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Abstract

Most NLP models today treat language as
universal, even though socio- and psycholin-
gustic research shows that the communicated
message is influenced by the characteristics
of the speaker as well as the target audience.
This paper surveys the landscape of personal-
ization in natural language processing and re-
lated fields, and offers a path forward to miti-
gate the decades of deviation of the NLP tools
from sociolingustic findings, allowing to flex-
ibly process the “natural” language of each
user rather than enforcing a uniform NLP treat-
ment. It outlines a possible direction to incor-
porate these aspects into neural NLP models
by means of socially contextual personaliza-
tion, and proposes to shift the focus of our eval-
uation strategies accordingly.

1 Introduction

Our language is influenced by one’s individual char-
acteristics as well as by the affinity to various so-
ciodemographic groups (Bucholtz and Hall, 2005;
McPherson et al., 2001; Eckert and McConnell-
Ginet, 2013). Yet the majority of NLP models
today treats language as universal, acknowledging
that words have different meanings in different se-
mantic context, but typically assuming that this
context has the same meaning for everyone. In
this paper, I propose that our focus shifts towards
interpreting the language together with its user-
dependent, contextual personal and social aspects,
in order to truly process the “natural” language of
a user. I outline a possible direction to incorporate
these aspects into neural NLP models, and suggest
to adjust our evaluation strategies.

The paper is structured with the following aims
in mind: Sec. 2 provides historical context, seeking
evidence on personalization needs. Sec. 3 reviews
existing personalization work, as the personaliza-
tion efforts and success stories are scattered across

contributions to various applied tasks. Sec. 4 con-
templates on how NLP personalization could be
adopted as a process of several stages. Sec. 5 out-
lines an implementation proposal on contextually
personalized classification models, building upon
flexible, socially conditioned user representations.
Sec. 6 proposes novel evaluation approaches re-
flecting the benefit of personalized models. Finally,
Sec. 7 opens the discussion on ethical aspects, non-
personalizable NLP tasks, and the role of industry
in personal data collection and protection.

2 Historical context

Since 1990s, with the rise of so-called empirical or
statistical NLP area (Manning et al., 1999; Brill and
Mooney, 1997), the focus on frequently appearing
phenomena in large textual data sets unavoidably
led to NLP tools supporting “standard English” for
generic needs of an anonymous user. An NLP tool -
whether e.g. a POS tagger, dependency parser, ma-
chine translation model or a topic classifier - was
typically provided as one trained model for one lan-
guage (Toutanova et al., 2003; Klein and Manning,
2003; Morton et al., 2005), or, later on, for major
underperforming domains, such as Twitter (Gimpel
et al., 2011). However, enforcing artificial domain
boundaries is suboptimal (Eisenstein, 2013). Ne-
glecting the variety of users and use cases doesn’t
make the tools universally applicable with the same
performance - it only makes our community blind
to the built-in bias towards the specifics of user pro-
files in training data (Hovy, 2015; Tatman, 2017).

Meanwhile, in the information retrieval area, per-
sonalization has been incorporated from the early
days - it is a long accepted paradigm that differ-
ent users with different information needs might
search for that need using the same query (Verhoeff
et al., 1961) and that individual information needs
evolve (Taylor, 1968). With the rising popularity
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of search engines in 1990s, the need for personal-
ization in the interpretation of the query becomes
obvious (Wilson, 1999). Exploiting logs of user
search interactions allowed personalization at scale
(Carbonell and Goldstein, 1998; Sanderson and
Croft, 2012). In 2000s, it became acceptable to per-
sonalize search results using implicit information
about user’s interests and activities, e.g. leverag-
ing browsing history or even e-mail conversations
(Teevan et al., 2005; Dou et al., 2007; Matthijs
and Radlinski, 2011). Today, hardly any of us can
imagine that searching e.g. for pizzeria from our
cell phone would return the same list of results for
everyone no matter our location.

The area of recommendation systems has fol-
lowed the IR trends, with more emphasis on the
social than the personal component. Already early
GroupLens Usenet experiments (Miller et al., 1997;
Resnick et al., 1994) have shown the effectiveness
of personalized article recommendations via col-
laborative filtering. Acknowledging the potential
of personalizing via similar or related users, the
focus moved towards exploiting information from
user’s social networks (Guy et al., 2010; De Fran-
cisci Morales et al., 2012; Guy et al., 2009).

Similar developments are emerging for exam-
ple in the area of personalized language models (Ji
et al., 2019; Wen et al., 2012; Yoon et al., 2017;
McMahan et al., 2017), which are largely used e.g.
in predictive writing, and in natural language gen-
eration (Oraby et al., 2018; Harrison et al., 2019),
aiming e.g. at selecting and preserving a consistent
personality and style within a discourse.

Drawing inspiration from these areas, I argue it is
natural for users to expect personalized approaches
when an NLP system attempts to interpret their
language, i.e., attempts to assign any label to a pro-
vided text segment, whether it is, e.g., a sentiment
of their sentence, a part-of-speech of a word they
used, a sense definition from a knowledge base, or
even a translation. As I discuss in the following sec-
tion, already basic personal information has been
shown to be relevant for the system accuracy.

3 User traits and NLP models

Inferring user traits We adjust our language
with respect to the sociodemographic group we feel
related to (McPherson et al., 2001; Bucholtz and
Hall, 2005; Holmes and Meyerhoff, 2008; Eckert,
2012). This language adjustment can be, in turn,
used in NLP algorithms to infer a range of individ-

ual user traits. Experiments have been conducted
with estimating variables such as age (Rao et al.,
2010; Nguyen et al., 2011), gender (Burger et al.,
2011; Bamman et al., 2014; Sap et al., 2014), ge-
olocation (Eisenstein et al., 2010), political prefer-
ences (Volkova et al., 2014), socio-economic status
(Preoţiuc-Pietro et al., 2015), impact (Lampos et al.,
2014), and a range of psychological traits and is-
sues (Schwartz et al., 2013; Park et al., 2015; Sum-
ner et al., 2012; Guntuku et al., 2017; Coppersmith
et al., 2014). While most of the above-listed exper-
iments have been conducted on Twitter, a variety
of other datasets have been used, including phone
conversations (Mairesse et al., 2007; Ivanov et al.,
2011), blogs (Mukherjee and Liu, 2010; Schler
et al., 2006), Facebook (Markovikj et al., 2013), or
YouTube (Filippova, 2012). Human judges show
surprisingly inferior performance on user profiling
tasks, grounding their judgement in topical stereo-
types (Carpenter et al., 2017). However, albeit
more accurate thanks to capturing stylistic varia-
tion elements, statistical models are prone to stereo-
type propagation as well (Costa-jussà et al., 2019;
Koolen and van Cranenburgh, 2017).

While many experiments have been conducted
using discrete variables for demographics and per-
sonality, real-valued continuous representation are
preferable (Lynn et al., 2017). Numerous re-
searchers have been pointing out that it would be
more meaningful to create models building on re-
cent developments in sociolinguistics, i.e. treating
demographic variables as fluid and social, e.g. mod-
eling what influences speakers to show more or less
of their identity through language, or jointly model-
ing variation between and within speakers (Eckert
and McConnell-Ginet, 2013; Nguyen et al., 2014;
Bamman et al., 2014; Eisenstein, 2013).

Improving NLP tasks with user traits Actively
accounting for sociodemographic factors in text
classification models leads to improved perfor-
mance across NLP applications. So far, such stud-
ies have being conducted most prominently for
English language, using age and gender variables,
with the most focus on sentiment analysis tasks
(Volkova et al., 2013; Hovy, 2015; Lynn et al.,
2017; Yang and Eisenstein, 2017). Other explored
tasks include topic detection, part-of-speech tag-
ging (Hovy, 2015), prepositional phrase attach-
ment, sarcasm detection (Lynn et al., 2017), fake
news detection (Long et al., 2017; Potthast et al.,
2018), or detection of mental health issues (Benton
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et al., 2016). Apart from demographic variables,
personality traits play a role as well - e.g. in stance
detection (Lynn et al., 2017), sarcasm detection,
opinion change prediction (Lukin et al., 2017), pre-
diction of regional life satisfaction or mortality rate
(Zamani et al., 2018). NLP models can also im-
prove by exploiting user’s past context and prior be-
liefs, e.g. for sarcasm (Bamman and Smith, 2015),
stance prediction (Sasaki et al., 2018), persuasion
(Durmus and Cardie, 2018) or conversation re-entry
(Zeng et al., 2019). Methods used to incorporate
the social and psychological variables to models
are discussed in Sec. 5.

Improving NLP tasks with social graphs An
emerging line of research makes use of social in-
teractions to derive information about the user -
representing each user as a node in a social graph
and creating low dimensional user embeddings in-
duced by neural architecture (Grover and Leskovec,
2016; Qiu et al., 2018). Including network infor-
mation improves performance on profiling tasks
such as predicting user gender (Farnadi et al., 2018)
or occupation (Pan et al., 2019), as well as on
detecting online behavior such as cyberbullying
(Mathur et al., 2018), abusive language use (Qian
et al., 2018; Mishra et al., 2018) or suicide ideation
(Mishra et al., 2019).

4 NLP personalization as a process

From the user experience perspective, personaliza-
tion of NLP tools could be divided into three steps.

Explicit input. In the first step, user is allowed
to provide personal information for the NLP com-
ponents explicitly. The depth of information pro-
vided can vary from specifying own age to taking
personality questionnaires. This user behavior is
somewhat similar to subscribing to topics of inter-
est for personalized newsletters - user has a full
control over the level of customization. However,
results of increasing the burden on the user can be
inferior to implicit inference (Teevan et al., 2005).

Implicit inference. More conveniently, personal
information about the user can be inferred implic-
itly by the system, as demonstrated e.g. by the
models discussed in section 3. The result of such
inference can be either a set of explicit labels, or
latent user representation capturing similar infor-
mation in a larger number of data-driven dimen-
sions. For the user, such personalization might
currently feel intrusive in the context of an NLP

system, however, in many related research areas the
user expectations are already altered (cf. Sec. 2).

Contextualized implicit inference. In the third
step, personalization includes also an intrauser
modeling of different individual contexts based on
user’s communication goals. This reflects the so-
cial science argument that an identity is the product
rather than the source of linguistic and other semi-
otic practices, and identities are relationally con-
structed through several, often overlapping, aspects
of the relationship between self and other, includ-
ing similarity/difference, genuineness/artifice and
authority/delegitimacy (Bucholtz and Hall, 2005).
This approach is also aligned with NLP findings on
social power in dialogue (Bracewell et al., 2012;
Bramsen et al., 2011; Prabhakaran et al., 2012).
Such solution can be perceived less invasive by the
users, as the contextual adaptation may diminish
the otherwise built-in stereotypes of language use
(e.g. some users may prefer to use more emotion-
ally charged words in private social contexts, but
not necessarily in professional conversations).

5 Methods of incorporating psychosocial
profiles into NLP models

Early experiments used basic demographic vari-
ables directly as input features in the model
(Volkova et al., 2013). Hovy (2015) uses age and
gender as modifying factors for the input word em-
beddings. In a similar manner, Lynn et al. (2017)
uses a multiplicative compositional function to
combine continuous user trait scores, inferred via
factor analysis, with original feature values, aug-
menting the feature set so that each feature exists
with and without the trait information integrated.
Benton et al. (2017) use age and gender as auxiliary
tasks in a multitask learning setup for psychologi-
cal labeling of users. Zamani and Schwartz (2017)
apply a residualized control approach for their task,
training a language model over the prediction errors
of the model trained on sociodemographic variables
only. Later they combine it with the factor analysis
approach (Zamani et al., 2018). Benton et al. (2016)
learns user representations by encoding user’s so-
cial network as a vector, where users with similar
social networks have similar vector representations.
A commonly used technique is to define the “con-
text” for each node, for example by random walks,
and train a predictive model to perform context
prediction.Similar network-based learning is em-
ployed in node2vec (Grover and Leskovec, 2016).
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Yang and Eisenstein (2017) propose to use neural
attention mechanisms in a social graph over follow-
ers, mentions and retweets, to leverage linguistic
homophily.

However, the user modeling approaches dis-
cussed so far focus on finding one representation
for one user. A modern, personalized NLP system
shall be able to capture not only the inherent seman-
tic aspects of the analyzed discourse together with
the latent vectorial representations of user charac-
teristics, but also contextual user profiles based on
an identity sought in their current social microen-
vironment. A strengthened industry-academia co-
operation is crucial in such data collection (more
on this in Sec. 7). Assuming the access to a larger
online history of each user, we could draw a par-
allel to the design of the contextual word embed-
dings (Peters et al., 2018; Howard and Ruder, 2018;
Devlin et al., 2019), which train neural networks
as language models, then use the context vectors
provided for each word token as pretrained word
vectors. With an increasing number of online cor-
pora containing user metadata, we can use recurrent
or attentive neural networks to create large-scale
social representations of users in a similar man-
ner, allowing multiple pretrained “senses” of each
user identity - vector representations of user con-
versational styles, opinions, interests, etc., treating
those representations as dynamically changing in
different social contexts. These representations can
be then matched to new users based on the sparse
linguistic, sociodemographic, psychological, and
network information available, and fine-tuned on
the context of a given task in a given social mi-
croenvironment, e.g. based on the stable part of the
personal vectorial representation of the other users
present in the conversation.

6 Evaluation

Currently, most of the NLP ground truth exists in
the vacuum, “for everyone”. Our systems typically
use labels obtained as an average or majority vote
provided by a number of impersonated annotators,
even for tasks where they highly disagree (Waseem,
2016; Stab and Gurevych, 2014). As pointed out in
Bender and Friedman (2018), we rarely get to know
anything about the people other than if they were
“expert”1. If we truly aim at personalizing NLP
systems, the first step is understanding who the re-
cipients of our system decisions are. In contrast to

1read: undergrad students vs. lab colleagues

IR, where the user of the interpreted result is nor-
mally the author of the query, in NLP the use cases
vary. For example, rather than merely labeling a
piece of text as a “sarcasm”, we shall ask (A) Did
the author mean this statement as sarcasm? (B)
Was this understood by others as sarcasm? What
kind of users interprets this statement as sarcasm?

In the tasks of type A, it is sensible to ask the
authors themselves about the intended label (e.g.
Are we correct this was a joke / positive review
/ supportive argument?. We shall further assess
the value of the system personalization. E.g. a
user may prefer a model that correctly interprets
her sarcasm even when most annotators typically
don’t recognize it. We can take inspiration from
subjective measures used in evaluating spoken dia-
logue systems, such as A/B testing (Kohavi et al.,
2014), customer satisfaction (Kelly et al., 2009;
Kiseleva et al., 2016) or interestingness (Harrison
et al., 2019; Oraby et al., 2018).

Yet most of the tasks are of type B, where we im-
plicitly try to label how a piece of text is perceived
by others (e.g. hate speech, assertiveness, persua-
siveness, hyperpartisan argumentation). Given that
these “others” vary in their judgments (Kenny and
Albright, 1987) and this variation is informative
for NLP models (Plank et al., 2014; Chklovski and
Mihalcea, 2003), I suggest we start caring in NLP
explicitly about who these “others” are, and eval-
uate our models with respect to labels assigned
by defined target groups of users (e.g. with re-
gards to sociodemographics, personality, expertise
in the task) rather than one objective truth. Initial
exploration of this area has been started e.g. for
perceived demographics (Volkova and Bachrach,
2016; Carpenter et al., 2017) and natural language
inference (Pavlick and Kwiatkowski, 2019).

7 Ethical considerations

The ability to automatically approximate personal
characteristics of online users in order to improve
language understanding algorithms requires us to
consider a range of ethical concerns.

Unfair use prevention It is almost impossible
to prevent abuse of once released technology even
when developed with good intentions (Jonas, 1983).
Hence it may be more constructive to strive for
an informed public, addressing the dual use dan-
ger with a preemptive disclosure (Rogaway, 2015;
Hovy and Spruit, 2016) - letting potential abusers
know that certain illegal and unethical purposes of
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using personalized models are not supported, and
letting potential users know about the risk. For
example the European Ethics Guidelines for Trust-
worthy AI foresee that “Digital records of human
behaviour may allow AI systems to infer not only
individuals’ preferences, but also their sexual ori-
entation, age, gender, religious or political views.”
and claim that “it must be ensured that data col-
lected about them will not be used to unlawfully or
unfairly discriminate against them.”

Incorrect and stereotypical profiling Sociode-
mographic classification efforts risk invoking
stereotyping and essentialism. Such stereotypes
can cause harm even if they are accurate on
average differences (Rudman and Glick, 2012).
These can be emphasized by the semblance of
objectivity created by the use of a computer
algorithm (Koolen and van Cranenburgh, 2017). It
is important we control for variables in the corpus
as well as for own interpretation biases.

Privacy protection Use of any data for person-
alization shall be transparent. Even public social
media data shall be used with consent and in an
aggregated manner, no individual posts shall be re-
published (Hewson and Buchanan, 2013). Regard-
ing explicit consent, research shall take account of
users’ expectations (Williams et al., 2017; Shilton
and Sayles, 2016; Townsend and Wallace, 2016).
Similar issue is discussed by Smiley et al. (2017)
regarding NLG ethics, as NLG systems can incor-
porate the background and context of a user to in-
crease the communication effectiveness of the text,
but as a result may be missing alternative views.
They suggest to address this limitation by making
users aware of the use of personalization, similar
to addressing provenance.

Role of industry and academia in user data col-
lection Privacy and controllability is an auxil-
iary task to personalization and adaptation (Torre,
2009). Strictly protecting user privacy when col-
lecting user data for model personalization is of
utmost importance for preserving user trust, which
is why, perhaps counter-intuitively, I encourage
stronger industry-academia collaborations to facil-
itate a less intrusive data treatment. An inspira-
tion can be taken from the concept of differential
privacy (Dwork, 2008), applied e.g. in the differ-
entially private language models (McMahan et al.,
2017), which allow to customize for the user with-

out incorporating her private vocabulary informa-
tion into the public cloud model. Similarly, doing
academic research on personalized NLP classifica-
tion tasks directly within industry applications such
as mobile apps with explicit user consent would
enable transparent experiments at scale, being po-
tentially more secure than gathering and manipu-
lating one-time academic data collections offline.
It may also contribute to better generalizability of
the conclusions than strictly academic case studies
that are typically limited in scale.

Personalization as a harmful ambiguity layer
Given the field bias to reporting personalization
results only when successful, no “unpersonaliz-
able” tasks have been defined so far. With that, one
question remains open - can we benefit from per-
sonalization everywhere across NLP, or are there
cases where subjective treatment of a language is
not desired, or even harmful? E.g., a legal text shall
remain unambiguous to interpretation. On the other
hand, the ability to understand it is subjective, and
some users may appreciate lexical simplification
(Xu et al., 2015). Are there objective NLP tasks
as such, or can we segment all of those into an
objective and subjective part of the application?

8 Conclusion

Building upon Eisenstein (2013); Lynn et al.
(2017), and Hovy (2018), I argue that, following
the historical development in areas related to NLP,
users are ready also for the personalization of text
classification models, enabling more flexible adap-
tation to truly processing their “natural” language
rather than enforcing a uniform NLP treatment for
everyone. Reflecting the current possibilities with
available web and mobile data, I propose to ex-
pand the existing user modeling approaches in deep
learning models with contextual personalization,
mirroring different facets of one user in dynamic,
socially conditioned vector representations. Model-
ing demographic and personal variables as dynamic
and social will allow to reflect the variety of ways
individuals construct their identity by language,
and to conduct novel sociolinguistic experiments to
better understand the development in online com-
munities. I suggest to also shift the focus of our
evaluation strategies towards the individual aims
and characteristics of the end users of our labeling
models, rather than aggregating all variations into
objective truths, which will allow us to pay more
attention to present social biases in our models.
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