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Abstract

We propose a novel large-scale referring ex-
pression recognition dataset, Refer360°, con-
sisting of 17,137 instruction sequences and
ground-truth actions for completing these in-
structions in 360° scenes. Refer360° differs
from existing related datasets in three ways.
First, we propose a more realistic scenario
where instructors and the followers have par-
tial, yet dynamic, views of the scene – fol-
lowers continuously modify their field-of-view
(FoV) while interpreting instructions that spec-
ify a final target location. Second, instructions
to find the target location consist of multiple
steps for followers who will start at random
FoVs. As a result, intermediate instructions
are strongly grounded in object references and
followers must identify intermediate FoVs to
find the final target location correctly. Third,
the target locations are neither restricted to
predefined objects nor chosen by annotators;
instead, they are distributed randomly across
scenes. This “point anywhere” approach leads
to more linguistically complex instructions, as
shown in our analyses. Our examination of
the dataset shows that Refer360° manifests
linguistically rich phenomena in a language
grounding task that poses novel challenges for
computational modeling of language, vision,
and navigation.

1 Introduction

Imagine a scenario in which you are asked to re-
trieve medication from a bathroom. ‘First, face
the sink, then find the second drawer in the cab-
inet to your left. The pills should be inside that
drawer behind the toothbrush.” Interpreting in-
struction sequences in order to locate targets in
novel environments is challenging for AI systems
(e.g. personal robots and self-driving cars). First,
the system needs to ground the instructions into
visual perception (Anderson et al., 2018b; Hu et al.,
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Figure 1: An example from Refer360° . Orange frames
represent the field-of-view (FoV) of the follower after
interpreting each instruction. Numbers in the frames
represent the sequential order. Green lines show how
FoVs change continuously. After each instruction, the
follower changes the FoV to align with what the instruc-
tion describes. Please see Figure 2a to see the correct
location of Waldo.

2019). This often requires identification of the
mentioned object (Plummer et al., 2015) through
physical relationships with surrounding objects (Hu
et al., 2017b; Cirik et al., 2018a). Second, since
human visual perception has limited field-of-view,
instructions are often sequential: First, the correct
FoV should be identified before searching for the
final target. In many situations, the target loca-
tion is not visually unique (e.g. in the middle of a
plain wall), and several intermediate instructions
are required.

To study these challenges, we introduce a novel
dataset, named Refer360°1, for the task of local-
izing a target in 360° scenes given a sequence of
instructions. Figure 1 presents an example scenario

1The annotations, learning simulator, and annotation
setup are publicly available for further research https:
//github.com/volkancirik/refer360.

https://github.com/volkancirik/refer360
https://github.com/volkancirik/refer360
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Partial	FoV

(a) An example scene from the Refer360° dataset. Note that both annotators and systems cannot observe the shaded area. They
only observe a partial field of view which can be updated dynamically.

(b) An example scene from Touchdown-SDR where
the bullseye is pointing to the target location. In-
structions for this instance are “a black doorway
with red brick to the right of it, and green brick to
the left of it. it has a light just above the doorway,
and on that light is where you will find touchdown.”

(c) An example image from Google-Ref dataset with the
referring expression “a young elephant nudges its head
into that of a slightly taller one.”.

Figure 2: Examples are from (a) Refer360° (b) Touchdown-SDR, and (c) Google-Ref datasets. In Refer360° ,
the target location could be any random location on the image. In (b), annotators chose an existing object as the
target location. In (c), boxes for objects were used as targets. Refer360° also seeks to increase the complexity of
instruction following, making it more realistic by introducing a partial and dynamic FoV rather than providing a
holistic oracle-like view of the image.

from Refer360° . For this scenario, finding the tar-
get location requires first finding the door leading
outside, then looking at the coffee pot, and finally
finding the trash can, which is the nearest object
to the target. Here, instructions are given from the
perspective of a partial field of view (FoV) of the
scene, and these FoVs can dynamically be changed.
Thus, the correct interpretation of the sequence of
instructions will require reasoning about what is
currently visible in the FoV (e.g., grounding of
objects) but also what is not visible yet. These sce-
narios will often require adjusting the FoV based
on intermediate instructions. An important feature
of the Refer360° dataset is that the target location
is not an object; instead, it can be any point in
the scene, which makes the grounding task more
challenging since it is harder to describe a location
when we cannot readily refer to it with the name of
an object.

Refer360° consists of 17,137 instruction se-
quences with ground-truth actions to complete
these instructions in 360° scenes. Refer360° has
some unique characteristics which differentiate it

from prior work. First, Refer360° allows the scene
to be viewed through a partial FoV that can be
dynamically changed as instructions are followed.
This is in contrast with existing 360° scene-based
datasets such as Touchdown-SDR (Chen et al.,
2018) and 2D image-based referring expression
datasets (Kazemzadeh et al., 2014; Hu et al., 2016;
Mao et al., 2016), where the visual input is either
fixed, corresponding to a holistic, oracle-like view,
or consists of fixed, cardinal FoVs. The partial and
dynamic FoV in Refer360° poses new challenges
for language grounding (see Figure 2a, 2b, and 2c
for an illustrative comparison). For instance, the
mentioned objects may not be visible in the cur-
rent FoV, and language may refer to the FoV itself.
Further, since our annotators generate instructions
while observing a partial and dynamic FoV, and do
so for a follower whose first FoV will be initially
located at random, the instruction following task is
strongly sequential. To interpret the sequence of
instructions to find the target correctly, a follower
must reason about the sequence of FoVs referenced
by the instructor.
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Dataset Target Location Selection Field of View (FoV) Action Space Intermediate Steps

Refer360° Random Points Dynamic with partial FoV 4 Directions 3

Touchdown-SDR (Chen et al., 2018) Human Selected Points Oracle: Holistic & Static, 360°scenes 7 7

Google-Ref (Mao et al., 2016) Annotated Objects 2D Images 7 7

Ref-UNC (Kazemzadeh et al., 2014) Annotated Objects 2D Images 7 7

Table 1: Comparison of referring expression datasets, including our proposed Refer360° dataset. Refer360° poses a
more challenging scenario where the system observes only a partial and dynamic FoV. Refer360° also has includes
explicit alignments between intermediate instruction steps and human follower actions which can be used as an
auxiliary evaluation metric or source of supervision.

Second, unlike other datasets, the target loca-
tions in Refer360° are randomly distributed and
thus may occur anywhere – not just on predeter-
mined objects. As a result, target locations are less
prone to bias (Devlin et al., 2015; Agrawal et al.,
2016; Jabri et al., 2016; Goyal et al., 2016; Cirik
et al., 2018b). These random locations lead to more
linguistically complex instructions, as shown in our
analyses – when instead annotators choose the tar-
get location, they are likely to be biased towards
locations that are more easily described (e.g. on top
of a named object). Table 1 shows a comparison
of similar datasets. In the following section, we
motivate Refer360° dataset in more detail.

2 Motivation

The vision behind Refer360° is to build systems
that perform localization of any point in 3D space,
bringing us closer to human-like reasoning. This is
an important milestone towards better collaboration
between AI systems (e.g. personal robots) and hu-
mans, allowing them to act within the same space.
It might also pave the way for AI-agents interact-
ing with virtual worlds. The Refer360° dataset
was designed to address three technical challenges
towards this vision.

First, learning environments we create need to
reflect the characteristics of human’s perception of
3D space. In such an environment, the agent only
observes a partial FoV of the scene. This requires
adjusting the FoV in accordance with instructions
so that current view and instructions are aligned.
The agent’s FoV can be changed in a continuous
manner, moving smoothly left, right, up, and down.
This is analogous to a real-world robot perform-
ing motor actions to change its camera position,
or a human changing their head’s pitch and yaw.
Further, real scenes are 3D, but the FoV is repre-
sented in 2D in our task. Thus, interpreting some
instructions will require inferences about depth.

Second, the paradigm of 360°scenes with par-

tial FoV will almost always necessitate instructions
that consist of multiple intermediate steps. As the
first intermediate step, the follower and instructor
need to find a common referential FoV. Then, the
instructor can continue giving guidance towards the
target location, often by identifying objects that are
physically related to the target location. This multi-
step process can serve as a natural benchmark for
measuring whether systems achieve localization
through a human-like process of progressively get-
ting closer to the target location by interpreting
intermediate steps. In other words, this setup may
helps researchers make sure that our systems are ar-
riving at the referred location for the right reasons.

Third, since any point in the scene could be of
interest, instructions will be more complex: many
points in the scene will not correspond to easily
named objects, and thus, when such points are al-
lowed as targets, more sophisticated instructions
will be required to unambiguously refer to them.
The instructor may rely on description of physical
relationships with the closest easily named loca-
tions in the scene (Nagaraja et al., 2016; Hu et al.,
2017b; Cirik et al., 2018b). For instance, in Fig-
ure 2a, the target location is on the side of a trash
bin, which is difficult to unique describe with a
single word or a short phrase. In this case, the
instructor may use the distance to the floor or to
another object in the scene in order to describe
the exact location of the target. This will addition-
ally introduce description of degree (e.g. ‘slightly
above’, ‘a few inches away from’) rather than more
discrete spatial relationships (e.g. ‘on top of the
desk’).

3 Related Work

Referring expression recognition. Grounding a
short phrase or a sentence into a visual modal-
ity such as video (Khoreva et al., 2018; Anayurt
et al., 2019) or imagery (Kong et al., 2014; Plum-
mer et al., 2015, 2018; Yu et al., 2018a) is a well
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studied problem in intelligent user interfaces (Chai
et al., 2004), human-robot interaction (Fang et al.,
2012; Chai et al., 2014; Williams et al., 2016),
and situated dialogue (Kennington and Schlangen,
2017). Kazemzadeh et al. (2014), Hu et al. (2017a),
and Mao et al. (2016) introduce two benchmark
datasets for the real-world 2D images. Nagaraja
et al. (2016) propose a model where the target and
supporting objects (i.e. objects that are mentioned
in order to disambiguate the target object) are iden-
tified and scored jointly. Hu et al. (2017b) intro-
duce a compositional approach where they assume
that the referring expression can be decomposed
into a triplet consisting of the target object, the sup-
porting object, and their spatial relationship. Simi-
larly, Cirik et al. (2018a) propose a type of neural
modular network (Andreas et al., 2016) where the
grounding of referring expression depends on the
parse tree of the input referring expression to learn
to ground an unconstrained number of supporting
objects.

360° Scenes. Although 360° scenes are well stud-
ied in the computer vision domain (Xiao et al.,
2012; Su et al., 2016; Wijmans and Furukawa,
2017; Yang and Zhang, 2016; Xu et al., 2018; Yang
et al., 2018; Yu et al., 2018b), few studies explore
the challenges of 360°scenes in the context of lan-
guage grounding. Chou et al. (2018) introduce a
dataset where 360° videos are narrated. They ad-
dress the task of predicting the field of view for
the given narration. Anderson et al. (2018b) intro-
duce the vision and language navigation task for
simulated indoor environments where an agent is
placed in a location in a house and follows the in-
structions to go to a target location. Here the agent
observes a discretized view of the current location
(i.e. the 360° scene is split into a fixed number
of field of views). The most related work to Re-
fer360° is Touchdown (Chen et al., 2018) which
introduces two tasks: a vision and language naviga-
tion task and a spatial description resolution (SDR)
task (i.e. a referring expression recognition task
for a simulated outdoor environment). In contrast
with Touchdown, in our setup instructors, follow-
ers, and learning systems observe a partial FoV of
the scene, but they can change the FoV continu-
ously to explore the scene. This approach yields
instructions with a stronger sequential dependen-
cies and with stronger reference to the FoV itself.
We demonstrate some of these differences in anal-
ysis in Section 5. Concurrent work studies visual

question answering (Chou et al., 2020a) and object
detection (Chou et al., 2020b) for 360°scenes. An-
other concurrent study (Qi et al., 2020) combines
vision-and-language navigation and referring ex-
pression recognition into one task where the system
is asked to localize the referred object after navi-
gating to another point in a real images of rendered
buildings.

4 Refer360° Dataset

In this section, we describe the details of the Re-
fer360° dataset, a vision-and-language benchmark
for localizing a target point in a panoramic image.
Refer360° consists of 17,137 instruction sequences
that describe randomly distributed target locations
in 2,000 panoramic scenes from the SUN360 (Xiao
et al., 2012) dataset. We first explain the annotation
procedure for collecting and validating the instruc-
tion sequences. Later, we discuss the statistics of
the Refer360° dataset.

4.1 Annotation Procedure

Annotation of the Refer360° dataset was carried
out in three stages on Amazon Mechanical Turk
with two tasks, namely a description task and a
finding task. First we describe the two tasks in
more detail.

Description Task. Our main goal is to collect
instructions for finding any point in a 360° image.
Annotators started this task looking at the ceiling
of the 360° image with a random yaw2. We asked
them to find the target location for which we use
an icon of Waldo3. Target locations are choosen
randomly – we discuss the details of this design
choice in Section 4.2. The target can be at any
longitude and can have a latitude within a range
of 45 degrees from the top and bottom of the 360
image. This restriction in latitude is made for two
reasons: (1) visual distortions happen at extreme
points, and (2) during the finding task, the starting
point is the “ceiling” of the 360 image. Annotators
were asked to give instructions to find the target
location using at least three instructions4.

Finding Task. We design this task to verify the
quality of instruction sequences provided by anno-

2We wanted to avoid introducing any bias by beginning
the same position each time for each scene.

3https://en.wikipedia.org/wiki/Where%
27s_Wally%3F

4Please see Figure 5 in Appendix to see a screenshot of
the user interface we build for this task.

https://en.wikipedia.org/wiki/Where%27s_Wally%3F
https://en.wikipedia.org/wiki/Where%27s_Wally%3F
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tators in the description task. We asked annotators
to complete the instruction sequences sentence by
sentence. The initial field of view of annotators is
always pointing at the ceiling of the 360° image
with a random yaw. We asked annotators to change
the FoV after each instruction so that the center
of the FoV points to the location the intermediate
instruction is describing. After moving the FoV to
the correct position, annotators clicked a button to
read the next instruction. We recorded the spheri-
cal coordinates of the center of the FoV after each
instruction. As a result, our annotations include
aligned intermediate steps that find the target lo-
cation. After the final instruction, the annotators
predicted the target location by changing the center
of FoV or clicking on the FoV.

We collected and verified the quality of our data
in three stages using description and finding tasks.
In the first stage, we sought a pool of annotators
providing high-quality annotations. For the second,
aimed to collect a large number of annotations and
verify their quality. In the third stage, we further
verified instruction sequences that were not verified
in the second stage.

Stage I. In this stage, we asked annotators to
complete the finding task for four different scenes.
We wrote the instruction sequences for this stage’s
finding task to give annotators an example of in-
struction sequences for describing the target loca-
tion. Then, annotators completed the description
task for 4 different scenes. A total of 256 annota-
tors participated in this first stage. We manually
inspected each instruction sequences provided by
these annotators for their quality of descriptions of
the target location and reduced the pool of annota-
tors to 86.

Stage II. In this stage, for each annotation ses-
sion, we asked annotators first to find the target lo-
cation for four different scenes, and later, describe
the target location four times for different scenes5.
We used the finding task to verify the quality of
the instruction sequences. If an annotator predicts
the target location within a radius of 11 degrees in
spherical coordinates, which is roughly equal to the
size of the Waldo icon we used, we counted that
instance as verified.

Stage III. After the second stage, we have some
instructions where the annotators could not find

5Annotators never observed their own instruction se-
quences while doing the finding tasks.

Scene Type Scene Location # of Images

Restaurant Indoor 500
Shop Indoor 250
Expo Showroom Indoor 250
Living Room Indoor 250
Bedroom Indoor 250
Street Outdoor 250
Plaza Courtyard Outdoor 250

Table 2: Statistics for Panoramic Images used in Re-
fer360° dataset.

the target accurately. This could mean either the
instructions are not clear, or it is actually harder
to find the target location with these instruction se-
quences. In the third stage, we did another round of
the finding tasks to verify these harder instruction
sequences.

After these three stages, we have a total of 17,137
instruction sequences in which at least one annota-
tor was able to find the target location accurately.
Statistics for data collection in these stages and the
payment structure is in the Appendix.

4.2 Dataset Statistics

We split our presentation of dataset statistics into
two parts: namely, scene statistics and language
statistics.

Scene Statistics: To investigate the challenges
in localizing a target location for both indoor and
outdoor scenes as well as for different kinds of in-
door and outdoor scene categories, we use seven
scene categories from the SUN360 (Xiao et al.,
2012) dataset. We use total of 2,000 scenes. Ta-
ble 2 shows the distribution of scene categories that
comprise the Refer360° dataset.

We want to analyze the richness of the scenes
in the Refer360° dataset and compare it with
Touchdown-SDR. The domain of the scenes will
affect the instruction one needs to use to describe a
target location. To be more specific, when annota-
tors give instructions, they use supporting objects
as anchor points to help guide the attention of the
follower. Thus, the availability of a rich set of ob-
jects is essential for describing the target location.
Since the annotation of objects in 360° images is
a laborious task itself, we use an off-the-shelf ob-
ject detection method (Anderson et al., 2018a) to
annotate scenes with objects. We split 360° im-
ages into 12 different 2D images covering the 360°
view6. This provides us a proxy to analyze the

6We fixed the confidence threshold for detection of objects
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kind of objects usually observed in 360° images in
Touchdown-SDR and Refer360° .

Dataset Avg # of Objects Object Type PPL

Touchdown-SDR 93.81 15.93
Refer360° 62.44 42.93

Table 3: Statistics for detected objects per image in
Touchdown-SDR and Refer360° . On average, Re-
fer360° images contain fewere of objects. However,
these objects are from a wider variety of object types.

Table 3 shows the average number of objects and
the perplexity of the distribution of detected objects
per 360° scene used in Refer360° and Touchdown-
SDR datasets.7 As expected, the average number
of detected objects in Touchdown-SDR scenes is
higher than in Refer360° because all scenes depict
outdoor settings from Google’s StreetView API.
However, this analysis shows that Refer360° has
much larger diversity of object types and therefore
will likely have greater lexical diversity in instruc-
tions.

Scenes Dataset Avg. Text Length Vocab. Size Size

360° Refer360° 43.80 11220 17,137
360° Touchdown-SDR 26.97 5705 9325

2D Guess What?! 24.99 27713 160745
2D Google-Ref 8.46 12108 142210
2D Refer-UNC 3.51 21305 414138

Table 4: Language statistics for Refer360° dataset and
other referring expression recognition datasets.

Language Statistics: Refer360° contains a total
of 17,137 instruction sequences (8.57 per scene)
describing target locations. Table 4 shows language
statistics for Refer360° and other referring expres-
sion recognition datasets. Refer360° is bigger than
Touchdown-SDR, yet, smaller than other datasets.
This is because it is a more time-intensive and
costly process to annotate and validate 360° im-
ages compared with 2D images.

Figure 3 shows the distribution of text length for
the instructions. Compared to other referring ex-
pression recognition and image captioning datasets,
Refer360° contains the longest instructions on av-
erage. This is a result of two differences with pre-
vious tasks. First, previous datasets use the entire
scene as a single field of view. Thus, there is re-
duced need to describe how to find the target loca-

to 0.5 and maximum number of objects to 20.
7In the appendix, Figure 6 shows the most detected objects

for Refer360° and Touchdown-SDR datasets.
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Figure 3: Distribution of the number of tokens for
vision-and-language datasets similar to Refer360°

Split # of Instances

Train 13287
Validation Seen 900
Validation Unseen 1009
Test Seen 900
Test Unseen 1041

Table 5: Statistics for dataset splits in Refer360°
dataset.

tion sequentially. In Touchdown-SDR, the recog-
nition system or human annotator needs to find an
FoV that includes the target location. In Refer360°
, the finding task is carried out sequentially; thus,
each instruction needs to be completed accurately
to be able to find the target location. Second, in Re-
fer360° , the target location is randomly distributed
in scenes. As seen in Table 6, when the target loca-
tion is randomly selected, the target location is on
average further from other objects (we discuss this
in more detail in Section 5.1).

Dataset Splits: We use a similar train, valida-
tion, and test split strategy as the Room-to-Room
dataset (Anderson et al., 2018b). We reserve a
subset of images from each scene category for vali-
dation and test splits for unseen scene evaluation
i.e. these scenes are not observed in the train split
to study generalization capabilities of models. The
remaining scenes are pooled together for training,
validation, and test splits for seen scenes evaluation.
Table 5 shows statistics for the splits. Following the
previous studies, the ground-truth annotations for
test splits will not be released. Instead, we will pro-
vide an evaluation server where model predictions
may be uploaded for scoring.
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5 Analyses

We conduct four analyses of the Refer360° dataset.
First, we investigate if the random selection process
of target locations can mitigate possible bias issues.
Recent studies (Devlin et al., 2015; Agrawal et al.,
2016; Jabri et al., 2016; Goyal et al., 2016) show
that design decisions for collecting annotations
may introduce bias into datasets. High-capacity
machine learning models can exploit these issues
which hinders the meaningful progress towards real
language understanding (Zhou et al., 2015; Cirik
et al., 2018b). Second, we study whether each in-
struction in an instruction sequence is critical in
finding the target location, or whether some instruc-
tion sequences are overcomplete. It may be very
well the case that, by just understanding the last
instruction, one can easily locate the target loca-
tion. Third, we perform a qualitative analysis of
Refer360° to provide the types of linguistic reason-
ing required to find the target location accurately.
Finally, we analyze the performance of the state-of-
the-art on Refer360° .

5.1 Target Locations

The selection method for the target location plays a
crucial role in the kind of language one needs to use
to describe that location. Earlier studies on refer-
ring expression recognition datasets (Kazemzadeh
et al., 2014; Hu et al., 2016; Mao et al., 2016; Strub
et al., 2017) select the target location as object
boxes annotated by humans. In Touchdown-SDR
(Chen et al., 2018) instead, annotators decide the
location of the target rather than choosing one of
the pre-defined lists of object boxes8.

This could introduce a location bias to the dataset
– i.e. if annotators get to select the target location,
they may choose targets that are easy to describe,
sometimes leading to trivial or uninteresting exam-
ples, and more broadly to artificially simple lan-
guage overall. For instance, if there is only one
pink object in the scene, annotators usually pre-
ferred describing that region rather than some other
obscure location in the scene. Instead of letting an-
notators decide where to place targets in the scene,
we randomly picked a target location in the scene
and asked them to describe how to find that loca-

8In our initial iterations for the data collection, we fol-
lowed this procedure. However, we observed that in many
cases, annotators chose the most salient, or unique object or
region in the image. Figure 7 in the appendix compares the
distribution of instruction sequence lengths for random and
manual selection of targets.

tion. As a result, our instruction sequences are
complex as we show next.

Comparison Touchdown-SDR Refer360°

The perplexity of the distribution of
an object that the target is located on 9.53 17.86
The perplexity of the distribution
of the closest objects 17.80 46.84
The average distance to
the closest objects 8.64 23.88

Table 6: Statistics for target locations image in
Touchdown-SDR and Refer360° . Target is located on
or near the wider variety of objects and further away
from other objects.

To measure the differences in instructions for
randomly or manually choosen targets, we com-
pute three quantities. First, we compute the variety
of objects that the target is located on using the
perplexity of object frequencies. Similarly, we also
compute the variety of objects closest to the target
objects. Since we use objects near to the target lo-
cation as anchor points, this is also another useful
metric. The higher the perplexity of both metrics,
the harder it is to predict the target location using
just the object type or the closest object. Third,
we measure the average distance between the tar-
get location and the nearest object. The closer the
target location to another object, the easier it is to
describe using the closest object as an anchor point.

Instructions Average Distance Accuracy
Last Sentence 73.01 0.37
Last 2 Sentences 42.32 0.63
All Sentences 11.35 0.88

Table 7: Results for instruction ablation human study.
Annotators need all instructions to complete the task
accurately.

Table 6 shows statistics for target locations in
Touchdown-SDR and Refer360° . For both per-
plexity metrics, we observe that the target is lo-
cated near or inside a wider variety of objects in
Refer360° . Also, on average, the target location
is further away from other objects for Refer360° .
These statistics show that randomly choosing the
target location helps us address possibly bias to-
wards simple instructions and makes recognition
more challenging.

5.2 Ablation of Instruction Sentences

While collecting instructions, we asked annotators
to describe the target location using at least three
and at most five sentences. It might be possible to
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Phenomenon c µ Example from Refer360°

Coreference 96 1.6 on the very upper left corner of the blue part of that window
Comparison 15 0.1 the smaller building to the right of the spire
Sequencing 13 0.1 go right just a smidge and then go up above
Counting 30 0.3 shaped like a football and has 3 silver legs
Allocentric Spatial Mention 46 0.6 find the shelves with books nearest to you
Egocentric Spatial Mention 35 0.5 waldo is sitting on the right side of the window
Direction 92 1.6 look at the knife on the wall to the left
Temporal Condition 13 0.1 turn right until you see a mirror on the wall
3D understanding 22 0.2 counter with the two bar stools sitting in front of it
Inexact/Approximate Language 28 0.2 in front of the white strip at the bottom slightly off center
More than 2 Supporting Objects 47 0.5 now look on the floor in between the table and the chair

Table 8: Linguistic analysis of 100 randomly sampled examples from Refer360° . We annotate each example for
the presence and count of each phenomenon. c is the total number of instructions out of the 100 containing at
least one example of the phenomenon. µ is the mean number of times each phenomenon appears per instruction
sequence.

find the target location using only the last instruc-
tion, which may make the first sentences unnec-
essary. Such redundancy makes it harder to study
the core challenges of grounding instructions to
visual perception and actions. Thus, we conducted
an ablation study with the same pool of annotators
using 1K instructions from the dataset. Here we
check whether Refer360° has strong dependencies
between instructions.

We ran two ablation studies to examine the ne-
cessity of using all instruction sentences. For the
first study, we ran a finding task with the same pool
of annotators, where we provided only the final
instruction. For the second study, similarly, we
ran another finding task where we provided only
the penultimate and the final instruction. We com-
pare the average euclidean distance between the
predicted locations and the target location, and the
accuracy, i.e. for what percentage of the time the
distance between the predicted location and the
target location is less than 11 degrees.

Table 7 shows the result of our ablation analy-
sis. Annotators’ performance significantly dropped
when they can only read the last instruction. They
could find the target object only 37% of the time.
Using the penultimate instruction helped them a
lot, and they achieved 63% accuracy. The best per-
formance is achieved when they observe the full
instructions. These results show that each instruc-
tion is necessary for accurately finding the target
location.

5.3 Linguistic Phenomena Observed

Before designing a system to address a language-
related task, it is important the understand different
kinds of linguistic phenomena observed in the task.
We follow the procedure described in Touchdown-
SDR (Chen et al., 2018), and added a few novel
phenomena including 3D understanding, inexact
language, and the use of more than two supporting
objects as linguistic phenomena. Table 8 shows the
result of our analyses for 100 randomly sampled
instances. Refer360° requires reasoning for a rich
set of linguistic phenomenon including the reso-
lution of the coreference chains, counting objects,
a rich set of spatial language phenomena such as
multiple-supporting object mentions and 3D scene
understanding.

5.4 Localization Experiments

Our analyses in the previous subsections suggest
that Refer360° poses several challenges. In Sec-
tion 5.1, we show that since the target locations
are randomly chosen, it is harder to exploit pos-
sible location bias. In Section 5.2, we show that
it is essential to model the sequential nature of
the instructions. Section 5.3 shows that there are
lots of interesting linguistic phenomena observed
in Refer360° . We want to verify these claims by
training the state-of-the-art model and measure its
performance on our Refer360° dataset.

We use the same experimental setup in
Touchdown-SDR using the scenes provided in the
concurrent work (Mehta et al., 2020), where we
slice 360scene into 8 FoVs covering the scene. We
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pass each of these FoVs to a pre-trained model (He
et al., 2016), and extract features from fourth to the
last layer before classification to get a feature map
representation of the FoVs. We concatenate 8 FoV
slices to a single tensor to represent the 360° scene.

We use the LingUNet model (Chen et al., 2018;
Misra et al., 2018; Blukis et al., 2018), which per-
forms the state-of-the-art results on TouchDown-
SDR dataset. LingUNet is an image-to-image
encoder-decoder model where a language and im-
age representations are fused to predict a probabil-
ity over the input image. Instructions are fed to
bi-directional Long Short-Term Memory (LSTM)
recurrent neural network to induce a language rep-
resentation. To induce fused image-text represen-
tations, the input image tensor is passed to a con-
volutional neural network conditioned on the test
representations. The fused representation is then
fed to deconvolution layers to predict the location
of the target. We use the same accuracy and dis-
tance metrics described in Section 5.2.

Dataset Accuracy (%) Distance

Touchdown-SDR (reported) 26.1 708
Touchdown-SDR (replication) 23.5 715
Refer360° 13.0 1235

Table 9: Results for the LingUNet on two benchmark
datasets. Since LinGUNet designed for observing the
full instruction set and the holistic view of the scene,
and it performs significantly worse on Refer360° .

As we can see in Table 9, LingUNet performs
significantly worse on Refer360° 9. This might
be due to the difference we highlighted in earlier
sections. First and foremost, instructions must be
completed sequentially. However, LingUNet does
not model the sequential nature of the task for Re-
fer360° , rather uses all instruction sequence and
oracle-view of the 360° scene. Second, the scenes
in Touchdown-SDR is from a single domain, but in
Refer360° , we have a richer set of scenes for both
indoor and outdoor.

6 Conclusion

We designed Refer360° to study 3D spatial lan-
guage understanding for real scenes. We collected
a fine-grained set of annotations that support study
at many levels of language grounding. Refer360° is

9We used publicly available code provided by authors to
run the experiments. We could not replicate the exact numbers
reported in the paper, yet, we use exactly the same setup for
both Refer360° and Touchdown-SDR for a fair comparison.

a versatile dataset and enables investigation along
three axes:

• Language: Refer360° enables modeling
tasks that study single instruction, multiple
instructions, or interactive language where the
next instruction is revealed only after reaching
an intermediate milestone.

• Vision: Refer360° enables modeling tasks
that try to predict targets at different granu-
larities: at the object level if trying to identify
the closest object to the target, at the region
level in a similar style to Touchdown-SDR,
and finally, at the pixel level.

• Action: Refer360° enables modeling tasks
where the action space is static with the
whole 360 image given upfront, where the
action space consists of a sequence of discrete
choices between fixed views, and when the ac-
tion space is continuous, consisting of angles
for rotation.

In our experiments, we presented one of these
scenarios (single instruction, static, and pixel-
level) since it was the closest to the pre-existing
Touchdown-SDR system. However, one can also
study a much larger number of scenarios and mod-
eling tasks using Refer360° .
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A Appendix

This section presents details omitted in the main
document. It includes the details about the annota-
tion task, screenshots for the MTurk interface for
annotation tasks, the most detected objects in Re-
fer360° and Touchdown-SDR, and text length for
instructions collected with different methods.

A.1 Payment and Incentive Structure
One session of annotation consisted of finding task
for 4 scenes and describing task for 4 scenes which
took about 15 minutes to complete on average. The
base pay for one session was $2.25. For each in-
struction sequence that was accurately found by
another annotator, we paid a bonus of $0.10 to both
the annotator who found the location and the an-
notator who wrote the instruction sequence. Thus,
for both the finding and describing task annotators
have an interest in performing the task accurately.
Next, we provide statistics of the Refer360° dataset.
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Annotation Stage # of Annotators # of Collected Instructions # of Verified Instructions

Stage I: Hiring 256 854 n\a
Stage II: Collection & Verification 86 20630 14062
Stage III: Verification 86 n\a 3073

Table 10: Statistics for data collection stages. Stage I is for hiring annotators. Stage II is for collecting and verifying
the instructions. Last stage is further verifying hard instances that are not verified II.

Figure 4: Screenshot of Amazon Mechanical Turk interface for finding task. We ask annotators to complete
each instruction before moving to the next one. To do so change the bullseye where they think the instruction is
describing.

Figure 5: Screenshot of Amazon Mechanical Turk interface for describing task. We ask annotators to first find
Waldo themselves, then give detailed insturctions one by one so that anyone starting from a random field-of-view
find it.
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Figure 6: The most frequently detected objects in Touchdown-SDR and Refer360° .
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Figure 7: Text length for different placement methods for single instruction and instruction sequences. Manual
means annotators pick the target location, random means we randomly pick the target location in the scene.


