
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7145–7154
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7145

Heterogeneous Graph Transformer for Graph-to-Sequence Learning

Shaowei Yao, Tianming Wang, Xiaojun Wan
Wangxuan Institute of Computer Technology, Peking University

Center for Data Science, Peking University
The MOE Key Laboratory of Computational Linguistics, Peking University

{yaosw,wangtm,wanxiaojun}@pku.edu.cn

Abstract
The graph-to-sequence (Graph2Seq) learning
aims to transduce graph-structured represen-
tations to word sequences for text generation.
Recent studies propose various models to en-
code graph structure. However, most previous
works ignore the indirect relations between dis-
tance nodes, or treat indirect relations and di-
rect relations in the same way. In this paper,
we propose the Heterogeneous Graph Trans-
former to independently model the different re-
lations in the individual subgraphs of the origi-
nal graph, including direct relations, indirect
relations and multiple possible relations be-
tween nodes. Experimental results show that
our model strongly outperforms the state of the
art on all four standard benchmarks of AMR-
to-text generation and syntax-based neural ma-
chine translation.

1 Introduction

Graph-to-sequence (Graph2Seq) learning has at-
tracted lots of attention in recent years. Many Nat-
ural Language Process (NLP) problems involve
learning from not only sequential data but also
more complex structured data, such as semantic
graphs. For example, AMR-to-text generation is
a task of generating text from Abstract Meaning
Representation (AMR) graphs, where nodes denote
semantic concepts and edges refer to relations be-
tween concepts (see Figure 1 (a)). In addition, it
has been shown that even if the sequential input can
be augmented by additional structural information,
bringing benefits for some tasks, such as semantic
parsing (Pust et al., 2015; Guo and Lu, 2018) and
machine translation (Bastings et al., 2017). There-
fore, Xu et al. (2018b) introduced the Graph2Seq
problems which aim to generate target sequence
from graph-structured data.

The main challenge for Graph2Seq learning is
to build a powerful encoder which is able to cap-

ture the inherent structure in the given graph and
learn good representations for generating the tar-
get text. Early work relies on statistical methods
or sequence-to-sequence (Seq2Seq) models where
input graphs are linearized (Lu et al., 2009; Song
et al., 2017; Konstas et al., 2017). Recent studies
propose various models based on graph neural net-
work (GNN) to encode graphs (Xu et al., 2018b;
Beck et al., 2018; Guo et al., 2019; Damonte and
Cohen, 2019; Ribeiro et al., 2019). However, these
approaches only consider the relations between di-
rectly connected nodes, ignore the indirect relations
between distance nodes. Inspired by the success
of Transformer (Vaswani et al., 2017) which can
learn the dependencies between all tokens without
regard to their distance, the current state-of-the-
art Graph2Seq models (Zhu et al., 2019; Cai and
Lam, 2020) are based on Transformer and learn
the relations between all nodes no matter they are
connected or not. These approaches use shortest
relation path between nodes to encode semantic re-
lationships. However, they ignore the information
of nodes in the relation path and encode the direct
relations and indirect relations without distinction.
It may disturb the information propagation process
when aggregate information from direct neighbors.

To solve the issues above, we propose the Het-
erogeneous Graph Transformer (HetGT) to encode
the graph, which independently model the different
relations in the individual subgraphs of the original
graph. HetGT is adapted from Transformer and
it also employs an encoder-decoder architecture.
Following Beck et al. (2018), we first transform the
input into its corresponding Levi graph which is a
heterogeneous graph (contains different types of
edges). Then we split the transformed graph into
multiple subgraphs according to its heterogeneity,
which corresponds to different representation sub-
spaces of the graph. For updating the node repre-
sentations, attention mechanisms are used for inde-



7146

Figure 1: (a) An example of AMR graph for the sentence of Here it is a country with the freedom of speech. (b) Its
corresponding extended Levi graph with three types of edges. (c) The architecture of HetGT encoder.

pendently aggregating information in different sub-
graphs. Finally, the representations of each node
obtained in different subgraphs are concatenated
together and a parameterized linear transformation
is applied. In this way, HetGT could adaptively
model the various relations in the graph indepen-
dently, avoiding the information loss caused by
mixing all of them. Moreover, we introduce the
jump connection in our model, which significantly
improves the model performance.

We evaluate our model on four benchmark
datasets of two Graph2Seq tasks: the AMR-to-
text generation and the syntax-based Neural Ma-
chine Translation (NMT). In terms of various eval-
uation metrics, our model strongly outperforms
the state-of-the-art (SOTA) results on both two
tasks. Particularly, in AMR-to-text generation, our
model improves the BLEU scores of the SOTA by
about 2.2 points and 2.3 points on two benchmark
datasets (LDC2015E86 and LDC2017T10). In
syntax-based NMT, our model surpasses the SOTA
by about 4.1 and 2.2 BLEU scores for English-
German and English-Czech on News Commentary
v11 datasets from the WMT16 translation task. Our
contributions can be summarized as follows:

• We propose the Heterogeneous Graph Trans-
former (HetGT) which adaptively models the
various relations in different representation
subgraphs.

• We analyze the shortcomings of the residual

connection and introduce a better connectivity
method around encoder layers.

• Experimental results show that our model
achieves new state-of-the-art performance on
four benchmark datasets of two Graph2Seq
tasks.

2 Neural Graph-to-Sequence Model

In this section, we will first begin with a brief re-
view of the Transformer which is the basis of our
model. Then we will introduce the graph transfor-
mation process. Finally, we will detail the whole
architecture of HetGT.

2.1 Transformer

The Transformer employs an encoder-decoder ar-
chitecture, consisting of stacked encoder and de-
coder layers. Encoder layers consist of two sublay-
ers: a self-attention mechanism and a position-wise
feed-forward network. Self-attention mechanism
employs h attention heads. Each attention head
operates on an input sequence x = (x1, ..., xn)
of n elements where xi ∈ Rdx , and computes a
new sequence z = (z1, ..., zn) of the same length
where z ∈ Rdz . Finally, the results from all the
attention heads are concatenated together and a pa-
rameterized linear transformation is applied to get
the output of the self-attention sublayer. Each out-
put element zi is computed as the weighted sum of



7147

Figure 2: An example of graph structure and its exten-
sion to subword units.

linearly transformed input elements:

zi =
n∑

j=1

αij

(
xjW

V
)

(1)

where αij is weight coefficient and computed by a
softmax function:

αij = softmax (eij) =
exp eij∑n
k=1 exp eik

(2)

And eij is computed using a compatibility function
that compares two input elements:

eij =

(
xiW

Q
) (
xjW

K
)T

√
dz

(3)

Scaled dot product was chosen for the compatibil-
ity function. W V ,WQ,W V ∈ Rdx×dz are layer-
specific trainable parameter matrices. Meanwhile,
these parameter matrices are unique per attention
head.

2.2 Input Graph Transformation
Following Beck et al. (2018), we transform the
original graph into the Levi graph. The transforma-
tion equivalently turns edges into additional nodes
so we can encode the original edge labels in the
same way as for nodes. We also add a reverse edge
between each pair of connected nodes as well as
a self-loop edge for each node. These strategies
can make the model benefit from the information
propagation from different directions (See Figure 1
(b)).

In order to alleviate the data sparsity problem in
the corpus, we further introduce the Byte Pair En-
coding (BPE) (Sennrich et al., 2016) into the Levi
Graph. We split the original node into multiple sub-
word nodes. Besides adding default connections,
we also add the reverse and self-loop edges among
subwords. For example, the word country in Fig-
ure 2 is segmented into co@@, un@@, try with

three types of edges between them. Finally, we
transform the AMR graph into the extended Levi
Graph which can be seen as a heterogeneous graph,
as it has different types of edges.

2.3 Heterogeneous Graph Transformer

Our model is also an encoder-decoder architecture,
consisting of stacked encoder and decoder layers.
Given a preprocessed extended Levi graph, we split
the extended Levi graph into multiple subgraphs
according to its heterogeneity. In each graph en-
coder block, the node representation in different
subgraphs is updated based on its neighbor nodes in
the current subgraph. Then all the representations
of this node in different subgraphs will be com-
bined to get its final representation. In this way,
the model can attend to information from different
representation subgraphs and adaptively model the
various relations. The learned representations of
all nodes at the last block are fed to the sequence
decoder for sequence generation. The architecture
of HetGT encoder is shown in Figure 1 (c). Due to
the limitation of space the decoder is omitted in the
figure. We will describe it in Section 2.3.2.

2.3.1 Graph Encoder
Unlike previous Transformer-based Graph2Seq
models using relative position encoding to incorpo-
rate structural information, we use a simpler way to
encode the graph structure. As Transformer treats
the sentence as a fully-connected graph, we directly
mask the non-neighbor nodes’ attention when up-
dating each node’s representation. Specifically, we
mask the attention αij for node j /∈ Ni, where Ni

is the set of neighbors of node i in the graph. So
given the input sequence x = (x1, ..., xn), the out-
put representation of node i denoted as zi in each
attention head is computed as follows:

zi =
∑
j∈Ni

αij

(
xjW

V
)

(4)

where αij represents the attention score of node j
to i which is computed using scaled dot-product
function as in Equation 2.

We also investigate another way to compute at-
tention scores. We use the additive form of atten-
tion instead of scaled dot-product attention, which
is similar to graph attention network (Veličković
et al., 2018). The additive form of attention shows
better performance and trainability in some tasks
(Chen et al., 2019). The attention coefficient αij is



7148

computed as follows:

αij = softmax (eij) =
exp eij∑

k∈Ni
exp eik

eij = LeakyReLU
(
aT [xiW

V ;xjW
V ]
) (5)

where a ∈ R2dz is a weight vector. LeakyReLU
(Girshick et al., 2014) is used as the activation func-
tion.

2.3.2 Heterogeneous Mechanism
Motivated by the success of the multi-head mech-
anism, we propose the heterogeneous mechanism.
Considering a sentence, multi-head attention al-
lows the model to implicitly attend to information
from different representation subspaces at differ-
ent positions. Correspondingly, our heterogeneous
mechanism makes the model explicitly attend to
information in different subgraphs, corresponding
to different representation subspaces of the graph,
which enhances the models’ encoding capability.

As stated above, the extended Levi graph is a het-
erogeneous graph which contains different types
of edges. For example, in Figure 1 (b), the edge
type vocabulary for the Levi graph of the AMR
graph is T ={default, reverse, self}. Specifically,
we first group all edge types into a single one to
get a homogeneous subgraph referred to connected
subgraph. The connected subgraph is actually an
undirected graph which contains the complete con-
nected information in the original graph. Then we
split the input graph into multiple subgraphs accord-
ing to the edge types. Besides learning the directly
connected relations, we introduce a fully-connected
subgraph to learn the implicit relationships between
indirectly connected nodes. Finally, we get the set
of subgraphs including M elements Gsub ={fully-
connected, connected, default, reverse}. For AMR
graph M = 4 (For NMT M = 6, we will detail
it in section 3.1). Note that we do not have a sub-
graph only containing self edges. Instead, we add
the self-loop edges into all subgraphs. We think it
is more helpful for information propagation than
constructing an independent self-connected sub-
graph. Now the output z in each encoder layer is
computed as follows:

z = FFN
(

concat
(
zG

sub
1 , ..., zG

sub
M

)
WO

)
z
Gsub
m

i =
∑

j∈NGsub
m

i

αij

(
xjW

V
)
,m ∈ [1,M ] (6)

where WO ∈ RMdz×dz is the parameter matrix.
N G

sub
m

i is the set of neighbors in the m-th subgraph

Figure 3: Different layer aggregation methods: residual
(left), jump (middle), dense (right).

of node i. αij is computed as Equation 2 or Equa-
tion 5. FFN is a feed-forward network which con-
sists of two linear transformations with a ReLU
activation in between. We also employ the resid-
ual connections between sublayers as well as layer
normalization. Note that the heterogeneous mecha-
nism is independent of the model architecture, so
it can be applied to any other graph models which
may bring benefits.

For decoder, we follow the standard implemen-
tation of the sequential Transformer decoder to
generate the text sequence. The decoder layers con-
sist of three sublayers: self-attention followed by
encoder-decoder attention, followed by a position-
wise feed-forward layer.

2.3.3 Layer Aggregation
As stated above, our model consists of stacked
encoder layers. A better information propagation
between encoder layers may bring better perfor-
mance. Therefore, we investigate three different
layer aggregation methods, which are illustrated in
Figure 3. When updating the representation of each
node at l-th layer, recent approaches aggregate the
neighbors first and then combine the aggregated re-
sult with the node’s representation from (l − 1)-th
layer. This strategy can be viewed as a form of a
skip connection between different layers (Xu et al.,
2018a):

z
(l)
Ni

= AGGREGATE
(
{z(l−1)j , ∀j ∈ Ni}

)
z
(l)
i = COMBINE

(
z
(l)
Ni
, z

(l−1)
i

) (7)

The residual connection is another well-known skip
connection which uses the identity mapping as the
combine function to help signals propagate (He
et al., 2016). However, these skip connections
cannot adaptively adjust the neighborhood size of
the final-layer representation independently. If we
”skip” a layer for z(l)i , all subsequent units such as



7149

z
(l+j)
i using this representation will be using this

skip implicitly. Thus, to selectively aggregate the
outputs of previous layers at the last, we introduce
the Jumping Knowledge architecture (Xu et al.,
2018a) in our model. At the last layer L of the
encoder, we combine all the outputs of previous
encoder layers by concatenation to help the model
selectively aggregate all of those intermediate rep-
resentations.

zfinal
i = Concat

(
z
(L)
i , ..., z

(1)
i , xi

)
Wjump (8)

where Wjump ∈ R(Ldz+dx)×dz . Furthermore, to
better improve information propagation, dense con-
nectivity can be introduced as well. With dense
connectivity, the nodes in l-th layer not only take
input from (l − 1)-th layer but also draw informa-
tion from all preceding layers:

z
(l)
i = Concat

(
z
(l−1)
i , ..., z

(1)
i , xi

)
W

(l)
dense (9)

where W (l)
dense ∈ Rd(l)×dz . d(l) = dx+dz× (l− 1).

Dense connectivity are also introduced in previous
researches (Huang et al., 2017; Guo et al., 2019).

3 Experiments

3.1 Data and preprocessing
We build and test our model on two typical
Graph2Seq learning tasks. One is AMR-to-text
generation and the other is syntax-based NMT. Ta-
ble 1 presents the statistics of four datasets of the
two tasks. For AMR-to-text generation, we use
two standard benchmarks LDC2015E86 (AMR15)
and LDC2017T10 (AMR17). These two datasets
contain 16K and 36K training instances, respec-
tively, and share the development and test set. Each
instance contains a sentence and an AMR graph.
In the preprocessing steps, we apply entity sim-
plification and anonymization in the same way as
Konstas et al. (2017). Then we transform each
preprocessed AMR graph into its extended Levi
graph as described in Section 2.2.

For the syntax-based NMT, we take syntac-
tic trees of source texts as inputs. We evaluate
our model on both English-German (En-De) and
English-Czech (En-Cs) News Commentary v11
datasets from the WMT16 translation task 1. Both
sides are tokenized and split into subwords using
BPE with 8000 merge operations. English text is
parsed using SyntaxNet (Alberti et al., 2017). Then

1http://www.statmt.org/wmt16/translation-task.html

Dataset Train Dev Test

LDC2015E86 (AMR15) 16,833 1,368 1,371
LDC2017T10 (AMR17) 36,521 1,368 1,371

English-Czech (En-Cs) 181,112 2,656 2,999
English-German (En-De) 226,822 2,169 2,999

Table 1: The statistics of four datasets. The first two
are datasets in AMR-to-text generation subtask, the last
two are datasets in syntax-based NMT subtask.

we transform the labeled dependency tree into the
extended Levi graph as described in Section 2.2.
Unlike AMR-to-text generation, in NMT task the
input sentence contains significant sequential in-
formation. This information is lost when treating
the sentence as a graph. Guo et al. (2019) consider
this information by adding sequential connections
between each word node. In our model, we also
add forward and backward edges in the extended
Levi graph. Thus, the edge types vocabulary for
the extended Levi graph of the dependency tree is
T ={default, reverse, self, forward, backward}.
So the set of subgraphs for NMT is Gsub = {fully-
connected, connected, default, reverse, forward,
backward}. Note that we do not change the model
architecture in the NMT tasks. However, we still
get good results, which indicates the effectiveness
of our model on Graph2Seq tasks. Except for in-
troducing BPE into Levi graph, the above prepro-
cessing steps are following Bastings et al. (2017).
We refer to them for further information on the
preprocessing steps.

3.2 Parameter Settings

Both our encoder and decoder have 6 layers with
512-dimensional word embeddings and hidden
states. We employ 8 heads and dropout with a
rate of 0.3. For optimization, we use Adam opti-
mizer with β2 = 0.998 and set batch size to 4096
tokens. Meanwhile, we increase learning rate lin-
early for the first warmup steps, and decrease
it thereafter proportionally to the inverse square
root of the step number. We set warmup steps
to 8000. The similar learning rate schedule is
adopted in (Vaswani et al., 2017). Our implementa-
tion uses the openNMT library (Klein et al., 2017).
We train the models for 250K steps on a single
GeForce GTX 1080 Ti GPU. Our code is available
at https://github.com/QAQ-v/HetGT.



7150

Model LDC2015E86 (AMR15) LDC2017T10 (AMR17)

BLEU CHRF++ METEOR BLEU CHRF++ METEOR

GGNN2Seq (Beck et al., 2018) - - - 23.3 50.4 -
GraphLSTM (Song et al., 2018) 23.3 - - - - -
GCNSEQ (Damonte and Cohen, 2019) 24.40 - 23.60 24.54 - 24.07
DGCN (Guo et al., 2019) 25.9 - - 27.9 57.3 -
G2S-GGNN (Ribeiro et al., 2019) 24.32 - 30.53 27.87 - 33.21
Transformer-SA (Zhu et al., 2019) 29.66 63.00 35.45 31.54 63.84 36.02
Transformer-CNN (Zhu et al., 2019) 29.10 62.10 35.00 31.82 64.05 36.38
GTransformer (Cai and Lam, 2020) 27.4 56.4 32.9 29.8 59.4 35.1

GGNN2Seqensemble (Beck et al., 2018) - - - 27.5 53.5 -
DGCNensemble (Guo et al., 2019) 28.2 - - 30.4 59.6 -

Transformer 25.69 60.10 33.88 27.60 61.78 35.21
HetGTdot-product (ours) 31.29 63.62 36.71 33.16 65.08 37.75
HetGTadditive (ours) 31.84 63.81 36.89 34.10 65.60 38.10

Table 2: Results for AMR-to-text generation on the test sets of AMR15 and AMR17.

Model English-German English-Czech

BLEU CHRF++ METEOR BLEU CHRF++ METEOR

BiRNN+GCN (Bastings et al., 2017) 16.1 - - 9.6 - -
GGNN2Seq (Beck et al., 2018) 16.7 42.4 - 9.8 33.3 -
DGCN (Guo et al., 2019) 19.0 44.1 - 12.1 37.1 -
GTransformer (Cai and Lam, 2020) 21.3 47.9 - 14.1 41.1 -

GGNN2Seqensenmble (Beck et al., 2018) 19.6 45.1 - 11.7 35.9 -
DGCNensemble (Guo et al., 2019) 20.5 45.8 - 13.1 37.8 -

Transformer 23.18 49.54 26.00 14.83 39.27 19.12
HetGTdot-product (ours) 25.39 51.55 27.37 16.15 41.10 20.18
HetGTadditive (ours) 25.44 51.27 27.26 16.29 41.14 20.35

Table 3: Results for syntax-based NMT on the test sets of En-De and En-Cs.

3.3 Metrics and Baselines

For performance evaluation, we use BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2014) and sentence-level CHRF++ (Popović,
2015) with default hyperparameter settings as eval-
uation metrics. Meanwhile, we use the tools in
Neubig et al. (2019) for the statistical significance
tests.

Our baseline is the original Transformer 2. For
AMR-to-text generation, Transformer takes lin-
earized graphs as inputs. For syntax-based NMT,
Transformer is trained on the preprocessed trans-
lation dataset without syntactic information. We
also compare the performance of HetGT with pre-
vious single/ensenmble approaches which can be
grouped into three categories: (1) Recurrent neu-

2Parameters were chosen following the OpenNMT
FAQ: http://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-
use-the-transformer-model

ral network (RNN) based methods (GGNN2Seq,
GraphLSTM); (2) Graph neural network (GNN)
based methods (GCNSEQ, DGCN, G2S-GGNN);
(3) The Transformer based methods (Structural
Transformer, GTransformer). The ensemble mod-
els are denoted by subscripts in Table 2 and Table
3.

3.4 Results on AMR-to-text Generation
Table 2 presents the results of our single model
and previous single/ensemble models on the test
sets of AMR15 and AMR17. We can see that
our Transformer baseline outperforms most pre-
vious single models, and our best single model
HetGTadditive outperforms the Transformer baseline
by a large margin (6.15 BLEU and 6.44 BLEU) on
both benchmarks. It demonstrates the importance
of incorporating structural information. Mean-
while, HetGTadditive gets an improvement of 2.18
and 2.28 BLEU points over the latest SoTA results



7151

(Zhu et al., 2019) on AMR15 and AMR17, respec-
tively. Previous models can capture the structural
information but most of them ignore heterogeneous
information. These results indicate that the hetero-
geneity in the graph carries lots of useful informa-
tion for the downstream tasks, and our model can
make good use of it.

Furthermore, our best single model still has bet-
ter results than previous ensemble models on both
two datasets. Note that additive attention based
model HetGTadditive is significantly better that dot-
product attention based model HetGTdot-product in
AMR-to-text generation. It may be attributed to
that the additive attention has less parameters and
is easier to train on the small dataset.

3.5 Results on Syntax-based NMT

Table 3 presents the results of our single model
and previous single/ensemble models on the test
sets for En-De and En-Cs language pairs. We can
see that our Transformer baseline already outper-
forms all previous results even though some of
them are Transformer based. It shows the effective-
ness of Transformer for NMT tasks. Meanwhile,
even without changing the model architecture for
the NMT tasks, our single model surpasses Trans-
former baseline by 2.26 and 1.46 BLEU points
on the En-De and En-Cs tasks, respectively, and
our model surpasses previous best models by 4.14
and 2.19 BLEU points. In syntax-based NMT
where the dataset is larger than AMR-to-text gener-
ation, the HetGTdot-product gets comparable results
compared to the HetGTadditive, and even outper-
forms the HetGTadditive in terms of METEOR and
CHRF++ on the language pair En-De. We think
on the larger datasets the HetGTdot-product will get
better results than the HetGTadditive.

4 Additional Experiments

4.1 Effect of Layer Aggregation Method

Firstly, we compare the performance of three layer-
aggregation methods discussed in Section 2.3.3.

Method HetGTdot-product HetGTadditive

Residual 30.02 30.56
Jump 31.29 31.84
Dense 29.92 30.41

Table 4: Results of different layer aggregation methods
on the test set of AMR15.

BLEU METEOR

Full Model 31.84 36.89
w/ only fully-connected subgraph 25.69 33.88
w/ only connected subgraph 30.22 36.32
w/ only default subgraph 30.47 36.34
w/ only reverse subgraph 29.76 35.97
w/o fully-connected subgraph 30.84 36.35
w/o connected subgraph 31.62 36.75
w/o default subgraph 29.68 35.88
w/o reverse subgraph 29.86 36.03
w/o BPE 29.84 35.52

Table 5: Ablation results on the AMR15 test set.

The results are shown in Table 4. We can see
the jump connection is the most effective method.
However, the dense connection performs the worst.
We think the reason is that dense connection intro-
duce lots of extra parameters which are harder to
learn.

4.2 Effect of Subgraphs

In this section, we also use AMR15 as our bench-
mark to investigate how each subgraph influences
the final results of our best model HetGTadditive.
Table 5 shows the results of removing or only keep-
ing the specific subgraph. Only keeping the fully-
connected subgraph essentially is what the Trans-
former baseline does. It means the model does
not consider the inherent structural information in
inputs. Obviously, it cannot get a good result. In ad-
dition, only keeping the connected subgraph does
not perform well even it considers the structural in-
formation. It demonstrates that the heterogeneous
information in the graph is helpful for learning
the representation of the graph. When removing
any subgraph, the performance of the model will
decrease. It demonstrates that each subgraph has
contributed to the final results. At last, we remove
BPE, and we get 29.84 BLEU score which is still
better than previous SoTA that also uses BPE. Note
that when we remove the connected subgraph, the
results do not have statistically significant changes
(p = 0.293). We think the reason is that the left
subgraphs already contain the full information of
the original graph because the connected subgraph
is obtained by grouping all edge types into a single
one. Except that, all the other results have statisti-
cally significant changes (p ≤ 0.05).



7152

(p / possible-01 e.1 :polarity e.2 - e.2
:ARG1 (w / work-01 e.3,4

:ARG0 (i / i e.0)
:location e.5 (h / home e.6))

:ARG1-of (c / cause-01 e.8
:ARG0 (s / shout-01 e.10

:ARG0 (s2 / she e.9)
:ARG2 e.11 i e.12)))

REF: i can n’t do work at home , because she shouts at me .
Transformer: i can n’t do work at home , because she shouts at me .
HetGTadditive (ours): i can n’t do work at home , because she shouts at me
.

(s / say-01 e.1
:ARG0 (h2 / he e.0)
:ARG1 e.2 (a / agree-01 e.4

:ARG0 h2 e.3
:ARG1 e.5 (o / opine-01 e.9

:ARG0 e.8 (p2 / person :wiki ”Liu Huaqing”
:name (n / name :op1 ”Huaqing” e.6 :op2 ”Liu” e.7))

:ARG1 e.10 (r / recommend-01 e.14
:ARG1 (d / develop-02 e.16

:ARG0 (a2 / and e.12
:op1 (c4 / country :wiki ”Thailand”

:name (n2 / name :op1 ”Thailand” e.11))
:op2 (c5 / country :wiki ”China”

:name (n3 / name :op1 ”China” e.13)))
:ARG1 (a3 / and e.21

:op1 (c6 / cooperate-01 e.23
:ARG2 (e / economy e.20)
:mod e.19 (f / form e.18

:mod (v / various e.17)))
op2 (c7 / cooperate-01 e.23

:ARG2 (t2 / trade-01 e.22)
:mod f))

:degree (f2 / further e.15))))))

REF: he said that he agreed with huaqing liu ’s opinion that thailand and
china should further develop various forms of economic and trade cooper-
ation .
Transformer: he said huaqing liu agreed to agree with thailand and china
should further develop in various forms of economic cooperation and trade
cooperation .
HetGTadditive (ours): he said he agreed to huaqing liu ’s opinion that thai-
land and china should further develop various forms of economic coopera-
tion and trade cooperation .

Table 6: Example outputs of different systems are com-
pared, including Transformer baseline and our HetGT.

4.3 Case Study

We perform case studies for better understanding
the model performance. We compare the outputs of
Transformer baseline and our HetGTadditive. The re-
sults are presented in Table 6. In the first simple ex-
ample, our Transformer baseline and HetGTadditive
can generate the target sequence without mistakes.
In the second example which is more complicated,
the Transformer baseline fails to identify the pos-
sessor of “opinion” and the subject of “agreed”
while our model successfully recognizes them.
However, we find the there is a common problem:
the sentences they generate all have some duplica-
tion. We will explore this issue further in the future
work.

5 Related Work

Early researches for Graph2Seq learning tasks are
based on statistical methods and neural seq2seq

model. Lu et al. (2009) propose an NLG approach
built on top of tree conditional random fields to use
the tree-structured meaning representation. Song
et al. (2017) use synchronous node replacement
grammar to generate text. Konstas et al. (2017)
linearize the input graph and feed it to the seq2seq
model for text-to-AMR parsing and AMR-to-text
generation. However, linearizing AMR graphs into
sequences may incurs in loss of information. Re-
cent efforts consider to capture the structural in-
formation in the encoder. Beck et al. (2018) em-
ploy Gated Graph Neural Networks (GGNN) as
the encoder and Song et al. (2018) propose the
graph-state LSTM to incorporate the graph struc-
ture. Their works belong to the family of recurrent
neural network (RNN). In addition, there are some
works are build upon the GNN. Damonte and Co-
hen (2019) propose stacking encoders including
LSTM and GCN. Guo et al. (2019) introduce the
densely connected GCN to encode richer local and
non-local information for better graph representa-
tion.

Recent studies also extend Transformer to en-
code structure information. Shaw et al. (2018) pro-
pose the relation-aware self-attention which learns
explicit embeddings for pair-wise relationships be-
tween input elements. Zhu et al. (2019) and Cai
and Lam (2020) both extend the relation-aware self-
attention to generate text from AMR graph. Our
model is also based on Transformer. However, we
do not employ the relative position encoding to
incorporate structural information. Instead, we di-
rectly mask the non-neighbor nodes attention when
updating each nodes representation. Moreover, we
introduce the heterogeneous information and jump
connection to help model learn a better graph rep-
resentation, bringing substantial gains in the model
performance.

6 Conclusion

In this paper, we propose the Heterogeneous Graph
Transformer (HetGT) for Graph2Seq learning. Our
proposed heterogeneous mechanism can adaptively
model the different representation subgraphs. Ex-
perimental results show that HetGT strongly out-
performs the state of the art performances on four
benchmark datasets of AMR-to-text generation and
syntax-based neural machine translation tasks.

There are two directions for future works. One
is to investigate how the other graph models can
benefit from our proposed heterogeneous mecha-



7153

nism. On the other hand, we would also like to
investigate how to make use of our proposed model
to solve sequence-to-sequence tasks.

Acknowledgments

This work was supported by National Natural Sci-
ence Foundation of China (61772036) and Key
Laboratory of Science, Technology and Standard in
Press Industry (Key Laboratory of Intelligent Press
Media Technology). We thank the anonymous re-
viewers for their helpful comments. Xiaojun Wan
is the corresponding author.

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Daniel Gillick, Lingpeng Kong, Terry K
Koo, Ji Ma, Mark Omernick, Slav Petrov, Chayut
Thanapirom, Zora Tung, and David Weiss. 2017.
Syntaxnet models for the conll 2017 shared task.
ArXiv, abs/1703.04929.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1957–1967, Copenhagen, Den-
mark. Association for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273–283, Melbourne, Australia. Association
for Computational Linguistics.

Deng Cai and Wai Lam. 2020. Graph transformer for
graph-to-sequence learning. In Proceedings of The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAI).

Benson Chen, Regina Barzilay, and Tommi Jaakkola.
2019. Path-augmented graph transformer network.
arXiv preprint arXiv:1905.12712.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3649–3658,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. 2014. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 580–587.

Zhijiang Guo and Wei Lu. 2018. Better transition-
based AMR parsing with a refined search space.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1712–1722, Brussels, Belgium. Association
for Computational Linguistics.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019. Densely connected graph convolutional
networks for graph-to-sequence learning. Transac-
tions of the Association for Computational Linguis-
tics, 7:297–312.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Identity mappings in deep residual net-
works. In European conference on computer vision,
pages 630–645. Springer.

G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Wein-
berger. 2017. Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 2261–
2269.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Wei Lu, Hwee Tou Ng, and Wee Sun Lee. 2009. Nat-
ural language generation with tree conditional ran-
dom fields. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 400–409, Singapore. Association for
Computational Linguistics.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, Xinyi Wang, and John Wieting. 2019.
compare-mt: A tool for holistic comparison of lan-
guage generation systems. CoRR, abs/1903.07926.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maja Popović. 2015. chrF: character n-gram f-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,

https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.1162/tacl_a_00269
https://doi.org/10.1162/tacl_a_00269
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://www.aclweb.org/anthology/D09-1042
https://www.aclweb.org/anthology/D09-1042
https://www.aclweb.org/anthology/D09-1042
http://arxiv.org/abs/1903.07926
http://arxiv.org/abs/1903.07926
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049


7154

pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing English
into abstract meaning representation using syntax-
based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1143–1154, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3181–3192, Hong
Kong, China. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo
Wang, and Daniel Gildea. 2017. AMR-to-text gener-
ation with synchronous node replacement grammar.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 7–13, Vancouver, Canada.
Association for Computational Linguistics.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1616–
1626, Melbourne, Australia. Association for Compu-
tational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. International
Conference on Learning Representations.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro
Sonobe, Ken ichi Kawarabayashi, and Stefanie
Jegelka. 2018a. Representation learning on graphs
with jumping knowledge networks. In Proceedings
of the 35th International Conference on Machine
Learning.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
Michael Witbrock, and Vadim Sheinin. 2018b.
Graph2seq: Graph to sequence learning with
attention-based neural networks. arXiv preprint
arXiv:1804.00823.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better AMR-to-text gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5458–5467, Hong Kong, China. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/P17-2002
https://doi.org/10.18653/v1/P17-2002
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/P18-1150
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548

