
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7257–7272
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7257

2kenize: Tying Subword Sequences for Chinese Script Conversion

Pranav A徒 and Isabelle Augenstein師

徒Independent Researcher, Hong Kong
師Department of Computer Science, University of Copenhagen, Denmark

cs.pranav.a{at}gmail.com, augenstein{at}di.ku.dk

Abstract

Simplified Chinese to Traditional Chinese
character conversion is a common preprocess-
ing step in Chinese NLP. Despite this, cur-
rent approaches have insufficient performance
because they do not take into account that a
simplified Chinese character can correspond to
multiple traditional characters. Here, we pro-
pose a model that can disambiguate between
mappings and convert between the two scripts.
The model is based on subword segmentation,
two language models, as well as a method
for mapping between subword sequences. We
further construct benchmark datasets for topic
classification and script conversion. Our pro-
posed method outperforms previous Chinese
Character conversion approaches by 6 points
in accuracy. These results are further con-
firmed in a downstream application, where
2kenize is used to convert pretraining dataset
for topic classification. An error analysis re-
veals that our method’s particular strengths are
in dealing with code mixing and named enti-
ties. The code and dataset is available at https:
//github.com/pranav-ust/2kenize

1 Introduction

Chinese character (or script) conversion is a com-
mon preprocessing step for Chinese NLP practi-
tioners (Zhang, 2014; Shi et al., 2011). Traditional
Chinese (TC) and Simplified Chinese (SC) are the
two standardized character sets (or scripts) for writ-
ten Chinese. TC is predominantly used in Taiwan,
Hong Kong, and Macau, whereas SC is mainly
adopted in mainland China and SC characters are
simplified versions of TC characters in terms of
strokes and parts. Therefore, Chinese NLP prac-
titioners apply script converters1 to translate the

1Most of these tools like OpenCC, Mafan, Hanziconv are
generally widely usedwithin ChineseNLP community, which
can be attested popularity of their Github repos.

SC Sentence 维护发展中国家共同利益 Comments
Segmentation 维 护发 展中 国家 共同 利益 护发: haircare
Conversion 維護髮展中國家共同利益 7 Conversion
Segmentation 维护 发展 中 国家 共同 利益 发展: develop
Conversion 維護發展中國家共同利益 3 Conversion

Table 1: Example sentencewith two different segmenta-
tions, and resulting different conversions. The sentence
translates to Safeguarding the common interests of de-
veloping countries. This is a recurring example in this
paper. Also refer §F.5.

dataset into their desired language. This is espe-
cially useful for TC NLP practitioners because TC
is less widely used and under-resourced as com-
pared to SC.
Converting from TC to SC is generally straight-

forward because there are one-to-one correspon-
dences between most of the characters, so con-
version can be performed using mapping tables
(Denisowski, 2019; Chu et al., 2012). However,
conversion from SC to TC is an arduous task as
some SC characters can be mapped to more than
one TC character depending on the context of the
sentence. A detailed analysis by Halpern and Ker-
man (1999) shows that SC to TC conversion is a
challenging and crucial problem, as 12% of SC
characters have one-to-manymappings to TC char-
acters. Our experiments show that current script
converters achieve sentence accuracy results of 55-
85% (§3).
Another issue is that varying tokenization would

lead to different results as Chinese is an unseg-
mented language, see Table 1 for an example.
Off-the-shelf script converters would translate 维
护发展中国家共同利益 into 維護髮展中國家
共同利益,2 whereas the correct conversion is 維

2Throughout this paper, we color code ambiguous SC
characters with brown, ambiguous TC characters with violet,
vernacular Cantonese characters with teal. By scripts, we re-
fer as to character sets, and we interchangeably use them in
this paper.

https://github.com/pranav-ust/2kenize
https://github.com/pranav-ust/2kenize

7258

護發展中國家共同利益. Here, the SC character
发 (hair, issue) has two TC mappings, 髮 (hair,
issue) and 發 (hair, issue), depending on the con-
text and tokenization; which shows that this task is
non-trivial.
Despite this being an important task, there is

a lack of benchmarks,3 which implies that this
problem is understudied in NLP. In this study, we
propose 2kenize, a subword segmentation model
which jointly considers Simplified Chinese and
forecasting Traditional Chinese constructions. We
achieve this by constructing a joint Simplified
Chinese and Traditional Chinese language model
based Viterbi tokenizer. Performing mapping dis-
ambiguation based on this tokenization method im-
proves sentence accuracy by 6 points as compared
to off-the-shelf converters and supervised mod-
els. Our qualitative error analysis reveals that our
method’s particular strengths are in dealing with
code-mixing and named entities. Additionally, we
address the issue of a lack of benchmark datasets
by constructing datasets for script conversion and
TC topic classification.

2 2kenize: Joint Segmentation and
Conversion

We employ subword tokenization, as it addresses
the issue of rare and unknown words (Mikolov
et al., 2012) and has been shown advantageous
for the language modelling of morphologically-
rich languages (Czapla et al., 2018; Mielke and
Eisner, 2019). This achieves improvements in
accuracy for neural machine translation (NMT)
tasks and has now become a prevailing practice
(Denkowski and Neubig, 2017). The most widely-
utilized method is Byte Pair Encoding (BPE, Sen-
nrich et al. (2016)), a compression algorithm that
combines frequent sequences of characters, which
results in rare strings being segmented into sub-
words. Unigram (Kudo, 2018) and BPE-Drop
(Provilkov et al., 2019) use subword ambiguity
as noise, as well as stochastically-corrupted BPE
segmentation to make it less deterministic. For
NMT tasks generally, subword segmentation is
seen as a monolingual task and applied indepen-
dently on source and target corpora. We hypothe-
size that translation tasks, and specifically conver-
sion tasks, as investigated here, would have a bet-

3The ChineseNLP website states that script conver-
sion benchmarks and experiments currently do not exist:
https://chinesenlp.xyz/#/docs/simplified_
traditional_Chinese_conversion

ter performance if segmentation were performed
jointly. Hence, in this section, we describe our pro-
posed method 2kenize, which jointly segments by
taking the source and its approximate target sen-
tences into account. This motivates the main idea
of this paper: We propose 2kenize which jointly
considers the source sentence and its correspond-
ing target conversions by doing lookaheads with
mappings.

2.1 Outline of the proposed approach
Given the possible SC character sequence s =
s1s2 . . . sn and TC character sequence t =
t1t2 . . . tn, we want to find the most likely t, which
is given by the Bayes decision rule as follows:

t = argmax
t′∈T ∗

p(s, t′) (1)

where T ∗ denotes the set of all strings over sym-
bols (ti) in T (Kleene star). We divide this problem
into two parts: finding the mapping sequence (2)
and finding the TC sequence from mappings (7).
We define a mapping, which is given by mi =

(si, ti) = (sj:k, tj:k). Here, tj:k = {t1j:k . . . tnj:k}
is a set of TC characters that correspond to the
SC character in the mapping. Thus, a mapping se-
quence can be defined as a concatenation of map-
pings, which is m = m1m2 . . .ml. Let M be
the superset of all possible mapping sequences and
M(s) be the all mapping sequences resulting from
s. Then, the best possible mapping sequence is
given by

m = argmax
m′∈M(s)

p(m′) (2)

Morever, p(m) can be expanded as such:

p(m) = p(m1m2 . . .ml) (3)

= p

(
s1 s2 · · · sl
t1 t2 · · · tl

)
(4)

≈ p(s1s2 . . . sl) + p(t1t2 . . . tl) (5)

= pLM (s1:l) +
∑

t∈
∏

i ti

pLM (t1:l) (6)

After expanding the mapping sequences (4), we
take an approximation by estimating this as the
sum of likelihoods of two sequences formed due
to co-segmentations (5). The set of possible TC
sequences is given by the Cartesian product of ti.
These likelihoods can then be estimated using lan-
guage model (LM) probabilities as shown in (6).

t = argmax
t′∈mt

p(t′) (7)

https://chinesenlp.xyz/#/docs/simplified_traditional_Chinese_conversion
https://chinesenlp.xyz/#/docs/simplified_traditional_Chinese_conversion

7259

维护发展中国家 共同利益

Randomly split

维 护发 展中 国家
维护 发展 中国 家
维护 发 展中国 家

p = 0.5

p = 0.3

p = 0.2

Probabilities from
Normalized scores

Sample one, and generate
n-best segmentations

Use this in the
next iteration.

维 护发 展中 国家

Top-k embeddings

Stacked LSTM
Layers

Linear

Less Frequent
Embeddings

Accumulated
Gradients

Last
Output

Average
Pool

Max
Pool

Figure 1: Language model architecture with subword
and subsequence sampling. (Alt text: §F.1).

Once the mapping sequencem has been found, all
possible TC sequences are found from the set mt,
which is the Cartesian product for all ti inm. From
(7), we calculate approximate final sequence using
beam search.

2.2 Model Architecture

Viterbi, a dynamic programming (DP) algorithm,
considers phrases (or subsequences) and performs
segmentation in a ‘bottom-up’ fashion (Nagata,
1994; Sproat et al., 1996). RNN-based language
models are theoretically considered to be ‘∞’-
gram (Khandelwal et al., 2018), which consitutes
a challenge. Consider this sentence, 维护发展
中国家共同利益. A potential challenge could
be to adquately estimate the probability of 共同
利益. As this sequence occurs infrequently in
the beginning of sentences in the corpus, an RNN
would under-estimate the probability of this sub-
sequence. Moreover, an RNN would likely lose
some useful context and perform worse without it
(Kim et al., 2019). So for Viterbi to perform well
with an RNN, we train the language model on sub-
sequences. We approach this by training ourmodel
in such a way that it samples subsequences ran-

Viterbi Tokeniser

維護發展中國家共同利益

维护发展中国家共同利益 維護 展中國家共同利益
髮
發

Approximate constructions from mapping table

维护 发展 中 国家 共同 利益 維護 發展 中 國家 共同 利益
髮展

TC LSTM

Σ
Beam sumSC LSTM

Viterbi Tokenizer

Subword
perplexities

SC sentence
TC Sentence

Tokenized SC sentence
Beam search on

the segments using
TC LSTM

Converted TC sentence

TC LSTM

Figure 2: From the given SC sentence, we create pos-
sible TC sequences using mappings. We input these to
Viterbi, which recursively calls LSTM. Using Eq. (6)
as the scoring function, Viterbi outputs the mapping se-
quence. We perform beam search to find the best TC
sequence from the mapping sequence. (Alt text: §F.2).

domly in each epoch. As shown in Fig 1, we ran-
domly split the sentence and use subsequences in
separate epochs.
Using Kudo (2018) regularization method, we

sample from the n-best segmentations in each
epoch. This is done so that the model can under-
stand different segmentations of a subsequence us-
ing a similar motivation as above. Recent works
have shown that varying subword segmentations
lead to a better downstream model performance
(Provilkov et al., 2019; Kudo, 2018; Hiraoka et al.,
2019); therefore, we use it as a data augmentation
strategy. Once we get the n-best segmentations
with scores, we normalize them, and then use the
normalized scores as sampling probabilities (see
Fig 1). As opposed to other subword tokenizers
where the vocabulary size is fixed, we do not limit
the vocabulary in our model. Hence, there are
numerous possibilities of segment combinations
which raises a need of caching most frequent to-
kens. Inspired by the work related to cache-based
LMs (Kawakami et al., 2017) and ghost batches
(Hoffer et al., 2017), we only consider the top-
k tokens in the main network memory and keep
track of gradients of less recently used token em-
beddings (commonly known as LRU, Least Re-
cently Used policy). This could be thought of as

7260

HK Literature HK News TW Literature TW News
Sources Liu (1962) Singpao (2017-2018) Jiubadao (2011) AS subset Emerson (2005)

Lau Yee (1972) Mingpao (2017-2018) Ko (2010) Liberty Times (2017-2018)
Foon (1988) CityU subset Emerson (2005) Yao (1964) United Daily News (2017-2018)

Average Length 194.8 214.6 188.2 223.6
IAA 0.982 0.979 0.981 0.971
Mapping Examples 干 - [幹,乾,干,榦] 苏 - [蘇,囌,甦] 复 - [復,複,覆] 胡 - [胡,衚,鬍]

须 - [須,鬚] 暗 - [暗,闇] 叹 - [嘆,歎] 迹 - [蹟,跡]

Table 2: An overview of the dataset used for intrinsic evaluation. We report sources, average character lengths and
sentence level inter-annotator agreements (IAA, reported in κ) and some examples of ambiguous SC-TCmappings.

virtual embeddings as delayed gradient accumu-
lation allows to accommodate larger number of
tokens. This virtual size embedding architecture
is related to the continuous cache implementation
and stochastic tokenization architectures (Grave
et al., 2016; Hiraoka et al., 2019).

2.3 Segmentation and Disambiguation

This optimal sequencing problem can be formu-
lated as an overlapping subsequence approach,
which can be solved using LM based Viterbi (Na-
gata, 1994; Sproat et al., 1996). Fig. 2 explains this
process of joint subword modelling. Here, we take
Eq. (6) as the objective function for finding the
mapping sequence, however, we use subword per-
plexities (Cotterell et al., 2018;Mielke et al., 2019;
Mielke, 2019) in our implementation. For the TC
LSTM, we add the probabilities of the beams of
the possible sequences.
As discussed in §2.1 and Eq. (7), beam search

is needed to select the best subword sequence for
TC. Once the sentences are tokenized, the map-
ping table is used to convert each SC token to the
corresponding TC token. We extract the final TC
sentence by resolving ambiguities through beam
search using the TC LSTM (Fig. 2).

3 Intrinsic Evaluation

3.1 Dataset for Intrinsic Evaluation

We construct a gold standard corpus for both Chi-
nese scripts consisting of 4 domains: HK Litera-
ture and Newswire, and Taiwanese Literature and
Newswire (Table 2) with each domain contain-
ing 3000 sentences. SC-TC mapping tables are
constructed from existing resources (Denisowski,
2019; Chu et al., 2012). We heuristically convert
selected TC sentences to SC using OpenCC. We
asked the annotators to manually correct any incor-
rect conversions.4

4A detailed data statement is given in the appendix.

3.2 Language Model Training

We choose the SIGHAN-2005 Bakeoff dataset
to train the segmentation-based language model
(Emerson, 2005). For SC, we select the PKU and
MSR partitions, and for TC, we use the Academia
Sinica and CityU partitions. We apply maximal
matching (or heuristic dictionary-based word seg-
menter) to pre-process these datasets by segment-
ing words into subwords (Wong and Chan, 1996).
Here, ‘dictionary’ refers to the word-list in the
mapping table. We then train a 2-layer LSTM lan-
guage model LSTM with tied weights, and embed-
ding and hidden sizes of 512 (Sundermeyer et al.,
2012) on this segmented dataset with subsequence
sampling and stochastic tokenization as discussed
in §2.2.

3.3 Baselines and Ablations5

We implement the following baselines for the ex-
perimentation:
Off-the-shelf Converters: Hanziconv6 and

Mafan7 are dictionary-based script character con-
verters. Evaluating this could be useful to under-
stand the lower accuracy bound. OpenCC8 uses
a hybrid of characters and words (specifically trie
based tokenizer) for script conversion (Pranav A
et al., 2019).
Language Model Disambiguation: A strong

baseline to this problem would be to build a lan-
guage model to disambiguate between the charac-
ters, which is quite similar to STCP (Xu et al.,
2017). We use a 2-layer LSTM language model
trained on Traditional Chinese corpus.
Neural Sequence Models: We heuristically

convert Traditional Chinese Wikipedia to Simpli-
fied Chinese using OpenCC and use it for training
the seq2seq model (Sutskever et al., 2014). We

5If in case you are looking for ‘Related Work’ section.
6https://github.com/berniey/hanziconv
7https://github.com/hermanschaaf/mafan
8https://github.com/BYVoid/OpenCC

https://github.com/berniey/hanziconv
https://github.com/hermanschaaf/mafan
https://github.com/BYVoid/OpenCC

7261

Conversion System HK Lit HK News TW Lit TW News Overall
DED SA DED SA DED SA DED SA DED SA

Dictionary based conversion, Hanziconv 34.1 54.7 37.7 59.1 31.3 60.0 39.3 58.9 34.2 55.6
Dictionary based conversion, Mafan 14.7 71.2 17.7 72.5 14.5 73.8 13.3 72.7 14.4 72.6
Trie dictionary based conversion, OpenCC 5.5 87.3 5.1 83.4 4.1 84.7 3.8 88.5 4.3 85.3
Language Model Disambiguation, STCP 6.3 85.6 5.4 79.9 4.7 84.1 5.2 83.9 5.3 84.0
Convolutional Sequence Models 6.7 85.8 5.3 79.3 4.8 84.5 5.2 83.9 5.4 84.4
2kenize with word tokenization 11.2 84.3 12.1 81.3 11.3 82.1 10.0 81.1 11.5 82.7
2kenize with maximal matching 5.2 88.7 3.3 93.1 4.0 88.6 4.8 87.7 4.5 88.9
2kenize with Unigram subwords 3.4 91.9 3.8 90.9 4.3 88.1 3.9 87.8 3.7 89.3
2kenize with joint LSTM modelling 2.8 94.9 3.1 93.7 3.8 91.3 2.9 91.9 3.0 92.4

Table 3: Results of the intrinsic evaluation experiments which are reported as a mean across 10 different seeds.
We use disambiguation error density (DED, the lower, the better) and sentence accuracy (SA, the higher the better)
metrics for evaluation. Bold: best, Underlined: second-best.

construct a 20-layer neural convolutional sequence
model (Gehring et al., 2017) (both in encoder and
decoder) using fairseq (Ott et al., 2019).
We perform ablation tests by inserting following

segmentation models.
Word tokenization: We use Jieba, which is a

commonly used hidden markov model based word
tokenizer for Chinese NLP. 9
Dictionary substrings: We apply maximal

string matching, which is a dictionary based
greedy tokenizer (Pranav A et al., 2019; Wong and
Chan, 1996).
Unigram from Sentencepiece: Subword seg-

mentation is performed by sampling unigram lan-
guage model perplexity values (Kudo, 2018).
Joint subwords: As discussed in §2.3, we use

joint SC-TC subwords.

3.4 Results for Intrinsic Evaluation
We evaluate our models using the metrics of dis-
ambiguation error density (DED) and sentence ac-
curacy (SA). DED is the average of total edit dis-
tances per 1000 ambiguous Simplified characters,
which is

∑
edit distances∑

ambiguous Simplified characters × 1000. SA
is the number of sentences correctly converted in
percentages. Contrary to previous papers, we do
not report character based accuracy values, as gen-
erally most characters have straightforward map-
pings — a reason why we opt for a less forgiving
metric like SA where every character in a sentence
has to be correctly converted.
Results are shown in Table 3, broken down by

domain, and overall. Our model attains an av-
erage DED of 3.0 and a SA of 92.4% overall,
whereas the best existing converter, OpenCC, only
achieves a DED of 4.3 and a SA of 85.3%. We

9https://github.com/fxsjy/jieba

find that seq2seq and LM based disambiguation
perform almost on par with OpenCC, due to the
large number of false positive errors by these mod-
els. Jieba achieves an average DED of 11.2 as
it does not handle OOV words well. For maxi-
mal matching of segmented words and Unigram
subwords, it achieves an overall DED of 4.5 and
3.7, respectively — showing that joint segmenta-
tion yields better results. We observe that accu-
racy values are slightly worse on news text, due
to the relatively high number of new entities in
those datasets. We find that seq2seq and LM based
disambiguation gives rise to many false positives.
Heuristically converting TC to SC results in certain
conversion errors in the training dataset; and addi-
tionally, seq2seq approaches tend to reword the tar-
get sentence, which shows that they are unsuitable
for this task.

3.5 Qualitative Error Analysis

We manually inspect incorrect conversions in the
intrinsic evaluation and find four interesting recur-
ring linguistic patterns which confused the convert-
ers. We instructed the annotators to classify the
items in the dataset (overall 12000 sentences in
intrinsic evaluation dataset) if the sentences con-
tain any of these patterns. In Table 4, we provide
an overview of statistical information of these pat-
terns and the performance by the converters.
Code mixing: Vernacular Cantonese charac-

ters (zh-yue) are a subset of TC characters but
do not follow the norms of the standard written
Chinese (Snow, 2004). We find that some of the
sentences in our dataset are code-mixed with zh-
yue (e.g. speech transcription) or English (e.g.
named entities). Consider the snippet, “...古惑架
BENZ 190E撞埋支...”, which is code-mixed with

https://github.com/fxsjy/jieba

7262

Case Method SA Example
Code mixing
with
Cantonese
(34 cases,
0.3%)

肯尼迪咁多嘢做,掂唔掂呀? SC
With so much to do in Kennedy, can you handle it? HK Lit

OpenCC 20.5 肯尼迪咁多嘢做,掂唔掂呀? 7

STCP 8.8 肯尼迪咁多嘢做,掂唔掂呀? 7

2kenize 91.1 甘迺迪咁多嘢做,掂唔掂呀? 3

Code mixing
with English
(1532 cases,
12.8%)

自从我揸住大古惑架 BENZ 190E撞埋支电灯柱嗰度之后, SC
After I drove Slick’s Benz 190E into the telephone pole, HK Lit

OpenCC 95.6 自從我揸住大古惑架 BENZ 190E撞埋支電燈柱嗰度之後, 3

STCP 86.5 自從我揸住大古惑架 BENZ 190E撞埋支電燈柱嗰度之后, 7

2kenize 98.7 自從我揸住大古惑架 BENZ 190E撞埋支電燈柱嗰度之後, 3

Disguised
Named
Entities
(378 cases,
3.15%)

维护发展中国家共同利益 SC
Safeguard the common interests of developing countries TW News

OpenCC 85.7 維護髮展中國家共同利益 7

STCP 82.1 維護髮展中國家共同利益 7

2kenize 93.2 維護發展中國家共同利益 3

Repeated
Named
Entities
(428 cases,
3.57%)

乔治亚来到了乔治亚洲旅游 SC
Georgia came to Georgia for travelling. HK News

OpenCC 84.4 佐治亞來到了佐治亞洲旅遊 77

STCP 17.9 佐治亞來到了喬治亞洲旅遊 73

2kenize 87.8 喬治亞來到了喬治亞洲旅遊 33

Table 4: Casewise breakdown of common errors. The first sentence is SC, second is the English translation and
rest are TC outputs from the converters.

both zh-yue and English. The characters “BENZ
190E”,架 and埋支 are not a part of standard writ-
ten Chinese. We find that OOVwords are 2kenized
into single-character tokens which results in: “古
惑 |架 |B|E|N|Z| 1|9|0|E|撞 |埋|支” Thus, 2kenize
distributes the entropy over multiple tokens rather
than a single token (generally UNK is used in such
cases). This allows the language model to have
more space for multiple guesses, which shows a
massive advantage over word models or just UNK-
ing it, a reason why subword tokenizers outper-
form closed-vocabulary models (Merity, 2019).
Disguised Named Entities: Take the recurring

sentence: “维护发展中国家共同利益”. Observe
that the sentence contains a frequent word 中国
(China). However, the actual meaning and English
translation do not include “China” at all. This is an
interesting linguistic trait of Chinese, where words
often appear in the sentence, but are not being inter-
preted. This could easily trip up a tokenizer, as the
probability of 中国 being a token independently
is high. Having 中国 as a separate token in the
sentence could lead into an incorrect conversion
(Table 1). We find in 2kenizer’s trellis10 that “维
护 |发展 |中” has a higher probability than other
possible segmentations. Substructure lookups and
beam search in our setup considerably reduces the
probability of getting wrong tokenization. The sen-

10This is a probability lookup table in Viterbi to keep track
of the segment information in a subsequence.

tence is 2kenized into “维护 |发展 |中 |国家 |共
同 |利益”, which results in the correct conversion
–維護發展中國家共同利益.
Repetitions: We find that in 3.57% of sen-

tences, named entities are repeated. Interestingly,
STCP, which uses a language model for disam-
biguation, often only converts one out of the re-
peated tokens correctly, which we can see in the
table. As also shown, STCP prefers佐治亞 over
喬治亞 in the first occurrence, but then prefers
喬治亞11 in the second occurrence as it gets more
context. 2kenize converts both of the entities cor-
rectly, very likely due to substructure lookups.
Failure Cases: Dictionary-based converters

(OpenCC, HanziConv and Mafan) only use the
first conversion candidate12 if multiple candidates
are available. STCP often converts named enti-
ties wrongly, especially the ones which have long-
range dependencies and repetitions. Although we
find that 2kenize converts some of the unseen
named entities perfectly, some of the errors caused
were due to infrequent characters. Few cases are
mainly related to variant characters13 which are of-
ten used interchangeably.

11Annotators and sources preferred喬治亞 over佐治亞.
12We are not sure how did they define the “order”, but we

have observed that they select more frequent characters as
their most highly ranked ones.

13For example,了解 and瞭解 could be both used for “un-
derstand”, and裡面 and裏面 could be used for “inside”.

7263

Formal Text Classification Dataset Overview

Source Singtao
Pretraining Corpus Size 17500
Training Size 3000
Validation Size 450
Testing Size 450
Categories Financial, Educational, Local

International, Sports
Language zh-hant-hk

Informal Text Classification Dataset Overview

Source LIHKG
Pretraining Corpus Size 21000
Training Size 4000
Validation Size 450
Testing Size 450
Categories Sports, Opinions, IT

Financial, Leisure, Memes
Languages zh-hant-hk, zh-yue, en-HK

Table 5: Characteristics of classification dataset (Tradi-
tional Chinese) for extrinsic evaluation experiments.

4 Extrinsic Evaluation

An accurate script converter should produce a less
erroneous dataset, which should in turn improves
the accuracy of the downstream tasks. In this sec-
tion, we demonstrate the effect of script conver-
sion on topic classification tasks to examine this
assumption. We also study the impact of tokeniza-
tion and pooling on the accuracy of topic classi-
fication. We apply the converter to the language
modelling corpus (Wikitext), then train a classifier
for informal and formal topic classification on that
translated data. This allows us to measure the per-
formance of the converter compared to other ones
for a specific downstream task.

4.1 Dataset for Extrinsic Evaluation

This section describes the dataset that we used for
extrinsic evaluation experiments. It involves a pre-
training dataset which consists Chinese Wikipedia
and topic classification datasets.

4.1.1 Pretraining Dataset

We use Chinese Wikipedia articles for pretraining
the language model. Script conversion is an is-
sue in Chinese Wikipedia, and currently, they use
a server-side mechanism to automatically convert
the scripts (dictionary-based) based on the location
of the user. However, Wikipedia provides an op-
tion to view the article without conversion, which

we use in the corpus.14 We use zh-CN, zh-HK and
zh-yue wikis to retrieve articles originally written
SC, TC and vernacular Cantonese + TC respec-
tively with the help of wikiextractor.15 We pre-
train the formal text classification models on arti-
cles from zh-HK and converted zh-CN ; and classi-
fication models for informal text on articles from
zh-HK, zh-yue, and converted zh-CN.

4.1.2 Classification Datasets:
We choose two classification tasks: formal news
and informal topic classification (Table 5). For for-
mal news, we scrape recent articles (2017-2019)
from Singtao,16 for informal topics, we scrape
posts (2017-2018) from LIHKG.17

4.2 Performance of various classifiers
For classification baselines, we use character-
based SVM (Support Vector Machines, Joachims
(1998)), CNN (Convolutional Nets, Zhang et al.
(2015)) and Chinese BERT (Devlin et al., 2019).
We also employ a state-of-the-art text classi-
fier, MultiFiT (Eisenschlos et al., 2019), a light-
weight RNN-based language model based classi-
fier, which has shown to achieve a performance
competitive with BERT (Devlin et al., 2019) and
ULMFiT (Howard and Ruder, 2018). The base ar-
chitecture of MultiFiT is a 4-layer QRNN (Brad-
bury et al., 2016) with classifier head. We choose
rectified Adam (Liu et al., 2019) with Lookahead
(Zhang et al., 2019) as the optimizer. We employ
the cosine cyclic learning scheduler (Smith, 2015),
where the limits of learning rate cycles are found
by increasing the learning rate logarithmically and
computing the evaluation loss for each learning
rate (Smith, 2018). To compute the batch size, we
apply gradient noise scale to each batch size candi-
date and pick the one which gives the highest gra-
dient noise scale (McCandlish et al., 2018). We ap-
ply label smoothing (Szegedy et al., 2015) and use
mixed precision training on RTX 2080. We imple-
ment our experiments using Pytorch (Paszke et al.,
2019) and FastAI (Howard and Gugger, 2020).
MultiFiT uses concat pooling after the last layer

of QRNN, which means that the last time step
is concatenated with an average and maximum

14 Note that it would not be straight-forward to compare
against Wikipedia’s conversions directly, because they also
perform some degree of manual post-processing (Contribu-
tors, 2019).

15https://github.com/attardi/wikiextractor
16https://std.stheadline.com
17https://lihkg.com

https://github.com/attardi/wikiextractor
https://std.stheadline.com
https://lihkg.com

7264

QRNN1

QRNN1

QRNN1

QRNN2

QRNN2

QRNN2

QRNN3 QRNN4

QRNN3

QRNN3

QRNN4

QRNN4

Concat
Pool1

Concat
Pool2

Concat
Pool3

Concat
Pool4

Concat
Pool3

Concat
Pool2

Concat
Pool1

Dense
Classifier

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3: Proposed architecture for topic classification
where we tweak MultiFiT to concatenate concat-pools
from all layers. (Alt text: §F.3).

Formal Informal

Char-SVM 73.2 63.7
Char-CNN 78.5 64.9
Chinese BERT (base) 84.5 66.3
MultiFiT with no pooling 87.5 68.5
MultiFiT with concat pooling 88.6 69.9
MultiFiT with layer pooling 89.0 70.3

Table 6: Performance of various architectures on topic
classification in terms of accuracy. The results are re-
ported as a mean result across 10 different seeds and
data splits. Bold: best, underlined: second best.

pooled over previous time steps. Studies show
that in LM based classifiers, different layers cap-
ture different types of knowledge–the last layer
would be domain-specific and initial layers would
be more generalized (Yosinski et al., 2014; Pe-
ters et al., 2019). We speculate that concat pool-
ing only on the last layer limits the information
available to the classifier head and we hypothesise
that the classifer would perform better if domain-
specific as well as generalized knowledge were
available to the head. For this reason, we augment
the original MultiFIT architecture with layer pool-
ing, which is concat pooling from all the layers,
and pass that to the dense layer in the classifier, as
shown in Fig 3.
We fine-tune the BERT language model and

pretrain the MultiFiT language model on Chinese
Wikipedia subsets (§4.1.1). All classifiers are then
trained on the given training set (character based
models) and evaluated on the test set in terms of ac-
curacy as number of items in each class are roughly
equal. This experiment (and subsequent experi-
ments in this section) is repeated across ten differ-
ent seeds (Reimers and Gurevych, 2018) and data
splits (Gorman and Bedrick, 2019) and the results
are shown in Table 6. Layer pooling shows an
absolute improvement of 0.4% improvement over
concat pooling on formal and informal topic clas-

Pretraining data of MultiFiT Formal Informal

No Conversions 89.0 70.3
Including conversions with OpenCC 91.7 75.6
Including conversions with STCP 92.3 73.4
Including conversions with 2kenize 93.2 77.9

Table 7: Ablation test of MultiFiT on different script
converters. The results are reported as a mean accuracy
result across 10 different seeds and data splits. Bold:
best, underlined: second best.

Corpus Tokenization Formal Informal

Char 93.2 77.9
Jieba 92.4 78.3
BPE 92.7 81.0
BPE-Drop 93.7 82.7
Unigram 94.8 82.2
1kenize 94.8 83.2

Table 8: Ablation test of MultiFiT on tokenizers. The
results are reported as a mean accuracy result across 10
different seeds and data splits. Bold: best, underlined:
second best.

sification, thus confirming our hypothesis.

4.3 Effect of Conversion on Classification

For each converter (OpenCC, STCP, 2kenize), we
translate zh-CN wiki dataset and augment it with
the TC wiki dataset. Then, we pretrain on this
dataset, finetune on the domain data and train Mul-
tiFiT with layer pooling on these three datasets.
We demonstate test set accuracies in Table 7. The
dataset translated by 2kenize outperforms other
converters, giving an absolute improvement of 0.9
% on formal and 4.5% over second-best convert-
ers on informal topic classification. These results
emphasise that better script conversion improves
the quality of the pretraining dataset, which boosts
the performance of the downstream tasks like topic
classification.

4.4 Effect of Tokenization on Classification

Studies show that tokenization affects classifica-
tion accuracy; open-vocabulary methods generally
perform best (Eisenschlos et al., 2019; Hiraoka
et al., 2019). For this experiment, we perform
further ablations on our previous best classifier
setup (MultiFiT with layer pooling on 2kenize) to
understand the effect of various subword tokeniz-
ers. Pretraining generally takes a long time (1-2
GPU days), hence we pretrain the classifier once
for each tokenized corpus and do not perform sub-

7265

100 101 102 103 104

Order Rank

100

101

102

103

Fr
eq

ue
nc

y
Character, 1.703
Word, 1.412
BPE Drop, 1.31
BPE, 1.27
Unigram, 1.26
1kenize, 1.10

Figure 4: Log-log plots for different tokenizers. This
is plotted frequency vs rank for the first 10000 tokens.
Negative slopes calcuated from least squares are in the
legend (lower means less skewed). (Alt text: §F.4).

word sampling for this experiment. For closed vo-
cabulary methods, we use character and word seg-
mentations (here with Jieba). Likewise, for open-
vocabulary methods, we employ BPE, BPE-Drop
and Unigram subword tokenizers.
Subword tokenizers mostly rely on frequency

and do not take likelihood (something similar
to n-gram language model) of tokenized sen-
tence into consideration. Hence, we choose LM-
based Viterbi segmentation (henceforth referred as
1kenize), and here the LM would be the TC LSTM
described in §2.2. We report results in Table 8. We
find that for formal classification, 1kenize and Uni-
gram perform best. 1kenize outperforms other sub-
word tokenizers for the noisier informal dataset,
giving an absolute improvement of 0.5% over the
second best method, which is BPE-Drop.
We plot a log frequency of tokens vs log order

rank, which is shown in Figure 4. This distribu-
tion is based on the LIHKG dataset, which is nois-
ier than other domains. We observe that character
and word distributions are steeper than language
model based subword tokenizers. This indicates
that subword tokenizers produce a less skewed to-
ken distribution. Subword tokenizers like BPE and
Unigram are deterministic and rely on frequency
for segmentation. Since 1kenize is contextual, be-
ing LM-based, we find that it produces the least
skewed distribution (lowest Zipf’s law coefficient
(Zipf, 1949)), which also reduces variance, a rea-
son why this simple segmentation method outper-
forms others for informal text classification.

5 Takeaways and Open Questions

The contributions of our work are:

• 2kenize, a subword segmentation model,
which jointly segments source sentence and
its corresponding approximate target conver-
sions.

• An unsupervised script converter based on
2kenize which shows a significant improve-
ment over existing script converters and su-
pervised models.

• 1kenize, a variant of 2kenize which performs
tokenization on only Traditional Chinese sen-
tences which improves accuracy on topic clas-
sification tasks.

• Character conversion evaluation datasets:
spanning Hong Kong and Taiwanese litera-
ture and news genres.

• Traditional Chinese topic Classification
datasets: formal (scraped from Singtao) and
informal (scraped from LIHKG) styles span-
ning genres like news, social media discus-
sions, and memes.

The key findings of our work are:
• Our script converter shows a strong perfor-
mance when dealing with code mixing and
named entities. Supervised models are prone
to anaphora and unseen entities related errors.

• A simple LM-based Viterbi segmentation
model outperforms other subword tokenizers
on topic classification tasks and reduces skew-
ness of token distribution on a noisy dataset.

We leave some open questions to explore:
• How can we exploit subword variations to re-
duce skewness in the NLU tasks?

• Would subword-segmentation-transfer be
helpful for other NMT-NLU task pairs like
we did for 2kenize (script conversion) to
1kenize (classification)?

We anticipate that this study would be useful to
TC NLP practitioners, as we address several re-
search gaps, namely script conversion and a lack
of benchmark datasets.

Acknowledgements

The first author would like to thank Dayta AI Lim-
ited, S.F. Hui, I-Tsun Cheng, Ishaan Batra, Con-
rad Ho, Roy Fork, Abhishek Gupta, Ajay Singh,
Eugene Ho, Patrick Tu, Alex Chu, and Leland So
for making valuable additions to this work. The
second author would like to acknowledge funding
from the Swedish Research Council for the project
under grant agreement 2019-04129, which partly
funded this work.

7266

References
Emily M. Bender and Batya Friedman. 2018. Data

statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6:587–604.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2016. Quasi-recurrent neural net-
works.

Chenhui Chu, Toshiaki Nakazawa, and Sadao Kuro-
hashi. 2012. Chinese characters mapping table
of Japanese, traditional Chinese and simplified
Chinese. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Eval-
uation (LREC-2012), pages 2149–2152, Istanbul,
Turkey. European Languages Resources Association
(ELRA).

Wikipedia Contributors. 2019. Chinese script conver-
sion andword processing in wikipedia. PageVersion
ID: 56925003.

Ryan Cotterell, Sabrina J. Mielke, Jason Eisner, and
Brian Roark. 2018. Are all languages equally hard to
language-model? In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
536–541, New Orleans, Louisiana. Association for
Computational Linguistics.

Piotr Czapla, Jeremy Howard, and Marcin Kardas.
2018. Universal language model fine-tuning
with subword tokenization for polish. ArXiv,
abs/1810.10222.

Paul Denisowski. 2019. Cc-cedict. https://
cc-cedict.org/.

Michael Denkowski and Graham Neubig. 2017.
Stronger baselines for trustable results in neural
machine translation. In Proceedings of the First
Workshop on Neural Machine Translation, pages
18–27, Vancouver. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Julian Eisenschlos, Sebastian Ruder, Piotr Czapla,
Marcin Kadras, Sylvain Gugger, and Jeremy
Howard. 2019. MultiFiT: Efficient multi-lingual
language model fine-tuning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 5706–5711, Hong Kong,
China. Association for Computational Linguistics.

Thomas Emerson. 2005. The second international
Chinese word segmentation bakeoff. In Proceedings
of the Fourth SIGHAN Workshop on Chinese Lan-
guage Processing.

A Foon. 1988. Diary of the little man. Book. Pp.5-6.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. InProceedings of the
34th International Conference on Machine Learning
- Volume 70, ICML’17, page 1243–1252. JMLR.org.

Kyle Gorman and Steven Bedrick. 2019. We need to
talk about standard splits. In Proceedings of the
57th AnnualMeeting of the Association for Computa-
tional Linguistics, pages 2786–2791, Florence, Italy.
Association for Computational Linguistics.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2016. Improving neural language models with a con-
tinuous cache. ArXiv, abs/1612.04426.

Jack Halpern and Jouni Kerman. 1999. Pitfalls and
complexities of chinese to chinese conversion. In
International Unicode Conference (14th) in Boston.

Tatsuya Hiraoka, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2019. Stochastic tokenization with a lan-
guage model for neural text classification. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1620–
1629, Florence, Italy. Association for Computational
Linguistics.

Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017.
Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks.
In NIPS.

Jeremy Howard and Sylvain Gugger. 2020. Fas-
tai: A layered api for deep learning. Information,
11(2):108.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jiubadao. 2011. You Are the Apple of My Eye. Chun
Tian Chu Ban.

Thorsten Joachims. 1998. Text categorization with sup-
port vector machines: Learning with many relevant
features. In ECML.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom.
2017. Learning to create and reuse words in open-
vocabulary neural language modeling. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1492–1502, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
http://arxiv.org/abs/1611.01576
http://arxiv.org/abs/1611.01576
http://www.lrec-conf.org/proceedings/lrec2012/pdf/306_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/306_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/306_Paper.pdf
https://doi.org/10.18653/v1/N18-2085
https://doi.org/10.18653/v1/N18-2085
https://cc-cedict.org/
https://cc-cedict.org/
https://doi.org/10.18653/v1/W17-3203
https://doi.org/10.18653/v1/W17-3203
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1572
https://doi.org/10.18653/v1/D19-1572
https://www.aclweb.org/anthology/I05-3017
https://www.aclweb.org/anthology/I05-3017
https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/P19-1267
https://doi.org/10.18653/v1/P19-1158
https://doi.org/10.18653/v1/P19-1158
https://doi.org/10.3390/info11020108
https://doi.org/10.3390/info11020108
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P17-1137
https://doi.org/10.18653/v1/P17-1137

7267

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-
sky. 2018. Sharp nearby, fuzzy far away: How
neural language models use context. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 284–294, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gábor Melis. 2019. Unsu-
pervised recurrent neural network grammars. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1105–
1117, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Giddens Ko. 2010. Cafe, Waiting, Love. Spring Press.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–
75, Melbourne, Australia. Association for Computa-
tional Linguistics.

Cheung Lau Yee. 1972. Intersection. Benefits Publish-
ing Co., Ltd.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019. On the variance of the adaptive learning rate
and beyond. ArXiv, abs/1908.03265.

Yichang Liu. 1962. Drunkard. Benefits Publishing
Co., Ltd.

Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. 2018. An empirical model of
large-batch training. ArXiv, abs/1812.06162.

Stephen Merity. 2019. Single headed attention
rnn: Stop thinking with your head. ArXiv,
abs/1911.11423.

Sabrina J. Mielke. 2019. Can you compare perplexity
across different segmentations?

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975–4989, Florence,
Italy. Association for Computational Linguistics.

Sabrina J. Mielke and Jason Eisner. 2019. Spell once,
summon anywhere: A two-level open-vocabulary
language model. AAAI.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8.

Masaaki Nagata. 1994. A stochastic Japanese morpho-
logical analyzer using a forward-DP backward-A*
n-best search algorithm. In COLING 1994 Volume
1: The 15th International Conference on Computa-
tional Linguistics.

Xue Nianwen, Zhang Xiuhong, Jiang Zixin, Palmer
Martha, Xia Fei, Chiou Fu-Dong, and Meiyu Chang.
2016. Chinese treebank 9.0. LDC2016T13. Web
Download. Philadelphia: Linguistic Data Consor-
tium.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Dipl.-Ing.
Kopf, Edward Yang, Zach DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS
2019.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4thWorkshop on Representation Learning
for NLP (RepL4NLP-2019), pages 7–14, Florence,
Italy. Association for Computational Linguistics.

Pranav A, S.F. Hui, I-Tsun Cheng, Ishaan Batra, and
Chiu Yik Hei. 2019. Learn languages first and then
convert: Towards effective simplified to traditional
chinese conversion. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (Student Re-
search Workshop, non-archival), Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2019. Bpe-dropout: Simple and effective subword
regularization. ArXiv, abs/1910.13267.

Nils Reimers and Iryna Gurevych. 2018. Why compar-
ing single performance scores does not allow to draw
conclusions about machine learning approaches.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://sjmielke.com/comparing-perplexities.htm
https://sjmielke.com/comparing-perplexities.htm
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491
https://www.aclweb.org/anthology/C94-1032
https://www.aclweb.org/anthology/C94-1032
https://www.aclweb.org/anthology/C94-1032
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
http://arxiv.org/abs/arXiv:1803.09578
http://arxiv.org/abs/arXiv:1803.09578
http://arxiv.org/abs/arXiv:1803.09578
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

7268

Xiaodong Shi, YidongChen, andXiupingHuang. 2011.
Key problems in conversion from simplified to tra-
ditional chinesecharacters. In International Confer-
ence on Asian Language Processing.

Leslie N. Smith. 2015. Cyclical learning rates for train-
ing neural networks. 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages
464–472.

Leslie N. Smith. 2018. A disciplined approach to neu-
ral network hyper-parameters: Part 1 - learning rate,
batch size, momentum, and weight decay. ArXiv,
abs/1803.09820.

Don Snow. 2004. Cantonese as written language: The
growth of a written Chinese vernacular, volume 1.
Hong Kong University Press.

Richard W. Sproat, Chilin Shih, William Gale, and
Nancy Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational
Linguistics, 22(3):377–404.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In INTERSPEECH.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learningwith neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2015. Rethinking
the inception architecture for computer vision. 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Pak-kwong Wong and Chorkin Chan. 1996. Chinese
word segmentation based on maximum matching
and word binding force. In COLING 1996 Volume
1: The 16th International Conference on Computa-
tional Linguistics.

Jiarui Xu, Xuezhe Ma, Chen-Tse Tsai, and Eduard
Hovy. 2017. Stcp: Simplified-traditional chinese
conversion and proofreading. Proceedings of the
IJCNLP 2017, System Demonstrations, pages 61–
64.

Chiung Yao. 1964. Fire and rain. Book. ISBN 0-330-
36076-0.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In NIPS.

Michael Ruogu Zhang, James Lucas, Geoffrey E. Hin-
ton, and Jimmy Ba. 2019. Lookahead optimizer: k
steps forward, 1 step back. ArXiv, abs/1907.08610.

Xiang Zhang, Junbo Jake Zhao, andYann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

Xiaoheng Zhang. 2014. A comparative study on
simplified-traditional chinese translation. In Chi-
nese Computational Linguistics and Natural Lan-
guage Processing Based on Naturally Annotated Big
Data, pages 212–222. Springer.

George Kingsley Zipf. 1949. Human behavior and the
principle of least effort.

https://www.aclweb.org/anthology/J96-3004
https://www.aclweb.org/anthology/J96-3004
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://www.aclweb.org/anthology/C96-1035
https://www.aclweb.org/anthology/C96-1035
https://www.aclweb.org/anthology/C96-1035

7269

A Summary in Traditional Chinese: 簡
體中文到繁體中文的文本轉換器

研究中文 NLP時，將文本進行繁簡轉換是常
見的數據預處理步驟。在簡繁轉換過程中，經
常出現多個繁字轉換成同一簡體字，反之亦
然。藉此透過測試現行的繁簡轉換算法，發
現只有 55-85% 準確度。進一步的調查發現，
現代的神經網絡，譬如神經語言模型的字符
歧義消除 (neural language model character dis-
ambiguation) 和神經序列模型 (neural sequence
models)，均只達到 84-85%的句子準確性，都
是由第一類錯誤 (Type I error) 所致。我們推
斷上述問題，是由於模型未能有效釐清子詞
(subword)的邊界所導致。
在此，我們提出了 2kenize，一個子詞分割
模型 (subword segmentation model)，同時利用
先行式繁體中文以及簡體中文進行建構。我們
將聯合簡體中文及繁體中文共同訓練 Viterbi
分詞器。即使利用較具挑戰性的數據集測試，
本模型亦達到 91-95% 消歧準確度。透過定
性誤差分析 (qualitative error analysis), 展示了
本模型更擅長處理 code-mixing以及命名個體
(named entities)除此以外，我們亦在主題分類
領域中進行了外部評估，本模型更在主題分
類的字符及詞語模型 (character and word-based
models)的領域中表現出眾，更在子詞正則化
(subword regularization) 中，獲得比 BPE 更好
的名次。然後針對繁體中文句子對 2kenize進
行調整，誕生了 1kenize。1kenize分別在正式
數據集與其他子詞分詞器 (subword tokenizers)
名列前茅，在非正式數據集上更表現超群。由
此，我們推斷子詞分詞器會嚴重地受 token的
分佈及偏度而影響
是次研究的貢獻：

1. 2kenize：簡體中文到繁體中文的文本轉
換器

2. 字符轉換評估數據集：跨越香港和台灣文
獻及新聞等多個類型的數據集

3. 主題分類數據集：繁體中文的正式和非正
式文本數據涵蓋新聞，社交媒體討論，改
圖，改歌，memes等二次創作文本。

B Data Statement for Intrinsic
Evaluation

B.1 Corpus

In this subsection, we discuss the annotation pro-
cedure and the characteristics of the corpus used
for the intrinsic evaluation. We have used Bender

and Friedman (2018) data statement design for the
description.

B.1.1 Curation Rationale

The script conversion task is understudied in NLP
andwe could not find good quality parallel corpora
to evaluate our approaches. The idea is to curate a
diverse collection of TC works and convert them
to SC, due to its one-to-one correspondence. How-
ever, we find out that some of the conversions were
wrong because
1. sometimes dictionaries resulted in incorrect

conversion,
2. stylistic differences between HK and TW

characters and phrasing,
3. code-mixing of Cantonese and Traditional

Chinese,
4. code-mixing with non-Chinese characters,
5. some characters in TC-SC conversion have

one-to-many mappings as well.
Hence, we need quality control with human anno-
tators to validate our conversions.

B.1.2 Annotation Process

Demographic: We opted for 4 trained annotators,
2 for annotating HK-style TC and 2 for annotating
TW-style TC and thus going for double annotation
for the corpus. They ranged in age from 18–20
years, included 2 men and 2 women, gave their eth-
nicity as Hong Kongers (2) and Taiwanese (2), and
their native spoken languages were Cantonese (2)
and Taiwanese Mandarin (2).
Workload: Annotators approximately vali-

dated 100 sentences per hour, comprising of total
workload of 60 hours. They were given a month to
annotate and were paid 5000 Hong Kong Dollars
on completion.
Procedure: The annotators were shown TC and

converted SC sentences (we used OpenCC to con-
vert) and were asked to validate and correct any
conversion mistakes. In case of disagreement, we
used majority voting between automatically con-
verted and annotators’ corrections.
We provide raw agreement andKrippendorf’sα

in Table 1 for pooled data and various sub-groups
of the dataset. We also report inter-annotator agree-
ments on character and phrasal levels in Table 2.
These agreement values are difficult to interpret,
but generally α ≥ 0.8 is considered to be substan-
tial.

7270

RA α

HK 0.98 0.98
Lit 0.982 0.98
News 0.979 0.97

TW 0.98 0.98
Lit 0.981 0.98
News 0.971 0.97

Table 9: Inter-annotator agreements

RA α

Character Level 0.98 0.97
Word Level 0.95 0.94
Sentence Level 0.93 0.92

Table 10: Inter-annotator agreements as per different
levels

B.1.3 Speech Situation
The publication dates and sources are listed in the
Table 2. HK and TW literature consists of popular
books for which many movie and drama adapta-
tions are made.18 Specifically, for HK literature,
the text contains code-mixed characters with Ver-
nacular Cantonese, which is quite unusual in for-
mal publishing practices, and these books are often
cited as an example for popularizing Cantonese in
the 60s (Snow, 2004). We also found code-mixing
with English and numerous transliterated named
entities which we have used for qualitative error
analysis in the Table 4.

B.1.4 Text Characteristics
Although Hong Kong and Taiwan both use Tradi-
tional Chinese, they are stylistically different as the
dominant spoken language in HK is Cantonese and
in TW is Taiwanese Mandarin. Thus, it is quite es-
sential to test the performance of our algorithms
on these two styles. We collected two genres for
each style: informal literature and formal news.
We found more variation within informal HK-TW
literature as compared to the formal news. We in-
tentionally chose long sentences (average length of
200 characters), especially which containmore am-
biguous characters to make the dataset more chal-
lenging for testing.

C Data Statement for Extrinsic
Evaluation

This subsection describes the characteristics of the
topic classification in Traditional Chinese. For the

18We highly recommend these movies and novels as well.

short overview, please see Table 5.

C.1 Curation Rationale
We choose two different styles for curating this
dataset: formal and informal. The formal text
consists of news dataset scraped from Singtao,
one of the popular newswire in Hong Kong. The
classes in this dataset consist of Financial, Edu-
cational, Local, International, and Sports subsec-
tions. There are 17500 unlabelled and 3900 la-
belled items in this section. Authors would like
to credit I-Tsun Cheng for giving us helpful sug-
gestions in curating this dataset.
The informal text consists of social media posts

dataset scraped from LIHKG, a Twitter equivalent
in Hong Kong. The classes in this dataset con-
sist of Sports, Opinions, Memes, IT, Financial and
Leisure. There are 21000 unlabelled and 4900 la-
belled items in this section. Authors would like to
credit Leland So for giving us helpful suggestions
in curating this dataset.

C.2 Language Variety
The texts in the formal subsection are typically
written in Hong Kong style Traditional Chinese
(zh-hant-hk). The posts scraped from LIHKG
are predominantly in Traditional Chinese (zh-hant-
hk), and they are often code-mixed with Vernacu-
lar Cantonese (zh-yue) and English (en-HK).

C.3 Speaker Demographic
Speakers were not directly approached for inclu-
sion in this dataset and thus could not be asked
for demographic information. Our best guess for
demographic of LIHKG forum users are typically
university students (19-23 years), and the majority
of them speak Cantonese as a native language.

C.4 Text Characteristics
The news articles are scraped from 2017-2019 and
LIHKG posts are scraped from 2017-2018. Some
of the posts in LIHKG are in the transliterated Can-
tonese form and some of them are not written in
Standard Written Chinese. The news posts are
generally quite long and often contains more than
5 sentences (average length of nearly 300 charac-
ters). On the other hand, the LIHKG posts are
shorter and forums titles are generally one sen-
tence each (average length of nearly 50 charac-
ters). Please note that due to the current situations
in Hong Kong, we do not include political posts
and news from mid-2019.

7271

D Description of Intrinsic Evaluation
Experiments

D.1 Heuristic Grid Search of Learning Rate
and Batch Size Hyperparameters

We employ the cosine cyclic learning scheduler
(Smith, 2015), where the limits of learning rate cy-
cles are found by increasing the learning rate loga-
rithmically and computing the evaluation loss for
each learning rate (Smith, 2018). To compute the
batch size, we apply gradient noise scale to each
batch size candidate and pick the one which gives
the highest gradient noise scale (McCandlish et al.,
2018).

D.2 Training of SC and TC Language Model
The datasets are described in §3.2. The model ar-
chitecture is 2-layer LSTM language model with
tied weights. Embedding size is 512 and hidden
size is 512. We perform a concat pooling in the
last layer where we concatenate the last output of
the word, mean pool and max pool of all represen-
tations. We adopt comparable subword perplexity
as suggested by Cotterell et al. (2018);Mielke et al.
(2019);Mielke (2019), wherewe use a common de-
nominator, referring to the number of segments per
word in order to compare. On average, we achieve
a perplexity of 168.6 on the Chinese Treebank test
set (Nianwen et al., 2016). Also refer to Chinese
LM Benchmark: https://chinesenlp.xyz/#/docs/
language_modeling. The training took 2 days on
RTX 2080 with FP16 training, with a batch size
of 256 and number of epochs of 250.

D.3 Training of Convolutional seq2seq
Training dataset is a heuristically converted Tradi-
tional Chinese Wikipedia with OpenCC. We use
20 layers in encoder and decoder with the embed-
ding size of 512 implemented in Fairseq (Ott et al.,
2019). Dropout is 0.1 and we use adaptive softmax
to speed up the training. The training took 1 day
on RTX 2080 with FP16 training, with a batch size
of 128 and number of epochs of 250.

E Description of Extrinsic Evaluation
Experiments

E.1 Character CNN training
The datasets are described in §4.1.2. The model
architecture is 7-layer CNN with tied weights and
residual blocks. Embedding size is 512 and hid-
den size is 512. We perform a concat pooling in

the last layer where we concatenate the last output
of the word, mean pool and max pool of all rep-
resentations. The training took 16 hours on RTX
2080 with FP16 training, with a batch size of 256
and number of epochs of 350.

E.2 Chinese BERT training

The datasets are described in §4.1.2. We use
Chinese BERT base (12-layer, 768-hidden, 12-
heads, 110M parameters) using Transformers li-
brary (Wolf et al., 2019). We use sequence length
of 384 and batch size of 12. Finetuning language
model took 2 hours (learning rate of 3e-5) and fine-
tuning classifier took 1 hour each on both datasets,
including grid search on learning rates: 3e-4, 1e-
4, 5e-5, 3e-5, where 3e-5 gives the best results (on
RTX 2080 with FP16 training).

E.3 MultiFiT training

We found MultiFiT is highly reproducible as com-
pared to other models as it gives the least variance
across the seeds and data splits. Hyperparame-
ters are chosen by heuristic grid search on learning
rate and batch size. The datasets are described in
§4.1.2. Pretraining language model takes 1 GPU
day for each experiment of MultiFiT. Finetuning
language model takes 3 hours where we used a pa-
tience of 2 epochs. Finetuning classifiers takes 3
hourswherewe used a patience of 2 epochs. All ex-
periments of MultiFiT are implemented using Fas-
tAI (Howard and Gugger, 2020).

F Alternative texts for figures and
Chinese explanations

F.1 Alternative text for Figure 1

The recurring Chinese sentence is split and we take
one subsequence of it. The other subsequence
is used in next iteration. We perform Unigram
viterbi segmentation on this and get the probabili-
ties. The probabilities are normalized and we sam-
ple a segmentation using this probability. This seg-
mentation goes into the model which goes through
cached embeddings, followed by stacked LSTM
layers, followed by concat pooling (which con-
sists of last output, mean pooling andmax pooling)
which then goes through a linear layer. We cache
the top-k embeddings in the main memory and for
the least frequent embeddings we track the gradi-
ents and do not keep them in the main network (we
used gradient accumulation).

https://chinesenlp.xyz/#/docs/language_modeling
https://chinesenlp.xyz/#/docs/language_modeling

7272

F.2 Alternative text for Figure 2
From the given SC sentence, we create possible
TC sequences using mappings. We input these to
Viterbi, which recursively calls LSTM. Using Eq.
(6) as the scoring function, Viterbi outputs the map-
ping sequence. We perform beam search to find
the best TC sequence from the mapping sequence
where we used the same TC LSTM again.

F.3 Alternative text for Figure 3
The architecture contains 4 stacked QRNN layers.
Each layer has QRNN cells. After every layer we
perform a concat pool (taking the last output, max
pool and mean pool). We aggregate these pools
in the final layer which goes into a linear layer.
We highly recommend this for making the training
more stable.

F.4 Alternative text for Figure 4
We have plotted log-log token distribution. On x-
axis we have order rank and on y-axis we have
frequencies. Character based tokenization gives a
slope of 1.703, BPE-Drop gives 1.31, BPE gives
1.27, word tokenization (Jieba) gives 1.41, uni-
gram sampling gives 1.28 and 1kenize gives the
least skewed distribution with a slope of 1.1. Note
that these are negative slope and lower the slope is,
more efficiently vocabulary is tokenized.

F.5 Recurring Chinese sentence
Here, we explain the recurring sentence in this pa-
per. In Table 1 we had SC sentence维护发展中国
家共同利益, which means Safeguarding the com-
mon interests of developing countries. This is pro-
nounced as Wéihù fāzhǎn zhōng guójiā gòngtóng
lìyì in Mandarin. Its correct TC translation is 維
護發展中國家共同利益, which is pronounced
as wai4 wu6 faat3 zin2 zung1 gwok3 gaa1 gung6
tung4 lei6 jik1 in Cantonese (note that the numer-
als are the tones).

