
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7155–7165
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7155

Neural Data-to-Text Generation via Jointly Learning the Segmentation
and Correspondence

Xiaoyu Shen1,2 , Ernie Chang3, Hui Su4, Cheng Niu4 and Dietrich Klakow1

1Spoken Language Systems (LSV) 2Max Planck Institute for Informatics
3Department of Language Science and Technology, Saarland Informatics Campus

4Pattern Recognition Center, Wechat AI, Tencent Inc, China
xshen@mpi-inf.mpg.de,cychang@coli.uni-saarland.de

{aaronsu,niucheng}@tencent.com,dklakow@lsv.uni-saarland.de

Abstract

The neural attention model has achieved
great success in data-to-text generation tasks.
Though usually excelling at producing fluent
text, it suffers from the problem of information
missing, repetition and “hallucination”. Due
to the black-box nature of the neural attention
architecture, avoiding these problems in a sys-
tematic way is non-trivial. To address this con-
cern, we propose to explicitly segment target
text into fragment units and align them with
their data correspondences. The segmentation
and correspondence are jointly learned as la-
tent variables without any human annotations.
We further impose a soft statistical constraint
to regularize the segmental granularity. The re-
sulting architecture maintains the same expres-
sive power as neural attention models, while
being able to generate fully interpretable out-
puts with several times less computational cost.
On both E2E and WebNLG benchmarks, we
show the proposed model consistently outper-
forms its neural attention counterparts.

1 Introduction

Data-to-text generation aims at automatically pro-
ducing natural language descriptions of structured
database (Reiter and Dale, 1997). Traditional sta-
tistical methods usually tackle this problem by
breaking the generation process into a set of local
decisions that are learned separately (Belz, 2008;
Angeli et al., 2010; Kim and Mooney, 2010; Oya
et al., 2014). Recently, neural attention models con-
flate all steps into a single end-to-end system and
largely simplify the training process (Mei et al.,
2016; Lebret et al., 2016; Shen et al., 2017; Su
et al., 2018, 2019; Chang et al., 2020). However,
the black-box conflation also renders the genera-
tion uninterpretable and hard to control (Wiseman
et al., 2018; Shen et al., 2019a). Verifying the
generation correctness in a principled way is non-
trivial. In practice, it often suffers from the problem

of information missing, repetition and “hallucina-
tion” (Dušek et al., 2018, 2020).

Source data:
Name[Clowns], PriceRange[more than £30],
EatType[pub], FamilyFriendly[no]

Generation:
1©Name → 2©(Clowns)
3©FamilyFriendly → 4©(is a child-free)
5©PriceRange → 6©(, expensive)
7©EatType → 8©(pub.)

Figure 1: Generation from our model on the E2E
dataset. Decoding is performed segment-by-segment.
Each segment realizes one data record. 1©˜ 8© mark
the decision order in the generation process.

In this work, we propose to explicitly exploit
the segmental structure of text. Specifically, we
assume the target text is formed from a sequence
of segments. Every segment is the result of a two-
stage decision: (1) Select a proper data record to be
described and (2) Generate corresponding text by
paying attention only to the selected data record.
This decision is repeated until all desired records
have been realized. Figure 1 illustrates this process.

Compared with neural attention, the proposed
model has the following advantages: (1) We can
monitor the corresponding data record for every
segment to be generated. This allows us to easily
control the output structure and verify its correct-
ness1. (2) Explicitly building the correspondence
between segments and data records can potentially
reduce the hallucination, as noted in (Wu et al.,
2018; Deng et al., 2018) that hard alignment usu-
ally outperforms soft attention. (3) When decoding
each segment, the model pays attention only to the

1For example, we can perform a similar constrained decod-
ing as in Balakrishnan et al. (2019) to rule out outputs with
undesired patterns.

7156

selected data record instead of averaging over the
entire input data. This largely reduces the memory
and computational costs 2.

To train the model, we do not rely on any human
annotations for the segmentation and correspon-
dence, but rather marginalize over all possibilities
to maximize the likelihood of target text, which can
be efficiently done within polynomial time by dy-
namic programming. This is essentially similar to
traditional methods of inducing segmentation and
alignment with semi-markov models (Daumé III
and Marcu, 2005; Liang et al., 2009). However,
they make strong independence assumptions thus
perform poorly as a generative model (Angeli et al.,
2010). In contrast, the transition and generation
in our model condition on all previously gener-
ated text. By integrating an autoregressive neu-
ral network structure, our model is able to cap-
ture unbounded dependencies while still permitting
tractable inference. The training process is stable
as it does not require any sampling-based approxi-
mations. We further add a soft statistical constraint
to control the segmentation granularity via poste-
rior regularization (Ganchev et al., 2010). On both
the E2E and WebNLG benchmarks, our model is
able to produce significantly higher-quality outputs
while being several times computationally cheaper.
Due to its fully interpretable segmental structure,
it can be easily reconciled with heuristic rules or
hand-engineered constraints to control the outputs.

2 Related Work

Data-to-text generation is traditionally dealt with
using a pipeline structure containing content plan-
ning, sentence planning and linguistic realiza-
tion (Reiter and Dale, 1997). Each target text
is split into meaningful fragments and aligned
with corresponding data records, either by hand-
engineered rules (Kukich, 1983; McKeown, 1992)
or statistical induction (Liang et al., 2009; Koncel-
Kedziorski et al., 2014; Qin et al., 2018). The
segmentation and alignment are used as supervi-
sion signals to train the content and sentence plan-
ner (Barzilay and Lapata, 2005; Angeli et al., 2010).
The linguistic realization is usually implemented
by template mining from the training corpus (Kon-
dadadi et al., 2013; Oya et al., 2014). Our model
adopts a similar pipeline generative process, but

2Coarse-to-fine attention (Ling and Rush, 2017; Deng
et al., 2017) was proposed for the same motivation, but they
resort to reinforcement learning which is hard to train, and the
performance is sacrificed for efficiency.

integrates all the sub-steps into a single end-to-
end trainable neural architecture. It can be con-
sidered as a neural extension of the PCFG system
in Konstas and Lapata (2013), with a more power-
ful transition probability considering inter-segment
dependence and a state-of-the-art attention-based
language model as the linguistic realizer. Wise-
man et al. (2018) tried a similar neural generative
model to induce templates. However, their model
only captures loose data-text correspondence and
adopts a weak markov assumption for the segment
transition probability. Therefore, it underperforms
the neural attention baseline as for generation. Our
model is also in spirit related to recent attempts at
separating content planning and surface realization
in neural data-to-text models (Zhao et al., 2018;
Puduppully et al., 2019; Moryossef et al., 2019; Fer-
reira et al., 2019). Nonetheless, all of them resort
to manual annotations or hand-engineered rules
applicable only for a narrow domain. Our model,
instead, automatically learn the optimal content
planning via exploring over exponentially many
segmentation/correspondence possibilities.

There have been quite a few neural alignment
models applied to tasks like machine transla-
tion (Wang et al., 2018; Deng et al., 2018), char-
acter transduction (Wu et al., 2018; Shankar and
Sarawagi, 2019) and summarization (Yu et al.,
2016; Shen et al., 2019b). Unlike word-to-word
alignment, we focus on learning the alignment be-
tween data records and text segments. Some works
also integrate neural language models to jointly
learn the segmentation and correspondence, e.g.,
phrase-based machine translation (Huang et al.,
2018), speech recognition (Wang et al., 2017) and
vision-grounded word segmentation (Kawakami
et al., 2019). Data-to-text naturally fits into this
scenario since each data record is normally verbal-
ized in one continuous text segment.

3 Background: Data-to-Text

Let X,Y denote a source-target pair. X is struc-
tured data containing a set of records and Y corre-
sponds to y1, y2, . . . , ym which is a text description
ofX . The goal of data-to-text generation is to learn
a distribution p(Y |X) to automatically generate
proper text describing the content of the data.

The neural attention architecture handles this
task with an encode-attend-decode process (Bah-
danau et al., 2015). The input X is processed into
a sequence of x1, x2, . . . , xn, normally by flatten-

7157

ing the data records (Wiseman et al., 2017). The
encoder encodes each xi into a vector hi. At
each time step, the decoder attends to encoded vec-
tors and outputs the probability of the next token
by p(yt|y1:t−1, At). At is a weighted average of
source vectors:

At =
∑
i

αt,ihi

αt,i =
ef(hi,dt)∑
j e

f(hj ,dt)

(1)

dt is the hidden state of the decoder at time step
t. f is a score function to compute the similarity
between hi and dt (Luong et al., 2015).

4 Approach

Suppose the input data X contains a set of records
r1, r2, ..., rK . Our assumption is that the target
text y1:m can be segmented into a sequence of
fragments. Each fragment corresponds to one
data record. As the ground-truth segmentation
and correspondence are not available, we need to
enumerate over all possibilities to compute the
likelihood of y1:m. Denote by Sy the set con-
taining all valid segmentation of y1:m. For any
valid segmentation s1:τs ∈ Sy, π(s1:τs) = y1:m,
where π means concatenation and τs is the num-
ber of segments. For example, let m = 5 and
τs = 3. One possible segmentation would be
s1:τs = {{y1, y2, $}, {y3, $}, {y4, y5, $}}. $ is the
end-of-segment symbol and is removed when ap-
plying the π operator. We further define c(∗) to be
the corresponding data record(s) of ∗. The likeli-
hood of each text is then computed by enumerating
over all possibilities of s1:τs and c(s1:τs):

p(y1:m|X) =
∑

s1:τs∈Sy

p(s1:τs |X)

=
∑

s1:τs∈Sy

τs∏
o=1

rK∑
c(so)=r1

p(so|π(s<o), c(so))

× p(c(so)|π(s<o), c(s<o))

(2)

Every segment is generated by first selecting
the data record based on the transition proba-
bility p(c(so)|π(s<o), c(s<o)), then generating to-
kens based on the word generation probability
p(so|π(s<o), c(so)). Figure 2 illustrates the gen-
eration process of our model.

Generation Probability We base the generation
probability on the same decoder as in neural atten-
tion models. The only difference is that the model

A
tte

nt
io
n

C(S1) C(S2) C(S3)

y1 y2 y3 y4 y5 y6 y7 y8

...

...$ $

S1 S2 S3

$ $ $

X

Figure 2: Generation process of our approach. Segment end
symbol $ is ignored when updating the state of the decoder.
Solid arrows indicate the transition model and dashed arrows
indicate the generation model. Every segment so is generated
by attending only to the corresponding data record c(so).

can only pay attention to its corresponding data
record. The attention scores of other records are
masked out when decoding so:

αt,i =
ef(hi,dt)1(xi ∈ c(so))∑
j e

f(hj ,dt)1(xj ∈ c(so))

where 1 is the indicator function. This forces the
model to learn proper correspondences and en-
hances the connection between each segment and
the data record it describes.

Following the common practice, we define the
output probability with the pointer generator (See
et al., 2017; Wiseman et al., 2017):

pgen = σ(MLPg([dt ◦At]))
pvocab = softmax(W1dt +W2At)

pθ(yt|y<t) = pgenpvocab(yt)

+ (1− pgen)
∑

i:yt=xi

at,i

dt is the decoder’s hidden state at time step t. ◦
denotes vector concatenation. At is the context
vector. MLP indicates multi-layer perceptron and
σ normalizes the score between (0, 1). W1 and W2

are trainable matrices. pgen is the probability that
the word is generated from a fixed vocabulary dis-
tribution pvocab instead of being copied. The final
decoding probability pθ(yt) is marginalized over
pvocab and the copy distribution. The generation
probability of so factorizes over the words within
it and the end-of-segment token:

p(so|π(s<o), c(so)) = pθ($|y1:t)
∏
yt∈so

pθ(yt|y<t)

Transition Probability We make a mild assump-
tion that c(so) is dependent only on c(so−1) and
π(s1:o−1) but irrelevant of c(s<o−1), which is a
common practice when modelling alignment (Och

7158

et al., 1999; Yu et al., 2016; Shankar and Sarawagi,
2019). The transition probability is defined as:

p(c(so) = ri|c(s<o), π(s<o))
≈p(c(so) = ri|c(so−1), π(s<o))
∝f(ri)T [MTAso−1 +NTdso−1]

(3)

A softmax layer is finally applied to the above equa-
tion to normalize it as a proper probability distri-
bution. f(ri) is a representation of ri, which is
defined as a max pooling over all the word embed-
dings contained in ri. Aso−1 is the attention con-
text vector when decoding the last token in so−1,
defined as in Equation 1. It carries important infor-
mation from c(so−1) to help predict c(so). dso−1 is
the hidden state of the neural decoder which goes
through all history tokens π(s1:o−1). M,N are
trainable matrices to project Aso−1 and dso−1 into
the same dimension as f(ri).

We further add one constraint to prohibit self-
transition, which can be easily done by zeroing
out the transition probability in Equation 3 when
c(so) = c(so−1). This forces the model to group
together text describing the same data record.

Since Equation 3 conditions on all previously
generated text, it is able to capture more complex
dependencies as in semi-markov models (Liang
et al., 2009; Wiseman et al., 2018).

Null Record In our task, we find some frequent
phrases, e.g., “it is”, “and”, tend to be wrongly
aligned with some random records, similar to
the garbage collection issue in statistical align-
ment (Brown et al., 1993). This hurt the model
interpretability. Therefore, we introduce an addi-
tional null record r0 to attract these non-content
phrases. The context vector when aligned to r0 is a
zero vector so that the decoder will decode words
based solely on the language model without relying
on the input data.

Training Equation 2 contains exponentially
many combinations to enumerate over. Here we
show how to efficiently compute the likelihood
with the forward algorithm in dynamic program-
ming (Rabiner, 1989). We define the forward vari-
able α(i, j) = p(y1:i, c(yi) = j|X). With the base
α(1, j) = p(y1|c(y1) = j). The recursion goes as

follows for i = 1, 2, . . . ,m− 1:

α(i+ 1, j) =

i∑
p=1

rK∑
q=r0

α(p, q)

× p(c(yp+1) = j|c(yp) = q, y1:p)

× p(yp+1:i+1|c(yp+1:i+1) = q, y1:p)

× p($|c(yp+1:i+1) = q, y1:i+1)

(4)

The final likelihood of the target text can be com-
puted as p(y1:m|X) =

∑rK
j=r0

α(m, j). As the for-
ward algorithm is fully differentiable, we maximize
the log-likelihood of the target text by backprop-
agating through the dynamic programming. The
process is essentially equivalent to the generalized
EM algorithm (Eisner, 2016). By means of the
modern automatic differentiation tools, we avoid
the necessity to calculate the posterior distribution
manually (Kim et al., 2018).

To speed up training, we set a threshold L to the
maximum length of a segment as in Liang et al.
(2009); Wiseman et al. (2018). This changes the
complexity in Equation 4 to a constant O(LK)
instead of scaling linearly with the length of the
target text. Moreover, as pointed out in Wang et al.
(2017), the computation for the longest segment
can be reused for shorter segments. We therefore
first compute the generation and transition probabil-
ity for the whole sequence in one pass. The interme-
diate results are then cached to efficiently proceed
the forward algorithm without any re-computation.

One last issue is the numerical precision, it is
important to use the log-space binary operations to
avoid underflow (Kim et al., 2017).

Near[riverside], Food[French], EatType[pub], Name[Cotto]
1. [Near]Near[the]Null[riverside]Near[is a]Null[French]Food

[pub]EatType[called]Null[Cotto]Name[.]Null
2. [Near the riverside]Near[is]Null[a French]Food[pub]EatType

[called Cotto]Name[.]Null
3. [Near the riverside]Near[is a French]Food[pub]EatType

[called Cotto .]Name
4. [Near the riverside]Near[is a French pub]Food

[called Cotto .]Name

Table 1: Segmentation with various granularities. 1 is too
fine-grained while 4 is too coarse. We expect a segmentation
like 2 or 3 to better control the generation.

Segmentation Granularity There are several
valid segmentations for a given text. As shown
in Table 1, when the segmentation (example 1)
is too fine-grained, controlling the output infor-
mation becomes difficult because the content of

7159

one data record is realized in separate pieces 3.
When it is too coarse, the alignment might become
less accurate (as in Example 4, “pub” is wrongly
merged with previous words and aligned together
to the “Food” record). In practice, we expect the
segmentation to stay with accurate alignment yet
avoid being too brokenly separated. To control the
granularity as we want, we utilize posterior regu-
larization (Ganchev et al., 2010) to constrain the
expected number of segments for each text 4, which
can be calculated by going through a similar for-
ward pass as in Equation 4 (Eisner, 2002). Most
computation is shared without significant extra bur-
den. The final loss function is:

− logESyp(s1:τs |X)+max(
∣∣∣ESyτs − η∣∣∣ , γ) (5)

logESyp(s1:τs |X) is the log-likelihood of target
text after marginalizing over all valid segmenta-
tions. ESyτs is the expected number of segments
and η, γ are hyperparameters. We use the max-
margin loss to encourage ESyτs to stay close to η
under a tolerance range of γ.

Decoding The segment-by-segment generation
process allows us to easily constrain the output
structure. Undesirable patterns can be rejected be-
fore the whole text is generated. We adopt three
simple constraints for the decoder:

1. Segments must not be empty.

2. The same data record cannot be realized more
than once (except for the null record).

3. The generation will not finish until all data
records have been realized.

Constraint 2 and 3 directly address the information
repetition and missing problem. When segments
are incrementally generated, the constraints will be
checked against for validity. Note that adding the
constraints hardly incur any cost, the decoding pro-
cess is still finished in one pass. No post-processing
or reranking is needed.

3The finer-grained segmentation might be useful if the
focus is on modeling the detailed discourse structure instead
of the information accuracy (Reed et al., 2018; Balakrishnan
et al., 2019), which we leave for future work.

4We can also utilize some heuristic rules to help segmen-
tation. For example, we can prevent breaking syntactic ele-
ments obtained from an external parser (Yang et al., 2019)
or match entity names with handcrafted rules (Chen et al.,
2018). The interpretability of the segmental structure allows
easy combination with these rules. We focus on a general
domain-agnostic method in this paper, though heuristic rules
might bring further improvement under certain cases.

Computational Complexity Suppose the input
data has M records and each record contains N
tokens. The computational complexity for neural
attention models is O(MN) at each decoding step
where the whole input is retrieved. Our model,
similar to chunkwise attention (Chiu and Raffel,
2018) or coarse-to-fine attention (Ling and Rush,
2017), reduces the cost to O(M +N), where we
select the record in O(M) at the beginning of each
segment and attend only to the selected record in
O(N) when decoding every word. For larger input
data, our model can be significantly cheaper than
neural attention models.

5 Experiment Setup

Dataset We conduct experiments on the
E2E (Novikova et al., 2017b) and WebNLG (Colin
et al., 2016) datasets. E2E is a crowd-sourced
dataset containing 50k instances in the restaurant
domain. The inputs are dialogue acts consisting of
three to eight slot-value pairs. WebNLG contains
25k instances describing entities belonging to
fifteen distinct DBpedia categories. The inputs
are up to seven RDF triples of the form (subject,
relation, object).

Implementation Details We use a bi-directional
LSTM encoder and uni-directional LSTM decoder
for all experiments. Input data records are concate-
nated into a sequence and fed into the encoder. We
choose the hidden size of encoder/decoder as 512
for E2E and 256 for WebNLG. The word embed-
ding is with size 100 for both datasets and initial-
ized with the pre-trained Glove embedding 5 (Pen-
nington et al., 2014). We use a drop out rate of
0.3 for both the encoder and decoder. Models are
trained using the Adam optimizer (Kingma and Ba,
2014) with batch size 64. The learning rate is ini-
tialized to 0.01 and decays an order of magnitude
once the validation loss increases. All hyperpa-
rameters are chosen with grid search according to
the validation loss. Models are implemented based
on the open-source library PyTorch (Paszke et al.,
2019). We set the hyperparameters in Eq. 5 as
η = K, γ = 1 (recall that K is the number of
records in the input data). The intuition is that ev-
ery text is expected to realize the content of all K
input records. It is natural to assume every text
can be roughly segmented into K fragments, each
corresponding to one data record. A deviation of

5nlp.stanford.edu/data/glove.6B.zip

nlp.stanford.edu/data/glove.6B.zip

7160

K±1 is allowed for noisy data or text with complex
structures.

Metrics We measure the quality of system out-
puts from three perspectives: (1) word-level over-
lap with human references, which is a commonly
used metric for text generation. We report the
scores of BLEU-4 (Papineni et al., 2002), ROUGE-
L (Lin, 2004), Meteor (Banerjee and Lavie, 2005)
and CIDEr (Vedantam et al., 2015) . (2) human
evaluation. Word-level overlapping scores usu-
ally correlate rather poorly with human judgements
on fluency and information accuracy (Reiter and
Belz, 2009; Novikova et al., 2017a). Therefore, we
passed the input data and generated text to human
annotators to judge if the text is fluent by grammar
(scale 1-5 as in Belz and Reiter (2006)), contains
wrong fact inconsistent with input data, repeats or
misses information. We report the averaged score
for fluency and definite numbers for others. The
human is conducted on a sampled subset from the
test data. To ensure the subset covers inputs with
all possible number of records (K ∈ [3, 8] for E2E
and K ∈ [1, 7] for WebNLG), we sample 20 in-
stances for every possible K. Finally,we obtain
120 test cases for E2E and 140 for WebNLG 6. (3)
Diversity of outputs. Diversity is an important con-
cern for many real-life applications. We measure
it by the number of unique unigrams and trigrams
over system outputs, as done in Dušek et al. (2020).

6 Results

In this section, we first show the effects of the gran-
ularity regularization we proposed, then compare
model performance on two datasets and analyze the
performance difference. Our model is compared
against the neural attention-based pointer generator
(PG) which does not explicit learn the segmenta-
tion and correspondence. To show the effects of
the constrained decoding mentioned in §4, Decod-
ing. we run our model with only the first constraint
to prevent empty segments (denoted by ours in
experiments), with the first two constraints to pre-
vent repetition (denoted by ours (+R)), and with all
constraints to further reduce information missing
(denoted by ours (+RM)).

Segmentation Granularity We show the effects
of the granularity regularization (§4, Segmentation

6The original human evaluation subset of WebNLG is
randomly sampled, most of the inputs contain less than 3
records, so we opt for a new sample for a thorough evaluation.

Figure 3: Average expected number of segments with varying
hyperparameters. x-axis is the encoder/decoder hidden size
and y-axis is the word embedding size. Upper two figures are
without the granularity regularization and the bottom two are
with regularization.

Granularity) in Fig 3. When varying the model size,
the segmentation granularity changes much if no
regularization is imposed. Intuitively if the genera-
tion module is strong enough (larger hidden size),
it can accurately estimate the sentence likelihood
itself without paying extra cost of switching be-
tween segments, then it tends to reduce the number
of transitions. Vice versa, the number of transi-
tions will grow if the transition module is stronger
(larger embedding size). With the regularization
we proposed, the granularity remains what we want
regardless of the hyperparameters. We can thereby
freely decide the model capacity without worrying
about the difference of segmentation behavior.

Results on E2E On the E2E dataset, apart from
our implementations, we also compare agianst out-
puts from the SLUG (Juraska et al., 2018), the
overall winner of the E2E challenge (seq2seq-
based), DANGNT (Nguyen and Tran, 2018), the
best grammar rule based model, TUDA (Puzikov
and Gurevych, 2018), the best template based
model, and the autoregressive neural template
model (N TEMP) from Wiseman et al. (2018).
SLUG uses a heuristic slot aligner based on a set of
handcrafted rules and combine a complex pipeline
of data augmentation, selection, model ensemble
and reranker, while our model has a simple end-to-
end learning paradigm with no special delexical-
izing, training or decoding tricks. Table 2 reports
the evaluated results. Seq2seq-based models are
more diverse than rule-based models at the cost of
higher chances of making errors. As rule-based
systems are by design always faithful to the in-

7161

Metrics Word Overlap Human Evaluation Diversity
Models BLEU R-L Meteor CIDEr Fluent Wrong Repeat Miss Dist-1 Dist-3
SLUG 0.662 0.677 0.445 2.262 4.94 5 0 17 74 507
DANGNT 0.599 0.663 0.435 2.078 4.97 0 0 21 61 301
TUDA 0.566 0.661 0.453 1.821 4.98 0 0 10 57 143
N TEMP 0.598 0.650 0.388 1.950 4.84 19 3 35 119 795
PG 0.638 0.677 0.449 2.123 4.91 15 1 29 133 822
OURS 0.647 0.683 0.453 2.222 4.96 0 1 15 127 870
OURS (+R) 0.645 0.681 0.452 2.218 4.95 0 0 13 133 881
OURS (+RM) 0.651 0.682 0.455 2.241 4.95 0 0 3 135 911

Table 2: Automatic and human evaluation results on E2E dataset. SLUG, DANGNT, TUDA and N TEMP are from previous
works and the other models are our own implementations.

Metrics Word Overlap Human Evaluation Diversity
Models BLEU R-L Meteor CIDEr Fluent Wrong Repeat Miss Dist-1 Dist-3
MELBOURNE 0.450 0.635 0.376 2.814 4.16 42 22 37 3167 13,744
UPF-FORGE 0.385 0.609 0.390 2.500 4.08 29 6 28 3191 12,509
PG 0.452 0.652 0.384 2.623 4.13 43 26 42 3,218 13,403
OURS 0.453 0.656 0.388 2.610 4.23 26 19 31 3,377 14,516
OURS (+R) 0.456 0.657 0.390 2.678 4.28 18 2 24 3,405 14,351
OURS (+RM) 0.461 0.654 0.398 2.639 4.26 23 4 5 3,457 14,981

Table 3: Automatic and human evaluation results on WebNLG dataset. MELBOURNE and UPFUPF-FORGE are from
previous works and the other models are our own implementations.

Input:[name the mill][eattype restaurant][food english][pricerange moderate][customerrating 1 out of 5][area riverside] ...

PG: the mill is a low - priced restaurant in the city centre that delivers take - away . it is located near café rouge.

Input:[name the mill][eattype restaurant][food english][pricerange moderate][customerrating 1 out of 5][areariverside] ...

Ours: [the mill][restaurant][near café rouge][in riverside][serves english food][at moderate prices][. it is kid friendly and]...

Table 4: (E2E) Attention map when decoding the word “low” in the PG model and “moderate” in our model. Hallucinated
contents are bolded. The PG model wrongly attended to other slots thereby “hallucinated” the content of “low-priced”. Our
model always attends to one single slot instead of averaging over the whole inputs, the chance of hallucination is largely reduced.

put information, they made zero wrong facts in
their outputs. Most models do not have the fact
repetition issue because of the relatively simple
patterns in the E2E dataset. therefore, adding the
(+R) constraint only improves the performance mi-
norly. The (+RM) constraint reduces the number
of information missing to 3 without hurting the flu-
ency. All the 3 missing cases are because of the
wrong alignment between the period and one data
record, which can be easily fixed by defining a sim-
ple rule. We put the error analysis in appendix A.
N Temp performs worst among all seq2seq-based
systems because of the restrictions we mentioned
in §2. As also noted by the author, it trades-off the
generation quality for interpretability and controlla-
bility. In contrast, our model, despite relying on no
heuristics or complex pipelines, made zero wrong
facts with the lowest information missing rate, even
surpassing rule-based models. It also maintains
interpretable and controllable without sacrificing
the generation quality.

Results on WebNLG Table 3 reports the results
evaluated on the WebNLG dataset. We also include

results from MELBOURNE, a seq2seq-based sys-
tem achieving highest scores on automatic met-
rics in the WebNLG challenge and UPF-FORGE,
a classic grammar-based system that wins in the
human evaluation WebNLG contains significantly
more distinct types of attributes than E2E, so the
chance of making errors or repetitions increases
greatly. Nevertheless, our model still performs on-
par on automatic metrics with superior information
adequacy and output diversity. The (+R) decod-
ing constraint becomes important since the outputs
in WebNLG are much longer than those in E2E,
neural network models have problems tracking the
history generation beyond certain range. Models
might repeat facts that have been already generated
long back before. The (+R) constraint effectively
reduces the repetition cases from 19 to 2. These
2 cases are intra-segment repetitions and failed to
be detected since our model can only track inter-
segment constraints (examples are in appendix A).
The (+RM) constraint brings down the information
missing cases to 5 with slightly more wrong and
repeated facts compared with (+R). Forcing models

7162

Egg Harbor Township, New Jersey isPartOf New Jersey Atlantic City International Airport Location Identifier “KACY” ICAO
Atlantic City International Airport location Egg Harbor Township, New Jersey Egg Harbor Township, New Jersey country United States
Egg Harbor Township, New Jersey isPartOf Atlantic County, New Jersey

PG Atlantic City International Airport is located in Egg Harbor Township , New Jersey , United
States . It is located in Egg Harbor Township , New Jersey .

Ours
KACY is the ICAO location identifier of Atlantic City International Airport ,

which is located at Egg Harbor Township , New jersey , in the United States]

. The ICAO location identifier of Atlantic City International Airport is KACY .

Ours (+R)
KACY is the ICAO location identifier of Atlantic City International Airport ,

which is located at Egg Harbor Township , New jersey , in the United States] .

Ours (+RM)
KACY is the ICAO location identifier of Atlantic City International Airport , which is located at

Egg Harbor Township , New jersey , in the United States . The Egg Harbor Township is a part

of Atlantic County , New Jersey . Egg Harbor Township is a part of New Jersey .

Figure 4: Example generations from WebNLG. Relation types are underlined and repeated generations are bolded. Segments
and corresponding records in our model are marked in the same color. By adding explicit constraints to the decoding process,
repetition and missing issues can be largely reduced. (better viewed in color)

to keep generating until coveraging all records will
inevitably increase the risk of making errors.

Discussions In summary, our models generates
most diverse outputs, achieves similar or better
performances in word-overlap automatic metrics
while significantly reduces the information hallu-
cination, repetition and missing problems. An ex-
ample of hallucination is shown in Table 4. The
standard PG model “hallucinated” the contents of
“low-priced”, “in the city center” and “delivers take-
away”. The visualized attention maps reveal that it
failed to attend properly when decoding the word
“low”. The decoding is driven mostly by language
models instead of the contents of input data. In
contrast, as we explicitly align each segment to one
slot, the attention distribution of our model is con-
centrated on one single slot rather than averaged
over the whole input, the chance of hallucinating is
therefore largely reduced.

Figure 4 shows some example generations from
WebNLG. Without adding the decoding constraints,
PG and our model both suffer from the problem of
information repetition and missing. However, the
interpretability of our model enables us to easily
avoid these issues by constraining the segment tran-
sition behavior. For the attention-based PG model,
there exists no simple way of applying these con-
straints. We can also explicitly control the output
structure similar to Wiseman et al. (2018), exam-
ples are shown in appendix B.

7 Conclusion

In this work, we exploit the segmental structure in
data-to-text generation. The proposed model sig-
nificantly alleviates the information hallucination,
repetition and missing problems without sacrificing
the fluency and diversity. It is end-to-end trainable,
domain-independent and allows explicit control
over the structure of generated text. As our model
is interpretable in the correspondence between seg-
ments and input records, it can be easily combined
with hand-engineered heuristics or user-specific
requirements to further improve the performance.

Acknowledgements

This research was funded in part by the DFG collab-
orative research center SFB 1102. Ernie Chang is
supported by SFB 248 Foundations of Perspicuous
Software Systems (E2); Xiaoyu Shen is supported
by IMPRS-CS fellowship. We sincerely thank the
anonymous reviewers for their insightful comments
that helped us to improve this paper.

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 502–512. Association for Compu-
tational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly

7163

learning to align and translate. In International Con-
ference on Learning Representations.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Con-
strained decoding for neural NLG from composi-
tional representations in task-oriented dialogue. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 831–
844, Florence, Italy. Association for Computational
Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Regina Barzilay and Mirella Lapata. 2005. Collective
content selection for concept-to-text generation. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, pages 331–338. Association for
Computational Linguistics.

Anja Belz. 2008. Automatic generation of weather
forecast texts using comprehensive probabilistic
generation-space models. Natural Language Engi-
neering, 14(4):431–455.

Anja Belz and Ehud Reiter. 2006. Comparing auto-
matic and human evaluation of nlg systems. In 11th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263–311.

Ernie Chang, David Ifeoluwa Adelani, Xiaoyu Shen,
and Vera Demberg. 2020. Unsupervised pidgin text
generation by pivoting english data and self-training.
arXiv preprint arXiv:2003.08272.

Mingje Chen, Gerasimos Lampouras, and Andreas Vla-
chos. 2018. Sheffield at e2e: structured predic-
tion approaches to end-to-end language generation.
arxiv.

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic
chunkwise attention. ICLR.

Emilie Colin, Claire Gardent, Yassine M’rabet, Shashi
Narayan, and Laura Perez-Beltrachini. 2016. The
WebNLG challenge: Generating text from DBPedia
data. In Proceedings of the 9th International Nat-
ural Language Generation conference, pages 163–
167, Edinburgh, UK. Association for Computational
Linguistics.

Hal Daumé III and Daniel Marcu. 2005. Induction
of word and phrase alignments for automatic doc-
ument summarization. Computational Linguistics,
31(4):505–530.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and
Alexander M Rush. 2017. Image-to-markup gener-
ation with coarse-to-fine attention. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 980–989. JMLR. org.

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and
Alexander Rush. 2018. Latent alignment and varia-
tional attention. In Advances in Neural Information
Processing Systems, pages 9712–9724.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the e2e nlg challenge. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 322–328.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123–156.

Jason Eisner. 2002. Parameter estimation for proba-
bilistic finite-state transducers. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 1–8.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. EMNLP.

Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar,
et al. 2010. Posterior regularization for structured
latent variable models. Journal of Machine Learn-
ing Research, 11(Jul):2001–2049.

Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong
Zhou, and Li Deng. 2018. Towards neural phrase-
based machine translation. ICLR.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden,
and Marilyn Walker. 2018. A deep ensemble model
with slot alignment for sequence-to-sequence natu-
ral language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 152–162.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom.
2019. Unsupervised word discovery with segmental
neural language models. ACL.

Joohyun Kim and Raymond J Mooney. 2010. Gen-
erative alignment and semantic parsing for learn-
ing from ambiguous supervision. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics: Posters, pages 543–551. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/W16-6626
https://doi.org/10.18653/v1/W16-6626
https://doi.org/10.18653/v1/W16-6626

7164

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M Rush. 2017. Structured attention networks.
ICLR.

Yoon Kim, Sam Wiseman, and Alexander M Rush.
2018. A tutorial on deep latent variable models of
natural language. arXiv preprint arXiv:1812.06834.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. ICLR.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, and Ali
Farhadi. 2014. Multi-resolution language grounding
with weak supervision. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 386–396.

Ravi Kondadadi, Blake Howald, and Frank Schilder.
2013. A statistical nlg framework for aggregated
planning and realization. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1406–1415.

Ioannis Konstas and Mirella Lapata. 2013. A global
model for concept-to-text generation. Journal of Ar-
tificial Intelligence Research, 48:305–346.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In Proceedings of the 21st annual
meeting on Association for Computational Linguis-
tics, pages 145–150. Association for Computational
Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with
application to the biography domain. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1203–1213.
Association for Computational Linguistics.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1, pages
91–99. Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Jeffrey Ling and Alexander Rush. 2017. Coarse-to-fine
attention models for document summarization. In
Proceedings of the Workshop on New Frontiers in
Summarization, pages 33–42.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Associa-
tion for Computational Linguistics.

Kathleen McKeown. 1992. Text generation. Cam-
bridge University Press.

Hongyuan Mei, TTI UChicago, Mohit Bansal, and
Matthew R Walter. 2016. What to talk about and
how? selective generation using lstms with coarse-
to-fine alignment. In Proceedings of NAACL-HLT,
pages 720–730.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267–2277.

Dang Tuan Nguyen and Trung Tran. 2018. Struc-
turebased generation system for e2e nlg challenge.
arxiv.

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas
Curry, and Verena Rieser. 2017a. Why we need new
evaluation metrics for nlg. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2241–2252.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017b. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
201–206.

Franz Josef Och, Christoph Tillmann, and Hermann
Ney. 1999. Improved alignment models for statisti-
cal machine translation. In 1999 Joint SIGDAT Con-
ference on Empirical Methods in Natural Language
Processing and Very Large Corpora.

Tatsuro Oya, Yashar Mehdad, Giuseppe Carenini, and
Raymond Ng. 2014. A template-based abstractive
meeting summarization: Leveraging summary and
source text relationships. In Proceedings of the 8th
International Natural Language Generation Confer-
ence (INLG), pages 45–53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024–8035.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

7165

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6908–6915.

Yevgeniy Puzikov and Iryna Gurevych. 2018. E2e nlg
challenge: Neural models vs. templates. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 463–471.

Guanghui Qin, Jin-Ge Yao, Xuening Wang, Jinpeng
Wang, and Chin-Yew Lin. 2018. Learning latent se-
mantic annotations for grounding natural language
to structured data. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3761–3771.

Lawrence R Rabiner. 1989. A tutorial on hidden
markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–
286.

Lena Reed, Shereen Oraby, and Marilyn Walker. 2018.
Can neural generators for dialogue learn sentence
planning and discourse structuring? In Proceedings
of the 11th International Conference on Natural Lan-
guage Generation, pages 284–295.

Ehud Reiter and Anja Belz. 2009. An investigation into
the validity of some metrics for automatically evalu-
ating natural language generation systems. Compu-
tational Linguistics, 35(4):529–558.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. Association for Computational Linguistics.

Shiv Shankar and Sunita Sarawagi. 2019. Posterior at-
tention models for sequence to sequence learning.
ICLR.

Xiaoyu Shen, Youssef Oualil, Clayton Greenberg, Mit-
tul Singh, and Dietrich Klakow. 2017. Estimation
of gap between current language models and human
performance. Proc. Interspeech 2017, pages 553–
557.

Xiaoyu Shen, Jun Suzuki, Kentaro Inui, Hui Su, Diet-
rich Klakow, and Satoshi Sekine. 2019a. Select and
attend: Towards controllable content selection in
text generation. arXiv preprint arXiv:1909.04453.

Xiaoyu Shen, Yang Zhao, Hui Su, and Dietrich Klakow.
2019b. Improving latent alignment in text summa-
rization by generalizing the pointer generator. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3753–
3764.

Hui Su, Xiaoyu Shen, Wenjie Li, and Dietrich Klakow.
2018. Nexus network: Connecting the preceding
and the following in dialogue generation. arXiv
preprint arXiv:1810.00671.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Peng-
wei Hu, Cheng Niu, and Jie Zhou. 2019. Improv-
ing multi-turn dialogue modelling with utterance
rewriter. arXiv preprint arXiv:1906.07004.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Chong Wang, Yining Wang, Po-Sen Huang, Abdel-
rahman Mohamed, Dengyong Zhou, and Li Deng.
2017. Sequence modeling via segmentations. In
Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 3674–3683.
JMLR. org.

Weiyue Wang, Derui Zhu, Tamer Alkhouli, Zixuan
Gan, and Hermann Ney. 2018. Neural hidden
Markov model for machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 377–382, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2018. Learning neural templates for text gen-
eration. EMNLP.

Shijie Wu, Pamela Shapiro, and Ryan Cotterell. 2018.
Hard non-monotonic attention for character-level
transduction. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 4425–4438.

Ze Yang, wei wu, Jian Yang, Can Xu, and zhoujun
li. 2019. Low-resource response generation with
template prior. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1886–1897, Hong Kong, China. As-
sociation for Computational Linguistics.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online seg-
ment to segment neural transduction. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1307–1316.

Yang Zhao, Xiaoyu Shen, Hajime Senuma, and Akiko
Aizawa. 2018. A comprehensive study: Sentence
compression with linguistic knowledge-enhanced
gated neural network. Data & Knowledge Engineer-
ing, 117:307–318.

https://doi.org/10.18653/v1/P18-2060
https://doi.org/10.18653/v1/P18-2060
https://doi.org/10.18653/v1/D19-1197
https://doi.org/10.18653/v1/D19-1197

