use
Last Diacritic Error Rate (LER), the percentage
of words that have incorrect diacritics in the last
positions of words. To evaluate the models’ ability
to generalize beyond observed data, we compute
WER on OOV (out-of-vocabulary) words.10

Significance testing: We ran each experiment
three times and reported the mean score.11 We
used the t-test with p = 0.05 to evaluate whether
the difference between models’ performance and
the diacritic restoration is significant (Dror et al.,
2018).

5 Results and Analysis

Table 2 shows the performance of joint diacritic
restoration models when different tasks are consid-
ered. When we consider WordToChar as input to
the diacritic restoration model, we observe statis-
tically significant improvements for all evaluation
metrics. This is justified by the ability of word em-
beddings to capture syntactic and semantic infor-
mation at the sentence level. The same character is
disambiguated in terms of the surrounding context

10Words that appear in the training dataset but do not appear
in the test dataset.

11Higher number of experiments provide more robust con-
clusion about the models’ performance. We only considered
the minimum acceptable number of times to run each experi-
ment due to limited computational resources.

as well as the word it appears in (e.g. the charac-
ter t in the word cat would be represented slightly
different than t in a related word cats or even a
different word table). We consider both character
based model as well as WordToChar based model
as our baselines (BASE).

We use WordToChar representation rather than
characters for all remaining models that jointly
learn more than one task. For all experiments, we
observe improvements compared to both baselines
across all evaluation metrics. Furthermore, all mod-
els except DIAC+SEG outperform WordToChar
diacritic restoration model in terms of WER, show-
ing the benefits of considering output distributions
for the other tasks. Despite leveraging tasks fo-
cused on syntax (SYN/POS) or morpheme bound-
aries (SEG), the improvements extend to lexical
diacritics as well. Thus, the proposed joint dia-
critic restoration model is also helpful in settings
beyond word final syntactic related diacritics. The
best performance is achieved when we consider
all auxiliary tasks within the diacritic restoration
model.

Impact of Auxiliary Tasks: We discuss the im-
pact of adding each investigated task towards the
performance of the diacritic restoration model.

Word segmentation (DIAC+SEG): When
morpheme boundaries as well as diacritics are
learned jointly, the WER performance is slightly
reduced on all and OOV words. This reduction
is attributed mostly to lexical diacritics. As Ara-
bic exhibits a non-concatenative fusional morphol-
ogy, reducing its complexity to a segmentation task
might inherently obscure morphological processes
for each form.

Observing only slight improvement is surpris-
ing; we believe that this is due to our experimental
setup and does not negate the importance of having
morphemes that assign the appropriate diacritics.
We speculate that the reason for this is that we
do not capture the interaction between morphemes
as an entity, losing some level of morphological
information.

For instances, the words waham∼a versus
wahum for the undiacritized words whm (bold let-
ters refer to consonants distinguishing it from di-
acritics) would benefit from morpheme boundary
identifications to tease apart wa from hum in the
second variant (wahum), emphasizing that these
are two words. But on the other hand, it adds an
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Task WER DER LER/Lex OOV WER

Zalmout and Habash (2017) 8.21 - - 20.2
Zalmout and Habash (2019a) 7.50 - - -
Alqahtani and Diab (2019a) 7.6 2.7 - 32.1

BASE (Char) 8.51 (±0.01) 2.80 5.20/5.54 34.56
BASE (WordToChar) 8.09 (±0.05) 2.73 5.00/5.30 32.10

DIAC+SEG 8.35 (±0.02) 2.82 5.20/5.46 33.97
DIAC+SYN 7.70* (±0.02) 2.60 4.72/5.08 30.94
DIAC+POS 7.86* (±0.14) 2.65 4.72/5.20 32.28

DIAC+SEG+SYN 7.70* (±0.05) 2.59 4.65/5.03 31.33
DIAC+SEG+POS 7.73* (±0.08) 2.62 4.73/5.01 31.31
DIAC+SYN+POS 7.72* (±0.06) 2.61 4.62/5.06 31.05

ALL 7.51* (±0.09) 2.54 4.54/4.91 31.07

Table 2: Performance of the joint diacritic restoration model when different related tasks are considered. Bold
numbers represent the highest score per column. Almost all scores are higher than the base model BASE (char).
* denotes statistically significant improvements compared to the baselines. Lex refers to the percentage of words
that have incorrect lexical diacritics only, excluding syntactic diacritics.

additional layer of ambiguity for other cases like
the morpheme ktb in the diacritic variants kataba,
kutubu, sayakotubo - note that the underlined seg-
ment has the same consonants as the other variants -
in which identifying morphemes increased the num-
ber of possible diacritic variants without learning
the interactions between adjacent morphemes.

Furthermore, we found inconsistencies in the
dataset for morphemes which might cause the drop
in performance when we only consider SEG. When
we consider all tasks together, these inconsistencies
are reduced because of the combined information
from different linguistic signals towards improving
the performance of the diacritic restoration model.

Syntactic diacritization (DIAC+SYN): By
enforcing inflectional diacritics through an addi-
tional focused layer within the diacritic restoration
model, we observe improvements on WER com-
pared to the baselines. We notice improvements on
syntactic related diacritics (LER score), which is
expected given the nature of syntactic diacritization
in which it learns the underlying syntactic struc-
ture to assign the appropriate syntactic diacritics
for each word. Improvements also extend to lexical
diacritics, and this is because word relationships
are captured during learning syntactic diacritics in
which BiLSTM modeling for words is integrated.

POS tagging (DIAC+POS): When we jointly
train POS tagging with full diacritic restoration,
we notice improvements compared to both base-
lines. Compared to syntactic diacritization, we
obtain similar findings across all evaluation met-
rics except for WER on OOV words in which POS

tagging drops. Including POS tagging within dia-
critic restoration also captures important informa-
tion about the words; the idea of POS tagging is
to learn the underlying syntax of the sentence. In
comparison to syntactic diacritization, it involves
different types of information like passivization
which could be essential in learning correct diacrit-
ics.

Ablation Analysis: Incorporating all the aux-
iliary tasks under study within the diacritic restora-
tion model (ALL) provides the best performance
across all measures except WER on OOV words
in which the best performance was given by
DIAC+SYN. We discuss the impact of removing
one task at a time from ALL and examine whether
its exclusion significantly impacts the performance.
Excluding SEG from the process drops the per-
formance of diacritic restoration. This shows that
even though SEG did not help greatly when it was
combined solely with diacritic restoration, the com-
binations of SEG and the other word based tasks
filled in the gaps that were missing from just identi-
fying morpheme boundaries. Excluding either POS
tagging or syntactic diacritization also hurts the per-
formance which shows that these tasks complement
each other and, taken together, they improve the
performance of diacritic restoration model.

Input Representation:

Impact of output labels: Table 3 shows the
different models when we do not pass the labels
of the investigated tasks (the input is only Word-
ToChar representation) against the same models
when we do. We noticed a drop in performance
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across all models. Notice that all models - even
when we do not consider the label have better per-
formance than the baselines. This also supports the
benefits of WordToChar representation.

Tasks With Labels Without Labels

DIAC+SYN 7.70 7.99
DIAC+POS 7.86 7.93

DIAC+SEG+SYN 7.70 7.93
DIAC+SEG+POS 7.73 7.99
DIAC+SYN+POS 7.72 7.97

ALL 7.51 7.91

Table 3: WER performance when we do not consider
the output labels for the investigated tasks. Bold num-
bers represent the highest score per row.

Last hidden layer of SEG: Identifying mor-
pheme boundaries did not increase accuracy as we
expected. Therefore, we examined whether infor-
mation learned from the BiLSTM layer would help
us learn morpheme interactions by passing the out-
put of last BiLSTM layer to the diacritic restoration
model along with segmentation labels. We did not
observe any improvements towards predicting accu-
rate diacritics when we pass information regarding
the last BiLSTM layer. For ALL, the WER score
increased by 0.22%. Thus, it is sufficient to only
utilize the segment labels for diacritic restoration.

Passive and active verbs: Passivation in Ara-
bic is denoted through diacritics and missing such
diacritic can cause ambiguity in some cases (Her-
mena et al., 2015; Diab et al., 2007). To examine its
impact, we further divide verbs in the POS tagset
into passive and active, increasing the size by one.
Table 4 shows the diacritic restoration performance
with and without considering passivation. We no-
tice improvements, in some combinations of tasks,
across all evaluation metrics compared to the pure
POS tagging, showing its importance in diacritic
restoration models.

Task With Pass Without Pass

DIAC+POS 7.65 7.86
DIAC+SEG+POS 7.65 7.73
DIAC+SYN+POS 7.78 7.72
ALL 7.62 7.51

Table 4: WER performance for different diacritic
restoration models when passivation is considered.
Bold numbers represent the highest score per row.

Level of linguistic information: The joint di-
acritic restoration model were built empirically and
tested against the development set. We noticed

that to improve the performance, soft parameter
sharing in a hierarchical fashion performs better
on diacritic restoration. We experimented with
building a joint diacritic restoration model that
jointly learns segmentation and diacritics through
hard parameter sharing. To learn segmentation
with diacritic restoration, we shared the embed-
ding layer between the two tasks as well as sharing
some or all layers of BiLSTM. We got WER on
all words (8.53∼9.35) in which no improvements
were shown compared to character based diacritic
restoration. To learn word based tasks with diacritic
restoration, we pass WordToChar representation to
the diacritic restoration and/or CharToWord repre-
sentation for word-based tasks. The best that we
could get for both tasks is 8.23%∼9.6%; no statis-
tically significant improvements were found. This
shows the importance of hierarchical structure for
appropriate diacritic assignments.

Qualitative analysis: We compared random er-
rors that are correct in DIAC (character-based dia-
critic restoration) with ALL in which we consider
all investigated tasks. Although ALL provides ac-
curate results for more words, it introduces errors
in other words that have been correctly diacritized
by DIAC. The patterns of such words are not clear.
We did not find a particular category that occurs in
one model but not the other. Rather, the types and
quantity of errors differ in each of these categories.

State-of-the-art Comparison: Table 2 also
shows the performance of the state-of-the-art mod-
els. ALL model surpass the performance of Zal-
mout and Habash (2017). However, Zalmout and
Habash (2017)’s model performs significantly bet-
ter on OOV words. Zalmout and Habash (2019a)
provides comparable performance to ALL model.
The difference between their work and that in (Zal-
mout and Habash, 2017) is the use of a joint model
to learn morphological features other than diacritics
(or features at the word level), rather than learning
these features individually. Zalmout and Habash
(2019a) obtained an additional boost in perfor-
mance (0.3% improvement over ours) when they
add a dialect variant of Arabic in the learning pro-
cess, sharing information between both languages.

Alqahtani and Diab (2019a) provides compara-
ble performance to ALL and better performance
on some task combinations in terms of WER on
all and OOV words. The difference between their
model and our BASE model is the addition of a
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CRF (Conditional Random Fields) layer which in-
corporate dependencies in the output space at the
cost of model’s computational efficiency (memory
and speed).

Zalmout and Habash (2019b) provides the cur-
rent state-of-the-art performance in which they
build a morphological disambiguation framework
in Arabic similar to (Zalmout and Habash, 2017,
2019a). They reported their scores based on the
development set which was not used for tuning. In
the development set, they obtained 93.9% which
significantly outperforms our best model (ALL)
by 1.4%. Our approach is similar to (Zalmout
and Habash, 2019b). We both follow WordToChar
as well as CharToWord input representations dis-
cussed in Section 3.1, regardless of the specifics.
Furthermore, we both consider the morphologi-
cal outputs as features in our diacritic restoration
model. In Zalmout and Habash (2019b), morpho-
logical feature space that are considered is larger,
making use of all morphological features in Ara-
bic. Furthermore, Zalmout and Habash (2019b)
use sequence-to-sequence modeling rather than se-
quence classification as ours. Unlike Zalmout and
Habash (2019b), our model is more flexible allow-
ing additional tasks to be added when sufficient
resources are available.

We believe that neither the underlying architec-
ture nor the consideration of all possible features
were the crucial factor that led to the significant re-
duction in WER performance. Rather, morphologi-
cal analyzers is crucial in such significant improve-
ment. As a matter of fact, in Zalmout and Habash
(2019b), the performance significantly drops to 7.2
when they, similar to our approach, take the highest
probabilistic value as a solution. Thus, we believe
that the use of morphological analyzers enforces
valid word composition in the language and filter
out invalid words (a side effect of using charac-
ters as input representation). This also justifies the
significant improvement on OOV words obtained
by (Zalmout and Habash, 2017). Thus, we believe
that a global knowledge of words and internal con-
straints within words are captured.

Auxiliary tasks: We compared the base model
of the auxiliary tasks to the state-of-the-art (SOTA).
For SEG, BiLSTM model has comparable perfor-
mance to that in (Zalmout and Habash, 2017) (SEG
yields 99.88% F1 compared to SOTA 99.6%). For
POS, we use a shallower tag set (16 number of tags
compared to ∼70) than typically used in previous

models hence we do not have a valid comparison
set. For SYN, we compare our results with (Hifny,
2018) which uses a hybrid network of BiLSTM and
Maximum Entropy to solve syntactic diacritization.
The SYN yields results comparable to SOTA (our
model performs 94.22 vs. SOTA 94.70).

6 Related Work

The problem of diacritization has been addressed
using classical machine learning approaches (e.g.
Maximum Entropy and Support Vector Machine)
(Zitouni and Sarikaya, 2009; Pasha et al., 2014)
or neural based approaches for different languages
that include diacritics such as Arabic, Vietnamese,
and Yoruba. Neural based approaches yield state-
of-the-art performance for diacritic restoration by
using Bidirectional LSTM or temporal convolu-
tional networks (Zalmout and Habash, 2017; Orife,
2018; Alqahtani et al., 2019; Alqahtani and Diab,
2019a).

Arabic syntactic diacritization has been con-
sistently reported to be difficult, degrading the
performance of full diacritic restoration (Zitouni
et al., 2006; Habash et al., 2007; Said et al., 2013;
Shaalan et al., 2009; Shahrour et al., 2015; Dar-
wish et al., 2017). To improve the performance
of syntactic diacritization or full diacritic restora-
tion in general, previous studies followed different
approaches. Some studies separate lexical from
syntactic diacritization (Shaalan et al., 2009; Dar-
wish et al., 2017). Other studies consider additional
linguistic features such as POS tags and word seg-
mentation (i.e. tokens or morphemes) (Ananthakr-
ishnan et al., 2005; Zitouni et al., 2006; Zitouni and
Sarikaya, 2009; Shaalan et al., 2009).

Hifny (2018) addresses syntactic diacritization
by building BiLSTM model in which its input em-
beddings are augmented with manually generated
features of context, POS tags, and word segments.
Rashwan et al. (2015) use deep belief network to
build a diacritization model for Arabic that focuses
on improving syntactic diacritization and build sub-
classifiers based on the analysis of a confusion
matrix and POS tags.

Regarding incorporating linguistic features into
the model, previous studies have either used mor-
phological features as a preprocessing step or as
a ranking step for building diacritic restoration
models. As a preprocessing step, the words are
converted to their constituents (e.g. morphemes,
lemmas, or n-grams) and then diacritic restoration
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models are built on top of that (Ananthakrishnan
et al., 2005; Alqahtani and Diab, 2019b). Anan-
thakrishnan et al. (2005) use POS tags to improve
diacritic restoration at the syntax level assuming
that POS tags are known at inference time.

As a ranking procedure, all possible analyses
of words are generated and then the most proba-
ble analysis is chosen (Pasha et al., 2014; Zalmout
and Habash, 2017, 2019a,b). Zalmout and Habash
(2017) develop a morphological disambiguation
model to determine Arabic morphological features
including diacritization. They train the model using
BiLSTM and consult with a LSTM-based language
model as well as other morphological features to
rank and score the output analysis. Similar method-
ology can be found in (Pasha et al., 2014) but us-
ing Support Vector Machines. This methodology
shows better performance on out of vocabulary
(OOV) words compared to pure character models.

7 Discussion & Conclusion

We present a diacritic restoration joint model that
considers the output distributions for different re-
lated tasks to improve the performance of diacritic
restoration. Our results shows statistically sig-
nificant improvements across all evaluation met-
rics. This shows the importance of considering
additional linguistic information at morphological
and/or sentence levels. Including semantic informa-
tion through pretrained word embeddings within
the diacritic restoration model also helped boosting
the diacritic restoration performance. Although we
apply our joint model on Arabic, this model pro-
vides a framework for other languages that include
diacritics whenever resources become available.
Although we observed improvements in terms of
generalizing beyond observed data when using the
proposed linguistic features, the OOV performance
is still an issue for diacritic restoration.
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