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Abstract

We present a novel iterative, edit-based ap-
proach to unsupervised sentence simplifica-
tion. Our model is guided by a scoring func-
tion involving fluency, simplicity, and mean-
ing preservation. Then, we iteratively per-
form word and phrase-level edits on the com-
plex sentence. Compared with previous ap-
proaches, our model does not require a paral-
lel training set, but is more controllable and
interpretable. Experiments on Newsela and
WikiLarge datasets show that our approach
is nearly as effective as state-of-the-art super-
vised approaches.!

1 Introduction

Sentence simplification is the task of rewriting text
to make it easier to read, while preserving its main
meaning and important information. Sentence sim-
plification is relevant in various real-world and
downstream applications. For instance, it can bene-
fit people with autism (Evans et al., 2014), dyslexia
(Rello et al., 2013), and low-literacy skills (Watan-
abe et al., 2009). It can also serve as a preprocess-
ing step to improve parsers (Chandrasekar et al.,
1996) and summarization systems (Klebanov et al.,
2004).

Recent efforts in sentence simplification have
been influenced by the success of machine transla-
tion. In fact, the simplification task is often treated
as monolingual translation, where a complex sen-
tence is translated to a simple one. Such simplifi-
cation systems are typically trained in a supervised
way by either phrase-based machine translation
(PBMT, Wubben et al., 2012; Narayan and Gardent,
2014; Xu et al., 2016) or neural machine translation
(NMT, Zhang and Lapata, 2017; Guo et al., 2018;
Kriz et al., 2019). Recently, sequence-to-sequence

!Code is released at https://github.com/
ddhruvkr/Edit-Unsup-TS

(Seq2Seq)-based NMT systems are shown to be
more successful and serve as the state of the art.

However, supervised Seq2Seq models have two
shortcomings. First, they give little insight into the
simplification operations, and provide little con-
trol or adaptability to different aspects of simplifi-
cation (e.g., lexical vs. syntactical simplification).
Second, they require a large number of complex-
simple aligned sentence pairs, which in turn require
considerable human effort to obtain.

In previous work, researchers have addressed
some of the above issues. For example, Alva-
Manchego et al. (2017) and Dong et al. (2019)
explicitly model simplification operators such as
word insertion and deletion. Although these ap-
proaches are more controllable and interpretable
than standard Seq2Seq models, they still require
large volumes of aligned data to learn these oper-
ations. To deal with the second issue, Surya et al.
(2019) recently proposed an unsupervised neural
text simplification approach based on the paradigm
of style transfer. However, their model is hard to in-
terpret and control, like other neural network-based
models. Narayan and Gardent (2016) attempted
to address both issues using a pipeline of lexical
substitution, sentence splitting, and word/phrase
deletion. However, these operations can only be
executed in a fixed order.

In this paper, we propose an iterative, edit-
based unsupervised sentence simplification ap-
proach, motivated by the shortcomings of existing
work. We first design a scoring function that mea-
sures the quality of a candidate sentence based on
the key characteristics of the simplification task,
namely, fluency, simplicity, and meaning preser-
vation. Then, we generate simplified candidate
sentences by iteratively editing the given complex
sentence using three simplification operations (lex-
ical simplification, phrase extraction, deletion and
reordering). Our model seeks the best simplified
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In 2016 alone, American developers had spent 12 billion dollars on
constructing theme parks, according to a Seattle based reporter.

Deletion

In 2016 alone, American developers had spent 12 billion dollars on
constructing theme parks.

Reordering l

American developers had spent 12 billion dollars in 2016 alone on
constructing theme parks.

Lexical
Simplification

American developers had spent 12 billion dollars in 2016 alone on
building theme parks.

Figure 1: An example of three edit operations on a
given sentence. Note that dropping clauses or phrases
is common in text simplification datasets.

candidate sentence according to the scoring func-
tion. Compared with Narayan and Gardent (2016),
the order of our simplification operations is not
fixed and is decided by the model.

Figure 1 illustrates an example in which our
model first chooses to delete a sentence fragment,
followed by reordering the remaining fragments
and replacing a word with a simpler synonym.

We evaluate our approach on the Newsela (Xu
et al., 2015) and WikilLarge (Zhang and Lapata,
2017) corpora. Experiments show that our ap-
proach outperforms previous unsupervised meth-
ods and even performs competitively with state-of-
the-art supervised ones, in both automatic metrics
and human evaluations. We also demonstrate the
interpretability and controllability of our approach,
even without parallel training data.

2 Related Work

Early work used handcrafted rules for text simpli-
fication, at both the syntactic level (Siddharthan,
2002) and the lexicon level (Carroll et al., 1999).
Later, researchers adopted machine learning meth-
ods for text simplification, modeling it as mono-
lingual phrase-based machine translation (Wubben
et al., 2012; Xu et al., 2016). Further, syntactic in-
formation was also considered in the PBMT frame-
work, for example, constituency trees (Zhu et al.,
2010) and dependency trees (Bingel and Sggaard,
2016). Narayan and Gardent (2014) performed
probabilistic sentence splitting and deletion, fol-
lowed by MT-based paraphrasing.

Nisioi et al. (2017) employed neural machine
translation (NMT) for text simplification, using a
sequence-to-sequence (Seq2Seq) model (Sutskever
et al., 2014). Zhang and Lapata (2017) used re-
inforcement learning to optimize a reward based

on simplicity, fluency, and relevance. Zhao et al.
(2018a) integrated the transformer architecture and
paraphrasing rules to guide simplification learning.
Kriz et al. (2019) produced diverse simplifications
by generating and re-ranking candidates by fluency,
adequacy, and simplicity. Guo et al. (2018) showed
that simplification benefits from multi-task learning
with paraphrase and entailment generation. Martin
et al. (2019) enhanced the transformer architecture
with conditioning parameters such as length, lexi-
cal and syntactic complexity.

Recently, edit-based techniques have been de-
veloped for text simplification. Alva-Manchego
et al. (2017) trained a model to predict three simpli-
fication operators (keep, replace, and delete) from
aligned pairs. Dong et al. (2019) employed a simi-
lar approach but in an end-to-end trainable manner
with neural networks. However, these approaches
are supervised and require large volumes of parallel
training data; also, their edits are only at the word
level. By contrast, our method works at both word
and phrase levels in an unsupervised manner.

For unsupervised sentence simplification, Surya
et al. (2019) adopted style-transfer techniques, us-
ing adversarial and denoising auxiliary losses for
content reduction and lexical simplification. How-
ever, their model is based on a Seq2Seq network,
which is less interpretable and controllable. They
cannot perform syntactic simplification since syn-
tax typically does not change in style-transfer tasks.
Narayan and Gardent (2016) built a pipeline-based
unsupervised framework with lexical simplifica-
tion, sentence splitting, and phrase deletion. How-
ever, these operations are separate components in
the pipeline, and can only be executed in a fixed
order.

Unsupervised edit-based approaches have re-
cently been explored for natural language gener-
ation tasks, such as style transfer, paraphrasing,
and sentence error correction. Li et al. (2018)
proposed edit-based style transfer without parallel
supervision. They replaced style-specific phrases
with those in the target style, which are retrieved
from the training corpus. Miao et al. (2019) used
Metropolis—Hastings sampling for constrained sen-
tence generation. In this paper, we model text gen-
eration as a search algorithm, and design search
objective and search actions specifically for text
simplification. Concurrent work further shows the
success of search-based unsupervised text genera-
tion for paraphrasing (Liu et al., 2020) and summa-
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rization (Schumann et al., 2020).

3 Model

In this section, we first provide an overview of our
approach, followed by a detailed description of
each component, namely, the scoring function, the
edit operations, and the stopping criteria.

3.1 Overview

We first define a scoring function as our search
objective. It allows us to impose both hard and
soft constraints, balancing the fluency, simplicity,
and adequacy of candidate simplified sentences
(Section 3.2).

Our approach iteratively generates multiple can-
didate sentences by performing a sequence of lex-
ical and syntactic operations. It starts from the
input sentence; in each iteration, it performs phrase
and word edits to generate simplified candidate
sentences (Section 3.3).

Then, a candidate sentence is selected according
to certain criteria. This process is repeated until
none of the candidates improve the score of the
source sentence by a threshold value. The last
candidate is returned as the simplified sentence
(Section 3.4).

3.2 Scoring Function

Our scoring function is the product of several in-
dividual scores that evaluate various aspects of a
candidate simplified sentence. This is also known
as the product-of-experts model (Hinton, 2002).

SLOR score from a syntax-aware language
model (fes1or). This measures the language fluency
and structural simplicity of a candidate sentence.

A probabilistic language model (LM) is often
used as an estimate of sentence fluency (Miao et al.,
2019). In our work, we make two important modi-
fications to a plain LM.

First, we replace an LM’s estimated sen-
tence probability with the syntactic log-odds ratio
(SLOR, Pauls and Klein, 2012), to better measure
fluency and human acceptability. According to
Lau et al. (2017), SLOR shows the best correla-
tion to human acceptability of a sentence, among
many sentence probability-based scoring functions.
SLOR was also shown to be effective in unsuper-
vised text compression (Kann et al., 2018).

Given a trained language model (LM) and a sen-
tence s, SLOR is defined as

1

SLOR(s) = Q(IH(PLM(S)) —In(Py(s))) (1)

where Ppy\p is the sentence probability given by
the language model, Py(s) = [[,,c, P(w) is the
product of the unigram probability of a word w in
the sentence, and |s| is the sentence length.

SLOR essentially penalizes a plain LM’s prob-
ability by unigram likelihood and the length. It
ensures that the fluency score of a sentence is not
penalized by the presence of rare words. Consider
two sentences, “I went to England for vacation”
and “I went to Senegal for vacation.” Even though
both sentences are equally fluent, a standard LM
will give a higher score to the former, since the
word “England” is more likely to occur than “Sene-
gal.” In simplification, SLOR is preferred for pre-
serving rare words such as named entities.”

Second, we use a syntax-aware LM, i.e., in ad-
dition to words, we use part-of-speech (POS) and
dependency tags as inputs to the LM (Zhao et al.,
2018b). For a word w;, the input to the syntax-
aware LM is [e(w;); p(w;); d(w;)], where e(w;) is
the word embedding, p(w;) is the POS tag embed-
ding, and d(w;) is the dependency tag embedding.

Note that our LM is trained on simple sentences.
Thus, the syntax-aware LM prefers a syntactically
simple sentence. It also helps to identify sentences
that are structurally ungrammatical.

Cosine Similarity (f.,s). Cosine similarity is
an important measure of meaning preservation. We
compute the cosine value between sentence embed-
dings of the original complex sentence (c) and the
generated candidate sentence (s), where our sen-
tence embeddings are calculated as the idf weighted
average of individual word embeddings. Our sen-
tence similarity measure acts as a hard filter, i.e.,
feos(s) = Lif cos(e, ) > 7, or feos(s) = 0 other-
wise, for some threshold 7.

Entity Score (fentity). Entities help identify the
key information of a sentence and therefore are also
useful in measuring meaning preservation. Thus,
we count the number of entities in the sentence
as part of the scoring function, where entities are
detected by a third-party tagger.

Length (fie,). This score is proportional to the
inverse of the sentence length. It forces the model
to generate shorter and simpler sentences. However,
we reject sentences shorter than a specified length
(<6 tokens) to prevent over-shortening.

INote that we do not use SLOR to evaluate lexicon sim-
plicity, which will later be evaluated by the Flesch reading
ease (FRE) score. The SLOR score, in fact, preserves rare
words, so that we can better design dictionary-based word
substitution for lexical simplification (Section 3.3).
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Figure 2: Constituency parse tree is used for detecting
phrases.

FRE (fge). The Flesch Reading Ease (FRE)
score (Kincaid et al., 1975) measures the ease of
readability in text. It is based on text features such
as the average sentence length and the average num-
ber of syllables per word. A higher scores indicate
that the text is simpler to read.

We compute the overall scoring function as the
product of individual scores.

f(3> = feslor(s)a : ffre(s)ﬁ ) (1/flen(5))’Y
'fentity(s)(S ’ fcos(s)

where the weights «, (3, 7y, and § balance the rela-
tive importance of the different scores. Recall that
the cosine similarity measure does not require a
weight since it is a hard indicator function.

In Section 4.5, we will experimentally show that
the weights defined for different scores affect dif-
ferent characteristics of simplification and thus pro-
vide more adaptability and controllability.

2)

3.3 Generating Candidate Sentences

We generate candidate sentences by editing words
and phrases. We use a third-party parser to obtain
the constituency tree of a source sentence. Each
clause- and phrase-level constituent (e.g., S, VP,
and NP) is considered as a phrase. Since a con-
stituent can occur at any depth in the parse tree, we
can deal with both long and short phrases at differ-
ent granularities. In Figure 2, for example, both
“good” (ADJP) and “tasted good” (VP) are con-
stituents and thus considered as phrases, whereas
“tasted” is considered as a single word. For each
phrase, we generate a candidate sentence using the
edit operations explained below, with Figure 1 be-
ing a running example.

Removal. For each phrase detected by the
parser, this operation generates a new candidate
sentence by removing that phrase from the source
sentence. In Figure 1, our algorithm can drop

the phrase “according to a Seattle based reporter,’
which is not the main clause of the sentence. The
removal operation allows us to remove peripheral
information in a sentence for content reduction.

Extraction. This operation simply extracts a se-
lected phrase (including a clause) as the candidate
sentence. This allows us to select the main clause
in a sentence and remove remaining peripheral in-
formation.

Reordering. For each phrase in a sentence, we
generate candidate sentences by moving the phrase
before or after another phrase (identified by clause-
and phrase-level constituent tags). In the running
example, the phrase “In 2016 alone” is moved be-
tween the phrases “I12 billion dollars” and “on con-
structing theme parks.” As seen, the reordering
operation is able to perform syntactic simplifica-
tion.

Substitution. In each phrase, we identify the
most complex word as the rarest one according
to the idf score. For the selected complex word,
we generate possible substitutes using a two-step
strategy.

First, we obtain candidate synonyms by taking
the union of the WordNet synonym set (Miller,
1995) and the closest words from GloVe (Penning-
ton et al., 2014) and Word2Vec (Mikolov et al.,
2013) embeddings (where embedding closeness is
measured by Euclidean distance). Second, a can-
didate synonym is determined to be an appropriate
simple substitute if it satisfies the following condi-
tions: a) it has a lower idf score than the complex
word, where the scores are computed from the tar-
get simple sentences, b) it is not a morphological
inflection of the complex word, c) its word em-
bedding exceeds a cosine similarity threshold to
the complex word, and, d) it is has the same part-
of-speech and dependency tags in the sentence as
the complex word. We then generate candidate
sentences by replacing the complex word with all
qualified lexical substitutes. Notably, we do not
replace entity words identified by entity taggers.

In our example sentence, consider the phrase
“constructing theme parks.” The word “construct-
ing” is chosen as the word to be simplified, and is
replaced with “building.” As seen, this operation
performs lexical simplification.

3.4 The Iterative Algorithm

Given an input complex sentence, our algorithm
iteratively performs edits to search for a higher-
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scoring candidate.

In each iteration, we consider all the operations
(i.e., removal, extraction, reordering, and substitu-
tion). Each operation may generate multiple can-
didates (e.g., multiple words for substitution); we
filter out a candidate sentence if the improvement
does not pass an operation-specific threshold. We
choose the highest-scoring sentence from those that
are not filtered out. Our algorithm terminates if no
edit passes the threshold, and the final candidate is
our generated simplified sentence.

Our algorithm includes a filtering step for each
operation. We only keep a candidate sentence if it
is better than the previous one by a multiplicative
factor, i.e.,

f(©)/f(s) > rop 3)

where s is the sentence given by the previous itera-
tion, and c is a candidate generated by operator op
from s.

Notably, we allow different thresholds for each
operation. This provides control over different as-
pects of simplification, namely, lexicon simplifica-
tion, syntactic simplification, and content reduction.
A lower threshold for substitution, for example, en-
courages the model to perform more lexical simpli-
fication.

4 Experiments

4.1 Data

We use the Newsela (Xu et al., 2015) and the Wiki-
Large datasets (Zhang and Lapata, 2017) for evalu-
ating our model.

Newsela is a collection of 1,840 news articles
written by professional editors at 5 reading levels
for children. We use the standard split and exclude
simple-complex sentence pairs that are one reading
level apart, following Zhang and Lapata (2017).
This gives 95,208 training, 1,129 validation, and
1,077 test sentences.

The WikiLarge dataset is currently the largest
text simplification corpus. It contains 296,402,
2,000, and 359 complex-simple sentence pairs for
training, validation, and testing, respectively. The
training set of WikilL.arge consists of automatically
aligned sentence pairs from the normal and simple
Wikipedia versions. The validation and test sets
contain multiple human-written references, against
which we evaluate our algorithm.

For each corpus, we only use its training set to
learn a language model of simplified sentences. For

the Wikilarge dataset, we also train a Word2Vec
embedding model from scratch on its source and
target training sentences. These embeddings are
used to obtain candidate synonyms in the substitu-
tion operation.

4.2 Training Details

For the LM, we use a two-layer, 256-dimensional
recurrent neural network (RNN) with the gated
recurrent unit (GRU, Chung et al., 2014). We ini-
tialize word embeddings using 300-dimensional
GloVe (Pennington et al., 2014); out-of-vocabulary
words are treated as UNK, initialized uniformly in
the range of £0.05. Embeddings for POS tags and
dependency tags are 150-dimensional, also initial-
ized randomly. We fine-tune all embeddings during
training.

We use the Averaged Stochastic Gradient De-
scent (ASGD) algorithm (Polyak and Juditsky,
1992) to train the LM, with 0.4 as the dropout and
32 as the batch size. For the Newsela dataset, the
thresholds 7., in the scoring function are set to
1.25 for all the edit operations. All the weights in
our scoring function (a, 3, 7, ) are set to 1. For the
WikiLarge dataset, the thresholds are set as 1.25 for
the removal and reordering operations, 0.8 for sub-
stitution, and 5.0 for extraction. The weights in the
scoring function («, 53, y, 0) are set to 0.5, 1.0, 0.25
and 1.0, respectively.

We use CoreNLP (Manning et al., 2014) to con-
struct the constituency tree and Spacy® to generate
part-of-speech and dependency tags.

4.3 Competing Methods

We first consider the reference to obtain an upper-
bound for a given evaluation metric. We also con-
sider the complex sentence itself as a trivial base-
line, denoted by Complex.

Next, we develop a simple heuristic that re-
moves rare words occurring < 250 times in the
simple sentences of the training corpus, denoted by
Reduce-250. As discussed in Section 4.4, this
simple heuristic demonstrates the importance of
balancing different automatic evaluation metrics.

For unsupervised competing methods, we com-
pare with Surya et al. (2019), which is inspired
by unsupervised neural machine translation. They
proposed two variants, UNMT and UNTS, but their
results are only available for WikiLarge.

*https://spacy.io/
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Method SARI' | Add" | Delete’ | Keep” | BLEUT | GMT | FKGL' | Len
Reference 70.13 - - - 100 83.74 3.20 12.75
Baselines
Complex 2.82 - - - 21.30 7.75 8.62 23.06
Reduce-250 28.39 - - - 11.79 | 1829 | -0.23 14.48
Supervised Methods
PBMT-R 15.77 | 3.07 38.34 5.90 18.1 16.89 7.59 23.06
Hybrid 28.61*% | 0.95* | 78.86* | 6.01* 14.46 | 20.34 4.03 12.41
EncDecA 24.12 | 2.73 62.66 6.98 21.68 | 22.87 5.11 16.96
Dress 27.37 | 3.08 | 71.61 7.43 23.2 25.2 4.11 14.2
Dress-Ls 26.63 | 3.21 69.28 7.4 24.25 | 2541 4.21 14.37
DMass 31.06 | 1.25 84.12 7.82 11.92 | 19.24 3.60 15.07
S2S-All-FA 30.73 | 2.64 81.6 7.97 19.55 | 24.51 2.60 10.81
Edit-NTS 30.27* | 2.71% | 80.34*% | 7.76* 19.85 | 24.51 341 10.92

EncDecP 28.31 - - - 23.72 | 2591 - -
EntPar 33.22 | 242 | 89.32 7.92 11.14 | 19.24 1.34 7.88
Unsupervised Methods (Ours)

RM+EX 26.07 | 2.35 68.35 7.5 27.22 | 26.64 2.95 12.9
RM+EX+LS 26.26 | 2.28 68.94 7.57 27.17 | 26.71 2.93 12.88
RM+EX+RO 26.99 | 2.47 | 70.88 7.63 26.31 | 26.64 3.14 12.81
RM+EX+LS+RO | 27.11 | 240 | 71.26 7.67 26.21 | 26.66 3.12 12.81
RM+EX+LS+RO' | 30.44 | 2.05 81.77 7.49 17.36 | 22.99 2.24 9.61

Table 1: Results on the Newsela dataset. T denotes the model with parameters tuned by SARI; other variants are
tuned by the geometric mean (GM). TThe higher, the better. +The lower, the better. * indicates a number that is

different from that reported in the original paper. This is
work (confirmed by personal correspondence).

We also compare our model with supervised
methods. First, we consider non-neural phrase-
based machine translation (PBMT) methods:
PBMT-R (Wubben et al., 2012), which re-ranks
sentences generated by PBMT for diverse simplifi-
cations; SBMT—SARI (Xu et al., 2016), which uses
an external paraphrasing database; and Hybrid
(Narayan and Gardent, 2014), which uses a combi-
nation of PBMT and discourse representation struc-
tures. Next, we compare our method with neural
machine translation (NMT) systems: EncDecA,
which is a vanilla Seq2Seq model with attention
(Nisioi et al., 2017); Dress and Dress-Ls,
which are based on deep reinforcement learning
(Zhang and Lapata, 2017); DMass (Zhao et al.,
2018a), which is a transformer-based model with
external simplification rules; EncDecP, which
is an encoder-decoder model with a pointer-
mechanism; EntPar, which is based on multi-task
learning (Guo et al., 2018); S2S-A11-FA, which
a reranking based model focussing on lexical sim-
plification (Kriz et al., 2019); and Access, which
is based on the transformer architecture (Martin
et al., 2019). Finally, we compare with a super-
vised edit-based neural model, Edit-NTS (Dong
et al., 2019).

due to a mistreatment of capitalization in the previous

We evaluate our model with a different sub-
set of operations, i.e., removal (RM), extraction
(EX), reordering (RO), and lexical substitution
(LS). In our experiments, we test the following
variants: RM+EX, RM+EX+LS, RM+EX+RO, and
RM+EX+LS+RO.

4.4 Automatic Evaluation

Tables 1 and 2 present the results of the automatic
evaluation on the Newsela and WikiLarge datasets,
respectively.

We use the SARI metric (Xu et al., 2016) to
measure the simplicity of the generated sentences.
SARI computes the arithmetic mean of the n-gram
F1 scores of three rewrite operations: adding, delet-
ing, and keeping. The individual F1-scores of
these operations are reported in the columns “Add,”
“Delete,” and “Keep.”

We also compute the BLEU score (Papineni
et al., 2002) to measure the closeness between a
candidate and a reference. Xu et al. (2016) and
Sulem et al. (2018) show that BLEU correlates
with human judgement on fluency and meaning
preservation for text simplification.*

“This does not hold when sentence splitting is involved. In
our datasets, however, sentence splitting is rare, for example,
0.18% in the Newsela validation set).
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Method | SARI' | Add" | Delete’ | Keep’ | BLEU' | FKGL' | Len
Baselines
Complex | 2787 | - | - - 19939 | - 2261
Supervised Methods

PBMT-R 38.56 | 5.73 3693 | 73.02 | 81.09 8.33 22.35
Hybrid 3140 | 1.84 | 4548 | 46.87 | 48.67 4.56 13.38
EncDecA 35,66 | 299 | 2896 | 75.02 | 89.03 8.42 21.26
Dress 37.08 | 294 | 43.15 | 65.15 | 7741 6.59 16.14
Dress-Ls 37.27 | 2.81 4222 | 66.77 | 80.44 6.62 16.39
Edit-NTS 3823 | 336 | 39.15 | 72.13 | 86.69 7.30 18.87
EntPar 37.45 - - - 81.49 741 -

Access 41.87 | 7.28 | 45.79 | 72.53 | 75.46 7.22 22.27

Models using external knowledge base
SBMT-SARI 3996 | 596 | 4142 | 7252 | 73.03 7.29 23.44
DMass 4045 | 5.72 | 4223 | 73.41 - 7.79 -
Unsupervised Methods

UNMT 35.89 | 1.94 | 37.68 | 68.04 | 70.61 8.23 21.85
UNTS 37.20 | 1.50 | 41.27 | 68.81 74.02 7.84 19.05
RM+EX 3646 | 1.68 35.17 | 72.54 | 88.90 6.47 18.62
RM+EX+LS 3785 | 231 | 43.65 | 67.59 | 73.62 6.30 18.45
RM+EX+RO 36.54 | 1.73 36.10 | 71.79 | 85.07 6.89 19.24
RM+EX+LS+RO | 37.58 | 2.30 | 43.97 | 6646 | 70.15 6.69 19.54

Table 2: Results on the WikiLarge dataset. TThe higher, the better. +The lower, the better.

In addition, we include a few intrinsic measures
(without reference) to evaluate the quality of a can-
didate sentence: the Flesch—Kincaid grade level
(FKGL) evaluating the ease of reading, as well as
the average length of the sentence.

A few recent text simplification studies (Dong
et al., 2019; Kriz et al., 2019) did not use BLEU
for evaluation, noticing that the complex sentence
itself achieves a high BLEU score (albeit a low
SARI score), since the complex sentence is indeed
fluent and preserves meaning. This is also shown
by our Complex baseline.

For the Newsela dataset, however, we notice
that the major contribution to the SARI score is
from the deletion operation. By analyzing previ-
ous work such as EntPar, we find that it reduces
the sentence length to a large extent, and achieves
high SARI due to the extremely high F1 score of
“Delete.” However, its BLEU score is low, showing
the lack of fluency and meaning. This is also seen
from the high SARI of (Reduce-250) in Table 1.
Ideally, we want both high SARI and high BLEU,
and thus, we calculate the geometric mean (GM) of
them as the main evaluation metric for the Newsela
dataset.

On the other hand, this is not the case for Wiki-
Large, since none of the models can achieve high
SARI by using only one operation among “Add,”

“Delete,” and “Keep.” Moreover, the complex sen-
tence itself yields an almost perfect BLEU score
(partially due to the multi-reference nature of Wik-
iLarge). Thus, we do not use GM, and for this
dataset, SARI is our main evaluation metric.

Overall results on Newsela. Table 1 shows the
results on Newsela. By default (without 7), valida-
tion is performed using the GM score. Still, our
unsupervised text simplification achieves a SARI
score around 2627, outperforming quite a few su-
pervised methods. Further, we experiment with
SARI-based validation (denoted by T), following
the setting of most previous work (Dong et al.,
2019; Guo et al., 2018). We achieve 30.44 SARI,
which is competitive with state-of-the-art super-
vised methods.

Our model also achieves high BLEU scores. As
seen, all our variants, if validated by GM (with-
out T), outperform competing methods in BLEU.
One of the reasons is that our model performs text
simplification by making edits on the original sen-
tence instead of rewriting it from scratch.

In terms of the geometric mean (GM), our unsu-
pervised approach outperforms all previous work,
showing a good balance between simplicity and
content preservation. The readability of our gener-
ated sentences is further confirmed by the intrinsic
FKGL score.
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Method SARIT | Add" | Delete’ | Keep' | BLEUT | GM' | FKGL' | Len
RM+EX+LS+RO 27.11 | 240 | 71.26 7.67 26.21 | 26.66 3.12 12.81
— SLOR 27.63 | 222 | 73.20 7.49 24.14 | 2583 2.61 12.37
— syntax-awareness | 2691 | 2.16 | 71.19 7.39 24.98 | 25.93 3.65 12.76

Table 3: Ablation test of the SLOR score based on syntax-aware language modeling.

Value | SARI" | BLEU" | GM' | FRE" [ Len
Effect of threshold r,p

1.0 29.20 21.69 | 25.17 | 83.75 | 11.75

1.1 28.38 23.59 | 25.87 | 82.83 | 12.17

1.2 27.45 25.54 | 26.48 | 81.98 | 12.62

1.3 26.60 26.47 | 26.53 | 81.47 | 13.07
Effect of weight a for fegior

0.75 27.04 2575 | 26.39 | 83.46 | 12.46

1.25 26.91 2596 | 26.43 | 81.26 | 12.96

1.50 26.74 2520 | 25.96 | 80.94 | 13.06

2.0 26.83 2429 | 25.53 | 80.11 | 13.15

Effect of weight 3 for fg.

0.5 26.42 25.53 | 2597 | 78.61 | 13.20

1.5 27.38 26.04 | 26.70 | 84.31 | 12.58

2.0 27.83 2527 |26.52 | 87.03 | 12.26

3.0 28.29 23.69 |26.52 | 9034 | 11.91
Effect of weight v for 1/ fien

0.5 24.54 25.06 | 24.80 | 80.49 | 14.55

2.0 29.00 21.65 | 25.06 | 82.69 | 10.93

3.0 29.93 19.05 | 23.88 | 82.20 | 10.09

4.0 30.44 17.36 | 22.99 | 80.86 | 9.61
Effect of weight § for fentity

0.5 27.81 24.68 | 26.20 | 83.6 | 12.01

2.0 25.44 24.63 | 25.03 | 79.36 | 14.28

Table 4: Analysis of the threshold value of the stopping
criteria and relative weights in the scoring function.

Overall results on WikiLarge. For the Wiki-
large experiments in Table 2, we perform valida-
tion on SARI, which is the main metric in this
experiment. Our model outperforms existing un-
supervised methods, and is also competitive with
state-of-the-art supervised methods.

We observe that lexical simplification (LS) is
important in this dataset, as its improvement is
large compared with the Newsela experiment in
Table 1. Additionally, reordering (RO) does not im-
prove performance, as it is known that Wikil.arge
does not focus on syntactic simplification (Xu et al.,
2016). The best performance for this experiment is
obtained by the RM+EX+LS model.

4.5 Controllability

We now perform a detailed analysis of the scoring
function described in Section 3.2 to understand the
effect on different aspects of simplification. We
use the RM+EX+LS+RO variant and the Newsela
corpus as the testbed.

The SLOR score with syntax-aware LM. We

analyze our syntax-aware SLOR score in the search
objective. First, we remove the SLOR score and
use the standard sentence probability. We ob-
serve that SLOR helps preserve rare words, which
may be entities. As a result, the readability score
(FKGL) becomes better (i.e., lower), but the BLEU
score decreases. We then evaluate the importance
of using a structural LM instead of a standard LM.
We see a decrease in both SARI and BLEU scores.
In both cases, the GM score decreases.

Threshold values and relative weights. Ta-
ble 4 analyzes the effect of the hyperparameters
of our model, namely, the threshold in the stop-
ping criteria and the relative weights in the scoring
function.

As discussed in Section 3.4, we use a thresh-
old as the stopping criteria for our iterative search
algorithm. For each operation, we require that a
new candidate should be better than the previous
iteration by a multiplicative threshold 7., in Equa-
tion (3). In this analysis, we set the same threshold
for all operations for simplicity. As seen in Table 4,
increasing the threshold leads to better meaning
preservation since the model is more conservative
(making fewer edits). This is shown by the higher
BLEU and lower SARI scores.

Regarding the weights for each individual scor-
ing function, we find that increasing the weight g3
for the FRE readability score makes sentences
shorter, more readable, and thus simpler. This is
also indicated by higher SARI values. When sen-
tences are rewarded for being short (with large ),
SARI increases but BLEU decreases, showing less
meaning preservation. The readability scores ini-
tially increase with the reduction in length, but then
decrease. Finally, if we increase the weight § for
the entity score, the sentences become longer and
more complex since the model is penalized more
for deleting entities.

In summary, the above analysis shows the con-
trollability of our approach in terms of different
simplification aspects, such as simplicity, meaning
preservation, and readability.
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4.6 Human Evaluation

We conducted a human evaluation on the Newsela
dataset since automated metrics may be insufficient
for evaluating text generation. We chose 30 sen-
tences from the test set for annotation and consid-
ered a subset of baselines. For our model variants,
we chose RM+EX+LS+RO, considering both vali-
dation settings (GM and SARI).

We followed the evaluation setup in Dong et al.
(2019), and measure the adequacy (How much
meaning from the original sentence is preserved?),
simplicity (Is the output simper than the original
sentence?), and fluency (Is the output grammati-
cal?) on a five-point Likert scale. We recruited
three volunteers, one native English speaker and
two non-native fluent English speakers. Each of
the volunteer was given 30 sentences from differ-
ent models (and references) in a randomized order.
Additionally, we asked the volunteers to measure
the number of instances where models produce in-
correct details or generate text that is not implied
by the original sentence. We did this because neu-
ral models are known to hallucinate information
(Rohrbach et al., 2018). We report the average
count of false information per sentence, denoted
as FL.

We observe that our model RM+EX+LS+RO
(when validated by GM) performs better than
Hybrid, a combination of PBMT and discourse
representation structures, in all aspects. It also
performs competitively with remaining supervised
NMT models.

For adequacy and fluency, Dress—Ls performs
the best since it produces relatively longer sen-
tences. For simplicity, S2S-A11-FA performs
the best since it produces shorter sentences. Thus,
a balance is needed between these three measures.
As seen, RM+EX+LS+RO ranks second in terms of
the average score in the list (reference excluded).
The human evaluation confirms the effectiveness
of our unsupervised text simplification, even when
compared with supervised methods.

We also compare our model variants
RM+EX+LS+RO (validated by GM) and
RM+EX+LS+ROT (validated by SARI). As

expected, the latter generates shorter sentences,
performing better in simplicity but worse in
adequacy and fluency.

Regarding false information (FI), we observe
that previous neural models tend to generate more
false information, possibly due to the vagueness in

Method AT [ ST | FT [ Avgl | FI¥
Hybrid 2.63 | 274 | 239 | 2.59 | 0.03
Dress-Ls 3.29 [ 3.05 | 411 | 348 | 0.2
EntPar 1.92 1 297 | 3.16 | 2.68 | 0.47
S2S-All-FA 22513241390 | 313 | 03
Edit-NTS 237 | 3.17 | 3.73 | 3.09 | 0.23
RM+EX+LS+RO | 2.97 | 3.09 | 3.78 | 3.28 | 0.03
RM+EX+LS+ROT | 2.58 | 3.21 | 3.33 | 3.04 | 0.07
Reference 291 1349 | 446 | 3.62 | 0.77

Table 5: Human evaluation on Newsela, where we mea-
sure adequacy (A), simplicity (S), fluency (F), and their
average score (Avg), based on 1-5 Likert scale. We
also count average instances of false information per
sentence (FI).

the continuous space. By contrast, our approach
only uses neural networks in the scoring function,
but performs discrete edits of words and phrases.
Thus, we achieve high fidelity (low FI) similar to
the non-neural Hybrid model, which also per-
forms editing on discourse parsing structures with
PBMT.

In summary, our model takes advantage of both
neural networks (achieving high adequacy, sim-
plicity, and fluency) and traditional phrase-based
approaches (achieving high fidelity).

Interestingly, the reference of Newsela has a poor
(high) FI score, because the editors wrote simplifi-
cations at the document level, rather than the sen-
tence level.

5 Conclusion

We proposed an iterative, edit-based approach to
text simplification. Our approach works in an un-
supervised manner that does not require a parallel
corpus for training. In future work, we plan to add
paraphrase generation to generate diverse simple
sentences.
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