
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7465–7471
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7465

Shape of Synth to Come: Why We Should Use Synthetic Data for English
Surface Realization

Henry Elder
ADAPT Centre

Dublin City University
henry.elder@adaptcentre.ie

Robert Burke
sharpobject@gmail.com

Alexander O’Connor
Autodesk, inc.

alex.oconnor@autodesk.com

Jennifer Foster
School of Computing

Dublin City University
jennifer.foster@dcu.ie

Abstract

The Surface Realization Shared Tasks of 2018
and 2019 were Natural Language Genera-
tion shared tasks with the goal of explor-
ing approaches to surface realization from
Universal-Dependency-like trees to surface
strings for several languages. In the 2018
shared task there was very little difference in
the absolute performance of systems trained
with and without additional, synthetically cre-
ated data, and a new rule prohibiting the use
of synthetic data was introduced for the 2019
shared task. Contrary to the findings of the
2018 shared task, we show, in experiments
on the English 2018 dataset, that the use of
synthetic data can have a substantial positive
effect – an improvement of almost 8 BLEU
points for a previously state-of-the-art system.
We analyse the effects of synthetic data, and
we argue that its use should be encouraged
rather than prohibited so that future research
efforts continue to explore systems that can
take advantage of such data.

1 Introduction

The shallow task of the recent surface realization
(SR) shared tasks (Belz et al., 2011; Mille et al.,
2018, 2019) appears to be a relatively straightfor-
ward problem. Given a tree of lemmas, a system
has to restore the original word order of the sen-
tence and inflect its lemmas, see Figure 1. Yet SR
systems often struggle, even for a relatively fixed
word order language such as English. Improved
performance would facilitate investigation of more
complex versions of the shallow task, such as the
deep task in which function words are pruned from
the tree, which may be of more practical use in
pipeline natural language generation (NLG) sys-
tems (Moryossef et al., 2019; Elder et al., 2019;

come

storyAP :

thisthe from

This story comes from the AP:

Figure 1: Example tree and reference sentence

Castro Ferreira et al., 2019).
In this paper we explore the use of synthetic

data for the English shallow task. Synthetic data
is created by taking an unlabelled sentence, pars-
ing it with an open source universal dependency
parser1 and transforming the result into the input
representation.

Unlike in the 2018 shared task, where a system
trained with synthetic data performed roughly the
same as a system trained on the original dataset
(Elder and Hokamp, 2018; King and White, 2018),
we find its use leads to a large improvement in
performance. The state-of-the-art on the dataset is
72.7 BLEU-4 score (Yu et al., 2019b) – our system
achieves a similar result of 72.3, which improves
to 80.1 with the use of synthetic data. We anal-
yse the ways in which synthetic data helps to im-
prove performance, finding that longer sentences
are particularly improved and more exactly correct
linearizations are generated overall.

1A number of these exist, e.g. https://github.
com/stanfordnlp/stanfordnlp and http:
//lindat.mff.cuni.cz/services/udpipe/

https://github.com/stanfordnlp/stanfordnlp
https://github.com/stanfordnlp/stanfordnlp
http://lindat.mff.cuni.cz/services/udpipe/
http://lindat.mff.cuni.cz/services/udpipe/
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Although it is common knowledge that machine
learning systems typically benefit from more data,
this 7.4 point jump in BLEU is important and
worth emphasizing. The 2019 shared task intro-
duced a new rule which prohibited the use of syn-
thetic data. This was done in order to make the re-
sults of different systems more comparable. How-
ever, systems designed with smaller datasets in
mind might not scale to the use of synthetic data,
and an inadvertent consequence of such a rule is
that it may produce results which could be mis-
leading for future research directions.

For instance, the system which was the clear
winner of this year’s shared task (Yu et al.,
2019a) used tree-structured long short-term mem-
ory (LSTM) networks (Tai et al., 2015). In gen-
eral, tree LSTMs can be slow and difficult to
train.2 Song et al. (2018) utilized a variant of
the tree LSTM in a similar NLG task, converting
abstract meaning representation (AMR) graphs to
text. Following the state-of-the-art system (Kon-
stas et al., 2017), which used standard LSTMs,
Song et al. augmented their training with synthetic
data. Though their system outperformed Konstas
et al. at equivalent levels of additional training
sentences, it was unable to scale up to the 20 mil-
lion sentences used by the best Konstas et al. sys-
tem and ultimately did not outperform them.3

Critics of neural NLG approaches4 emphasise
that quality and reliability are at the core of
production-ready NLG systems. What we are es-
sentially arguing is that if using synthetic data con-
tributes to producing higher quality outputs, then
we ought to ensure we are designing systems that
can take advantage of synthetic data.

2 System Description

2.1 Data

We evaluate on the Surface Realization Shared
Task (SRST) 2018 dataset (Mille et al., 2018)
for English5, which was derived from the Uni-
versal Dependency English Web Treebank 2.06.

2https://github.com/dasguptar/
treelstm.pytorch/issues/6

3Song et al.’s best system achieved 33.0 BLEU score with
2 million additional sentences, while Konstas et al. scored
32.3 with 2 million and 33.8 with 20 million (the best overall
system).

4See, for example, https://ehudreiter.com/
5http://taln.upf.edu/pages/msr2018-ws/

SRST.html
6https://github.com/

UniversalDependencies/UD_English-EWT

The training set consists of 12,375 sentences, dev
1,978, test 2,062.

2.2 Baseline system

The system we use is an improved version of a pre-
vious shared task participant’s system (Elder and
Hokamp, 2018). This baseline system is a bidirec-
tional LSTM encoder-decoder model. The model
is trained with copy attention (Vinyals et al., 2015;
See et al., 2017) which allows it to copy unknown
tokens from the input sequence to the output. The
system performs both linearization and inflection
in a single decoding step. To aid inflection, a list
is appended to the input sequence containing pos-
sible forms for each relevant lemma.

Depth first linearization (Konstas et al., 2017)
is used to convert the tree structure into a linear
format, which is required for the encoder. This
linearization begins at the root node and adds each
subsequent child to the sequence, before returning
to the highest node not yet added. Where there
are multiple child nodes one is selected at random.
Decoding is done using beam search, the output
sequence length is artificially constrained to con-
tain the same number of tokens as the input.

2.3 Improvements to baseline

Random linearizations In the baseline system,
a single random depth first linearization of the
training data is obtained and used repeatedly to
train the model. Instead, we obtain multiple lin-
earizations, so that each epoch of training data po-
tentially contains a different linearization of the
same dependency tree. This makes the model
more robust to different linearizations, which is
helpful as neural networks don’t generally deal
well with randomness (Juraska et al., 2018).

Scoping brackets Similar to Konstas et al.
(2017) we apply scoping brackets around child
nodes. This provides further indication of the tree
structure to the model, despite using a linear se-
quence as input.

Restricted beam search In an attempt to reduce
unnecessary errors during decoding, our beam
search looks at the input sequence and restricts the
available vocabulary to only tokens from the input,
and tokens which have not yet appeared in the out-
put sequence. This is similar to the approach used
by King and White (2018).

https://github.com/dasguptar/treelstm.pytorch/issues/6
https://github.com/dasguptar/treelstm.pytorch/issues/6
https://ehudreiter.com/
http://taln.upf.edu/pages/msr2018-ws/SRST.html
http://taln.upf.edu/pages/msr2018-ws/SRST.html
https://github.com/UniversalDependencies/UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT
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2.4 Synthetic Data

To augment the existing training data we create
synthetic data by parsing sentences from publicly
available corpora. The two corpora we investi-
gated are Wikitext 103 (Merity et al., 2017) and
the CNN stories portion of the DeepMind Q&A
dataset (Hermann et al., 2015).

Each corpus requires some cleaning and format-
ting, after which they can be sentence tokenized
using CoreNLP (Manning et al., 2014). Sentences
are filtered by length – min 5 tokens and max 50 –
and for vocabulary overlap with the original train-
ing data – set to 80% of tokens in a sentence re-
quired to appear in the original vocabulary. These
sentences are then parsed using the Stanford NLP
UD parser (Qi et al., 2018). This leaves us with
2.4 million parsed sentences from the CNN stories
corpus and 2.1 million from Wikitext.

It is a straightforward process to convert a parse
tree into synthetic data. First, word order informa-
tion is removed by shuffling the IDs of the parse
tree, then the tokens are lemmatised by removing
the form column. This is the same process used by
the shared task organizers to create datasets from
the UD treebanks.

While it has been noted that the use of synthetic
data is problematic in NLG tasks (WeatherGov
(Liang et al., 2009) being the notable example)
our data is created differently. The WeatherGov
dataset is constructed by pairing a table with the
output of a rule-based NLG system. This means
any system trained on WeatherGov only re-learns
the rules used to generate the text. Our approach
is the reverse; we parse an existing, naturally oc-
curring sentence, and, thus, the model must learn
to reverse the parsing algorithm.

2.5 Training

The system is trained using a custom fork7 of the
OpenNMT-py framework (Klein et al., 2017), the
only change made was to the beam search decod-
ing code. Hyperparameter details and replication
instructions are provided in our project’s reposi-
tory8, in particular in the config directory.

Vocabulary size varies based on the datasets in
use. It is determined by using any tokens which
appears 10 times or more. When using the orig-
inal shared task dataset, the vocabulary size is

7https://github.com/Henry-E/OpenNMT-py
8https://github.com/Henry-E/

surface-realization-shallow-task

BLEU-4
B10 70.8
P16 65.9
ST18 69.1
Yu19 72.7
Ours 72.3
Ours + Synthetic data 80.1

Table 1: Test set results for baselines trained on the
original dataset and the final model which uses syn-
thetic data

2,193 tokens, training is done for 33 epochs and
takes 40 minutes on two Nvidia 1080 Ti GPUs.
All hyperparameters stay the same when train-
ing with the synthetic data, except for vocabulary
size and training time. For the combined shared
task, Wikitext and CNN datasets the vocabulary
size is 89,233, training time increases to around
2 days, and uses 60 random linearizations of the
shared task dataset and 8 of the Wikitext and CNN
datasets.

2.6 Evaluation

The evaluation is performed on detokenized sen-
tences9 using the official evaluation script from
the 2018 shared task. We focus on BLEU-4 score
(Papineni et al., 2002) which was shown in both
shared tasks to be highly correlated with human
evaluation scores.

3 Results

In Table 1, we compare our results on the test set
with those reported in Yu et al. (2019b), which in-
clude the Yu et al. system (Yu19), the best 2018
shared task result for English (Elder and Hokamp,
2018) (ST18) and Yu et al.’s implementation of
two other baselines, Bohnet et al. (2010) (B10)
and Puduppully et al. (2016) (P16) . Ignoring for
now the result with synthetic data, we can see that
our system is competitive with that of Yu et al
(72.3 vs 72.7).

In Section 2.3, we described three improve-
ments to our baseline system: random lineariza-
tion, scoping and restricted beam search. An ab-
lation analysis of these improvements on the dev
set is shown in Table 2. The biggest improvement
comes from the introduction of random lineariza-

9Using detokenized inputs for BLEU makes the score
very sensitive to detokenization used and in the 2019 shared
task evaluation was changed to use tokenized inputs instead.

https://github.com/Henry-E/OpenNMT-py
https://github.com/Henry-E/surface-realization-shallow-task
https://github.com/Henry-E/surface-realization-shallow-task
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System BLEU-4
SR Baseline 57.3
SR + Random Lins 65.1
SR + Random Lins + Scope 69.2
SR + Random Lins + Scope + Restricted Beam 72.2

Table 2: Dev set results for ablation of the baseline
system plus improvements, trained only on the origi-
nal dataset

Data used BLEU-4
Improved SR Baseline (SRST) 72.2
SR + Wikitext 79.8
SR + CNN 80.3
SR + CNN + Wikitext 80.8

Table 3: Dev set results for the SR shared task data with
additional synthetic data: the role of the corpus

tions. However, all three make a meaningful, pos-
itive contribution.

3.1 The Effect of Synthetic Data

The last row of Table 1 shows the effect of adding
synthetic data. BLEU score on the test set jumps
from 72.3 to 80.1. To help understand why ad-
ditional data makes such a substantial difference,
we perform various analyses on the dev set, in-
cluding examining the effect of the choice of un-
labeled corpus and highlighting interesting differ-
ences between the systems trained with and with-
out the synthetic data.

The role of corpus Table 3 compares the Wiki-
text corpus as a source of additional training data
to the CNN corpus. Both the individual results and
the result obtained by combining the two corpora
show that there is little difference between the two.

Sentence length and BLEU score Using
compare-mt (Neubig et al., 2019) we noticed
a striking difference between the systems with
regards to performance on sentences of different
length.10 This is shown in Figure 2.

Even though the synthetic data sentences were
limited to 50 tokens in length, the synthetic data
performed equally well for sentence length buck-
ets 50-60 and 60+, while the baseline data system
performed relatively worse. It is possible this is
due to the synthetic data system containing a larger
vocabulary and being exposed to a wider range
of commonly occurring phrases, which make up
parts of longer sentences.

10These are results for the tokenized versions of the gener-
ated and reference sentences, hence the higher numbers.
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Figure 2: BLEU score breakdown by sentence length
buckets, comparing our best model trained on the orig-
inal dataset with one trained with synthetic data

SRST Synth
Exact match 1159 1314
+ Punctuation error only 43 46
+ Inflection error only 123 142
Total (relatively error free) 1325 1502
Remaining errors 653 476

Table 4: Error analysis breakdown for the 1,978 dev
sentences. SRST is our system without synthetic data
and Synth is our system with synthetic data.

Error Analysis We perform some preliminary
analysis that could serve as a precursor to more
detailed human evaluation. Table 4 lists the num-
ber of exact matches, in which the tokenized ref-
erence sentence and the generated sentence ex-
actly match. We also detect relatively minor er-
rors, namely punctuation and inflection, in which
these are the only differences between the refer-
ence and generated sentences. Punctuation errors
are typically minor and there is usually ambigu-
ity about their placement.11 Inflection errors oc-
cur when a different inflected form has been cho-
sen by the model than in the reference sentence.
These tend to be small differences and are often
valid alternatives, e.g. choosing ’m over am.

Within the remaining uncategorized sentences
are mostly linearization errors. Linearization er-
rors come in two main categories; non-breaking,
in which the linearization is different from the ref-
erence sentence but is still valid and communicates
the same meaning as the reference – see Example
1 below; and breaking, where the linearization has
clear errors and doesn’t contain the same meaning
as the reference sentence – see Example 2 below.

11In the 2019 shared task an additional feature was pro-
vided to indicate the position of punctuation relative to its
head token.
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1. Non-breaking

(a) Ref: From the AP comes this story:

(b) Synth: This story comes from the AP:

2. Breaking

(a) Ref: I ran across this item on the Inter-
net.

(b) Synth: I ran on the internet across this
item.

This kind of breakdown in an error analysis may
help understand the quality of these systems in
more absolute terms, since it’s the overall number
of accurate sentences which matters. This could be
more intuitive than comparing BLEU scores rela-
tive to prior models when deciding whether to ap-
ply a system in a business setting.

4 Conclusion

We have argued for the use of synthetic data in En-
glish surface realization, justified by the fact that
its use gives a significant performance boost on the
shallow task, from 72.7 BLEU up to 80.1. While
this is not yet at the level of reliability needed for
neural NLG systems to be used commercially, it is
a step in the right direction.

Assuming the use of synthetic data, more needs
to be investigated in order to fully maximize its
benefit on performance. Future work will look
more closely at the choice of corpus, construction
details of the synthetic dataset, as well as the trade-
off between training time and accuracy that comes
with larger vocabularies.

The work described in this paper has focused
on English. Another avenue of research would be
to investigate the role of synthetic data in surface
realization in other languages.
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