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Abstract

Discourse representation tree structure
(DRTS) parsing is a novel semantic parsing
task which has been concerned most recently.
State-of-the-art performance can be achieved
by a neural sequence-to-sequence model,
treating the tree construction as an incremen-
tal sequence generation problem. Structural
information such as input syntax and the
intermediate skeleton of the partial output
has been ignored in the model, which could
be potentially useful for the DRTS parsing.
In this work, we propose a structural-aware
model at both the encoder and decoder phase
to integrate the structural information, where
graph attention network (GAT) is exploited for
effectively modeling. Experimental results on
a benchmark dataset show that our proposed
model is effective and can obtain the best
performance in the literature.

1 Introduction

Discourse representation tree structure (DRTS) is
a form of discourse structure based on Discourse
Representation Theory of Kamp and Reyle (1993),
a popular theory of meaning representation (Kamp,
1981; Asher, 1993; Asher and Lascarides, 2003). It
is designed to account for a variety of linguistic phe-
nomena, including the interpretation of pronouns
and temporal expressions within and across sen-
tences. Correspondingly, as one type of discourse
parsing, DRTS parsing (Liu et al., 2018) can be
helpful for paragraph or document-level text un-
derstanding by converting DRS to tree-style DRTS.
(Liu et al., 2019).

Figure 1 shows an example of DRTS, where
the leaf nodes are discourse representation units
(DRUs), upon which a discourse tree structure built.
In particular, a DRU consists of several individ-
ual tuples, where each tuple denotes a relation in-
side the DRU. For example, there is a relationship

Figure 1: Left: Our proposed model with two structure-
aware module. Right: The DRTS for a clause in a
document: “The letterx4

warns Jewish womenx16
that

they will suffer if they date Arab men.
p4

”

“That” between the specific entity x16 and a propo-
sition p4. The relationships between the DRUs are
organized by a tree skeleton, which includes three
types of nodes: the S(DRS) nodes to introduce
DRU, the relation nodes for inter-DRU relation-
ship, and the variable nodes, which are used to
define S(DRS) (e.g., p4, k1 and k4 ).

There have been only a few existing stud-
ies related to DRTS parsing (van Noord et al.,
2018a,b). In particular, the end-to-end encoder-
decoder model of Liu et al. (2019) gives the state-
of-the-art performance, which converts the task
into a sequence-to-sequence problem. The input
sequence consists of words in paragraphs, encoded
by a BiLSTM structure, and the output sequence
is top-to-bottom depth-first traversal of the output
DRTS tree, which is decoded incrementally with an
attention-based LSTM feature representation mod-
ule. During decoding, Liu et al. (2019) separate
the skeleton generation and the DRU producing, as
illustrated by Figure 1.

Although highly effective, the above model ig-
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nores some useful structure information in both
the encoder and the decoder, which can be poten-
tially useful for our task. Specifically, for encoding,
syntax-based tree structure information has been
demonstrated effective for a number of NLP tasks
(Kasai et al., 2019; Li et al., 2018), including sev-
eral other types of discourse parsing (Yu et al.,
2018; Li et al., 2015). For decoding, the skele-
ton structure of DRTS can be also beneficial for
our task. As a two-phase decoding strategy is ex-
ploited, the skeleton tree from the first phase could
be helpful for DRU parsing of the second phase.

We propose to improve DRTS parsing by mak-
ing use of the above structure information, mod-
eling dependency-based syntax of the input sen-
tences as well as the skeleton structure to en-
hance the baseline model of Liu et al. (2019) us-
ing Graph Attention Network (GAT) (Veličković
et al., 2018), which has been demonstrated effec-
tive for tree/graph encoding (Huang and Carley,
2019; Linmei et al., 2019). In particular, we first
derive dependency tree structures for each sentence
in a paragraph from the Stanford Parser, and then
encode them directly via one GAT module, which
are fed as inputs for decoding. Second, after the
first-state skeleton parsing is finished, we encode
the skeleton structures by another GAT module,
feeding the outputs for DRU parsing.

Following Liu et al. (2019), we conduct exper-
iments on the Groningen Meaning Bank (GMB)
dataset. Results show that structural information
is highly useful for our task, bring a significantly
better performance over the baseline. In particu-
lar, dependency syntax gives an improvement of
2.84% based on the standard evaluation metrics
and the skeleton structure information gives a fur-
ther improvement of 1.41%. Finally, our model
achieves 71.65% F1-score for the task, 4.25% bet-
ter than the baseline model. Additionally, our
model is also effective for sentence-level DRTS
parsing, leading to an increase of 1.72% by the F1-
score by our final model. We release our code and
best models at http://github.com/seanblank/
DRTSparsing for facilitating future research.

2 Discourse Representation Tree (DRT)

Formally, a DRT structure consists of two compo-
nents according to the function: (1) the leaf nodes
and (2) the tree skeleton (non-terminal nodes), re-
spectively. Similar to other types of discourse rep-
resentation methods, we have minimum semantic

Figure 2: A full DRTS tree for document: “k1: At least
27 wives of Israeli rabbis have signed a letter urging
Jewish women to avoid dating Arab men. k4: The letter
warns Jewish women that they will suffer if they date
Arab men.” Red numbers indicate top-down depth-first
order traversal of the DRTS skeleton.

units named by DRU, and then a discourse tree is
built by the discourse relationships between these
minimum units. Figure 2 shows the full tree version
of Figure 1 in the introduction.

DRU. DRU serves as terminal nodes of a DRT
structure, which is constituted by a set of unordered
relation tuples, as shown by the below dashed com-
ponents of the tree in Figure 1. A relation tuple con-
sists of a relation r and several arguments v1 · · · vn
in r, it can be denoted as r(v1 · · · vn). Variables
refer to entities x, events e, states s, time t, proposi-
tions p, segment k and constants c. The relation is
used to indicate the discourse connections among
the inside variables. A total of 262 relation labels
are defined in DRTS. One DRU may include un-
limited relation tuples, which are all extracted from
the corresponding text pieces.

Skeleton. The skeleton reflects the structural con-
nection between DRUs. Nodes in a skeleton can
be divided into three categories, including the
(S)DRS nodes, the relation nodes and the vari-
able nodes. In particular, (S)DRS nodes denotes
a full semantically-completed node of discourse
analysis. The relation node defines a specific dis-
course relationship over its covered (S)DRS nodes.
DRTS has defined six types of DRS relations, in-
cluding IMP (implication), OR (disjunction), DUP
(duplex), POS (possibility), NEC (necessity) and

http://github.com/seanblank/DRTSparsing
http://github.com/seanblank/DRTSparsing
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NOT (negation), respectively, which is orthogo-
nal to the relations inside the DRUs. The variable
node assigns one (S)DRS node with a specific sym-
bol. There are two types of variable nodes, namely
proposition and segment. For example, in Figure 2,
the root is a SDRS node, IMP is a relation nodes
and k1, p4 denote the variable nodes.

3 Baseline

We take the multi-step encoder-decoder method of
Liu et al. (2019) as the baseline model for DRTS
parsing. First, an encoder is used to convert one
input paragraph into neural vectors by using word
embeddings as well as BiLSTMs, and then a multi-
step decoder is exploited to generate a full tree
structure in a sequential manner incrementally.

3.1 Encoder
Given a paragraph, we concatenate all the sentences
into one sequence, where each sentence is aug-
mented with a start symbol 〈s〉 and an end token 〈e〉
at the front and end positions, respectively, obtain-
ing a final input sequence for the paragraph D =
〈s〉, w1,1, ..., w1,n1 , 〈e〉, 〈s〉, w2,1, ..., wm,nm , 〈e〉.
For simplicity, we use D = w1, ..., wn to denote
the sequence for short.

We use three different embedding representa-
tions to denote each word wi:

vi = erand(wi)⊕ epret(wi)⊕ elem(wi), (1)

where erand(·), and epret(·) denotes random and
pretrained embeddings for current word, elem(·)
denotes the random embedding for current word
lemma, and ⊕ denotes concatenation,

We then apply MLP over the word representa-
tions, and further use BiLSTM to encode the vector
sequence:

x1 · · ·xn = MLP(v1 · · ·vn)
Henc = h1 · · ·hn = BiLSTM(x1 · · ·xn),

(2)

where Henc = h1 · · ·hn is the encoder output.

3.2 Decoder
We transform the DRTS structure into a sequence of
symbols, so that the original DRTS can be restored
from the symbol sequence as well. By this trans-
formation, we can apply the sequence-to-sequence
architecture for decoding. In particular, a two-stage
strategy for the decoding is adapted, first generat-
ing the skeleton structure, and then generating the
DRUs. The key step is the transformation strategies
of the two stages.

Generating the skeleton structure. We define
two types of symbols for each skeleton, where the
first is the node label conjoined by a left bracket,
indicting the start of traversal of the current node,
and the second symbol is a right bracket, indicting
the end of traversal of the current node. We exploit
a top-down depth-first order to traverse the skeleton
subtree, finishing a node traversal when all its child
nodes have been finished. Figure 2 showed an
example to illustrate the transformation. In this
way, we can obtain a symbol sequence Y skt =
yskt
1 , ..., yskt

s which is equivalent to the skeleton tree.

Generating the DRUs. After the skeleton is
ready, we start the DRU generation process. The
DRU nodes are only related to the (S)DRS nodes in
the skeleton. Thus we generate DRU nodes one by
one according to the (S)DRS nodes in the skeleton
structure. For each DRU, we have two types of
symbols, one for the relations and the other for the
variables. We first generate all the relations and
then generate the variables of each relation incre-
mentally.1 In this way, we can obtain a sequence
of Y dru = ydru

1 , ..., ydru
t for DRU generation.2

Sequence decoding. We follow the standard
sequence-to-sequence architecture (Liu et al., 2018)
to obtain the final sequence Y = Y sktY dru =
yskt
1 , ..., yskt

s ydru
1 , ..., ydru

t incrementally. At each
step, we score the candidate next-step symbols
based on current observations:

oskt
j = gskt(Hyskt<j

,Henc),

odru
k = gdru(Hyskt<k

,Hskt,Henc),
(3)

where Henc refers to the encoder outputs, Hskt

and Hdru denotes the outputs of skeleton decoder
and the DRU decoder uses left-to-right LSTMs
over Y skt and Y dru, respectively, and gskt(·) and
gdru(·) are neural feature extraction functions for
predicting skeleton and DRU symbols, respectively.
Here we neglect the detailed description for gskt(·)
and gdru(·), which can be found in Liu et al. (2019).

Training. Given a set of labeled data, the model
is trained to minimize average cross-entropy losses

1We follow a predefined order for relations. In fact, the
order impacts little on the final influence.

2Our description is equivalent to Liu et al. (2019), who split
this process into two steps (i.e., relation prediction and variable
prediction). We merge the relation and variable predictions
for brief.
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Figure 3: Model structure with two graph modules over RNN outputs. The hidden state for each word of the
encoder is taken as the input node vector of the GAT module using syntax structure, and the output is fed into the
skeleton decoder. The output of skeleton decoder is fed into the GAT module with the skeleton structure, and the
output of GAT module is used to guide each DRU sequence generation.

over all individual symbol predictions:

L(θ) = − 1

N

∑
i

logpy*
i

(4)

where θ are the set of model parameters, py*
i

de-
notes the output probability of y*

i , which is com-
puted by softmax over oi, N is the total length of
the output sequence.

4 Structure-Aware Seq2Seq

To represent the structure features, we use a GAT
module on top of encoder and skeleton decoder
stage to enhance the baseline model. The graph
module is designed to learn non-local and non-
sequential information from structural inputs. In
this section, we first describe the GAT in detail and
then illustrate its application on our task.

4.1 Graph Attention Network
Given a graphG = (V,E), where each node vi has
a initial vectorial representation, the GNN module
enriches node representation with neighbor infor-
mations derived from the graph structure:

H l+1 = GNN(H l,A;W l), (5)

where H l ∈ Rn×d is the stacked hidden outputs
for all nodes at layer l (H0 denotes the input ini-
tial representations), A ∈ Rn×n denotes the graph
adjacent matrix representation, and W l is the pa-
rameter set of the GNN at layer l.

Different information aggregation functions lead
to different GNN architectures. In particular, GAT
uses the attention mechanism (Bahdanau et al.,
2014) on graph neighbors, which has been demon-
strated more effective than graph convolution neu-
ral network (GCN). The aggregation weights in
GAT are computed by multi-head attention mecha-
nism (Vaswani et al., 2017).

Specifically, given a node i with a hidden repre-
sentation hl

i at layer l and the its neighbors Ni as
well as their hidden representations, a GAT updates
the node’s hidden representation at layer l+1 using
multi-head attention:

hl+1
i =‖Kk=1 σ(

∑
j∈Ni

αk
ijW

khl
j) (6)

where ‖ represents concatenation, σ is a sigmoid
function, and W k is the corresponding weight ma-
trix of input linear transformation. αk

ij are normal-
ized attention coefficients computed by the k-th
attention mechanism:

αk
ij = SOFTMAXj(eij)

=
exp(eij)∑

k∈Ni
exp(eik)

(7)

where eij is attention coefficient that indicate the
importance of node j to node i computed by:

eij = LeakyReLU
(
f [Whi ‖Whj ]

)
(8)

f(·) is a single-layer feed-forward neural network,
parameterized by a shared weight, W denotes a
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Section #Doc #Sent AVGsent AVGword

Train 7843 48599 6.2 135.3
Devel 991 6111 6.2 134.0
Test 1035 6469 6.3 137.2

Table 1: Statistics on GMB document level bench-
marks, AVGsent and AVGword denote the average num-
ber of sentences and words per document, respectively.

shared linear transformation and LeakyReLU is a
non-linearity activation function.

4.2 GAT for the Encoder

On the encoder side, we equip the inputs with
dependency syntax structures, which have been
demonstrated helpful for closely-related tasks such
as RST discourse parsing. A GAT module is used
to represent the encoder output as mentioned in
Section 4.1. We transform the document into a
dependency graph represented by a undirected ad-
jacent matrix using an off-the shelf dependency
parser (Chen and Manning, 2014). The hidden
states of each node is updated with a multi-layer
GAT network on the adjacent matrix A:

Hg-enc = GATenc(Henc ⊕Esyn,A;W ), (9)

where Esyn is the embedding outputs of the syntac-
tic labels in the dependency tree.

The learned representation Hg-enc is used to sub-
stitute the original Henc for predictions.

4.3 GAT for the Decoder

We further enhance the baseline model by exploit-
ing the partial output after skeleton prediction step
is finished. On one hand, the skeleton structures
can guide for DRU parsing. On the other hand, the
joint skeleton and DRU parsing can further help to
rerank the skeleton predictions as well, since global
skeleton representations are exploited.

Specifically, after all the skeleton nodes are gen-
erated, we construct a graph based on the nodes
except the right parenthesis as shown in Figure 3.
We use a GAT network on top of the hidden states
to capture global structure information:

Hg-skt = GATskt(Hskt ⊕Eskt,A;W ), (10)

where Eskt is the embedding outputs of the node
labels in the generated skeleton tree, and the global
skeleton-aware representation Hg-skt is used in-
stead of the original Hskt for future predictions.

5 Experiments

5.1 Data and Settings

Data We conduct experiments on the benchmark
GMB dataset, which provides a large collection of
English texts annotated with Discourse Represen-
tation Structures (Bos et al., 2017). We follow Liu
et al. (2019) using the processed tree-based DRTS
format, and focus on document-level parsing. The
data statistics are shown in Table 1.

Hyperparameters We exploit the same hyper-
parameters as Liu et al. (2019) for fair compari-
son. In particular, we use the same pre-trained 100-
dimensional word embeddings, which are trained
on the AFP portion of the English Gigaword corpus.
The sizes of random word and lemma embeddings
are set to 300 and 100, respectively. The hidden
sizes of BiLSTM modules in encoder and decoder
are set to 300 and 600, respectively. In addition,
the BiLSTM layer sizes of encoder and decoder are
respectively 2 and 1. The hidden size of GAT mod-
ules is set to 300 and 600 for encoder and decoder,
respectively.

5.2 Evaluation

Following Liu et al. (2019), we adopt the
COUNTER (van Noord et al., 2018a) tool to eval-
uate our final experimental results. In particular,
we first transform the DRTS into a clause format
and then run the standard evaluation script to ob-
tain the F1-scores of our results compared with the
gold-standard clause form. Note that COUNTER is
computationally expensive, requiring more than 50
hours for the entire test dataset by using more than
100 threads. To facilitate development and analysis
experiments, we suggest three alternatives for eval-
uation particularly for development experiments:

(1) BLEU: a standard BLEU (Papineni et al.,
2002) value is adopted as the metric to eval-
uate the resulting node sequence against the
gold-standard output, since we model the task
as a sequence-to-sequence task.

(2) Skeleton: The bracket scoring method of con-
stituent parsing is exploited to evaluate the
skeleton performance, by regarding terminal
DRU nodes as words in comparison with a
constituent tree.3

3https://nlp.cs.nyu.edu/evalb/
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Figure 4: Feature ablation experiments.

(3) Tuple: The F1-score of tuple-level matching
is exploited to measure the DRU performance,
since the basic units inside a DRU are tuples
of relation-variable functions. Exact matching
is adopted considering variable orders.

The BLEU is used for development and the Skele-
ton and Tuple are used for analysis.

5.3 Development Experiments

We conduct experiments on the development
dataset to understand the key factors of our pro-
posed model.

Impact of structure labels Syntactic arcs and
skeleton labels are embedded and concatenated to
the embedding of the current node when using GAT
to model the tree structure. We conduct a compar-
ison to examine their effectiveness in our model.
Figure 4(a) shows the results. We can see that a
performance degradation occurs without these la-
bel embeddings. In particular, BLEU score drops
by 0.4 without syntax label embeddings and 0.93
without skeleton label embeddings, which shows
that modeling label information improves unfixed
skeleton tree structure even more.

Impact of GAT setting As our proposed mod-
ules involve a l-layer GAT, we investigate the ef-
fect of the layer number l on the dev set as shown
in Table 2. In particular, we vary the value of
l in the set {1, 2, 3, 4, 5} and measure the cor-
responding BLEU scores. The structural-aware
model equipped with GAT achieves the best per-
formance when l is 2, which justifies the selection
on the number of layers in the experimental set-
ting section. Moreover, a dropping trend on both
metrics is present as l increases. For a larger l, the
GAT module becomes more difficult to train due to
larger amounts of parameters. One intuitive reason
is that each layer of the GAT module aggregates

Model BLEU
Head=1 48.76
Head=2 49.48
Head=3 50.01
Head=4 50.04
Head=5 50.04

Model BLEU
layers=1 49.11
layers=2 50.04
layers=3 49.72
layers=4 49.01
layers=5 48.54

Table 2: GAT settings results on development set.

Model BLEU exact F1
Liu et al. (2019)

46.86 66.56
(baseline)

GAT-encoder 48.24 69.40
GAT-decoder 50.04 70.81
GAT-enc+dec 50.16 71.65
Tree-LSTM 48.36 69.66

GCN 49.88 70.72

Table 3: Final results on the test dataset.

the direct neighbor information of a node. After 2
layers, each node can obtain sufficient information,
and further more layers can bring noise.

We make comparison with multi-head attention,
varying the heads in the set {1, 2, 3, 4, 5} and
checking the corresponding BLEU scores. Theoret-
ically, the larger the number of heads, the better the
performance of the model. As can be seen in Table
2, when the number of heads exceeds 4, the perfor-
mance becomes relatively stable. We thus choose
the head to be 4 for the remaining experiments.

Influence of the encoder and decoder GAT mod-
ules As shown in Figure 4(b), without using
structure information, the baseline encoder-decoder
(Liu et al., 2019) model gives a development BLEU
of 46.83. Adding a GAT module to the encoder
as described in Section 4.2 increases the BLEU
score to 48.35, demonstrating the usefulness of
syntax-aware module. Furthermore, adding a GAT
module to the decoder as described in Section 4.3
improves the performance to 49.73, which shows
that our skeleton structure model is useful. Finally,
a combination of both gives a 50.04 BLEU score.

5.4 Final Results

Table 3 shows the final results on the GMB test
dataset. We report performances of the baseline
and various tree-structure systems using the exact
F1-score by COUNTER in addition to BLEU. The
observations are consistent with the development
set. Our final model, the joint GAT-enc+dec model,
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Model BLEU exact F1
Liu et al. (2019)

64.96 77.85
(baseline)

GAT-encoder 66.02 78.22
GAT-decoder 66.69 79.14
GAT-enc+dec 68.14 79.94

Liu et al. (2018) 57.61 68.72

Table 4: Results on the sentence-level dataset.

achieves competitive performance, with a exact F1-
score of 71.65%. Our GAT enhanced models out-
perform the state-of-the-art model. For the vanilla
encoder-decoder model, our GAT-encoder obtains
a absolute improvement of 2.84% exact F1-score,
which demonstrates that modeling syntax infor-
mation is useful. The GAT decoder improves the
performance to 70.81%, giving a 4.25% promo-
tion, which indicates that the skeleton structure is
helpful to DRTS parsing.

As shown in Table 3, Tree-LSTM and GCN
based systems also give competitive results to
the state-of-the-art baseline model, which again
demonstrates the effectiveness of modeling tree
structures. GCN achieves better performance than
Tree-LSTM by 1.06%, which can be because the
GNN-based model obtains global information dur-
ing layer stacking, but Tree-LSTM can only capture
local structural information. GAT performs better
than GCN by 0.84%, showing that GAT is a com-
petitive choice of GNN. Consistent with observa-
tions of BLEU scores, our proposed GAT-enc+dec
model shows the best performance on both evalua-
tion metrics.

In addition, we perform experiments on
sentence-level datasets as shown in Table 4 as well,
following Liu et al. (2019). We use the same setup
as the document-level structure-aware model. As
shown, both the GAT encoder and decoder can
bring better results (i.e., 0.37% and 1.29% by the
GAT encoder and decoder, respectively), and their
combination can give further improvements (i.e.,
0.80% over the GAT-decoder) significantly, which
are consistent with the findings of the document-
level parsing. Finally, the sentence-level perfor-
mance reaches 79.94%, a new state-of-the-art score.
The results demonstrate that our model is also ap-
plicable to sentence-level DRTS parsing.

Interestingly, we find that the BLEU metric is
highly indicative of model performance. Based on
the observed pair of values on the test results, we

(S)DRS Variable Relation All

50

55

60

65

70 Baseline +GAT-encoder
+GAT-decoder +GAT-enc+dec

Figure 5: Skeleton-level evaluation F1 (%) results.

Model Rel−var Rel Unary Binary
baseline 64.13 34.80 39.21 26.38
GAT-encoder 66.67 36.08 40.98 27.10
GAT-decoder 68.32 36.41 42.34 27.22
GAT-enc+dec 68.97 37.09 43.76 27.74

Table 5: Relation-level evaluation F1 (%) results.

are able to approach the correction between BLEU
and COUNTER by a line appropriately, demonstrat-
ing a faithful alignment to the COUNTER metric.
The observation indicates that the BLEU is also a
good metric for the task. Noticeably, one advan-
tage of the BLEU is that the metric calculation is
much faster (i.e., only several seconds) than the
exact-F1 score, since the latter one consumes at
least 24 hours as well as 100G+ memory for the
evaluation of the test dataset.

5.5 Analysis
We conduct analysis to examine benefits by the
structural-aware model. As the decoding process
is decomposed into two steps, we examine the re-
spective gains with respect to the two components,
namely skeleton prediction and DRU parsing.

Influence on Skeleton Prediction The bracket
scoring metric suggested in Section 5.2 is used to
measure the performance of skeleton prediction.
Figure 5 shows the F1-scores with respect to node
types, which are categorized into three types (Sec-
tion 2), namely (S)DRS, relation and variable. In
addition, the overall performance is reported as
well. First, we can see that the (S)DRS nodes can
achieve the best performance across the three types,
the relation nodes rank the second and the variable
type has the worst performance. This indicates
the relative difficulty in parsing the three types of
nodes. In particular, locating a DRU is relatively
simpler as (S)DRS connects with DRU directly,
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(a). Gold (b). GAT-enc+dec (c): GAT-decoder                                                   (d). Baseline model
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Figure 6: Discourse representation tree structure examples generated by different models: “k1: At least 27 wives
of Israeli rabbis have signed a letter urging Jewish women to avoid dating Arab men. k4: The letter warns Jewish
women that they will suffer if they date Arab men.”

followed by the coarse-grained discourse relations
over the DRUs, while variable nodes are much
more difficult since the order matters much (i.e.,
the subscript number in the variable). Second, the
tendencies in terms of different models on the three
categories are the same as the overall tendency,
where our final model can bring the best skele-
ton performance, and the baseline shows the worst
performance. The observation demonstrates the
robustness of our proposed structural-aware model:
we can achieve consistently better performances on
all the types over the baseline.

Influence on relation tuples inside DRUs Fur-
ther we analyze the model performance on DRU
parsing. A strict matching strategy on the rela-
tion tuples inside DRUs is used to measure the
performance, as described in Section 5.2. Table 5
shows the performances, where the F1-scores of the
overall matching, only relation matching as well as
unary and binary relation tuples are reported.4 First,
we can find that the overall exact matching F1-score
is rather low (below 40). When considering the re-
lation performance ignoring the variables, the final
F1-score reaches, with an increase of 31.88, which
indicates that variable recognition is extremely dif-
ficult. Variables in DURs are similar to the variable
nodes in skeleton, however the scale of the inside
DRU variables is much larger. We further catego-
rize the relation tuples by their number of variables.
The unary tuples (i.e. tuples consist of only one

4There are no relations containing more than two variables
according to the corpus statistics.

variable node) can obtain better performance than
the binary tuples (i.e. tuples consist of two variable
nodes), which is reasonable. In addition, we look
into the performance in terms of different models.
We can see that all structural-aware models can
obtain better performances than the baseline on
all settings, demonstrating the effectiveness of our
proposed models. In particular, the GAT-decoder
demonstrates relatively higher performance com-
pared to GAT-encoder, which is consistent with the
results observed in Table 3. As expected, the final
joint GAT-enc+dec model obtain a better score than
both of individual GAT models.

Case study Figure 6 shows one case study to il-
lustrate the gains of our proposed models over the
baseline model, where the detailed differences are
highlighted with red color. As shown, the base-
line model is already able to obtain a strong re-
sults with linguistically-motivated copy strategies,
constraint-based inference and so on. However,
without structural-aware information, the model is
ineffective to handle several implicit long-distance
dependencies.

For example, the relation of “That(x16, p4)” is
unable to be recognized by the baseline model,
while the models with structural-aware GAT de-
coder can get it correctly. The major reason is that
the structural-aware decoder can transmit the infor-
mation from p4 to its parent node, which can facili-
tate the next-step generation of the parent node.

On the other hand, the syntactic information
from the input sentences can help the first-step
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skeleton disambiguation. For example, as shown in
Figure 6, the models without GAT-encoder can mis-
classify the relations between k1 and k4, which is
the discourse relation between the input two short
sentences. The major reason of the misleading
may be possibly due to the word “if” in the second
sentence, which is one indicator for the After re-
lation. When the syntactic information is encoded
by the GAT encoder, the GAT-enc+dec model can
learn the fined-grained dependency reduced by the
word “if”, and thus is able to obtain the accurate
relation of the two sentences (i.e., Conti.)

6 Related work

Discourse parsing is one important topic in the NLP.
There are several main types of discourse parsing
tasks in the literature, including rhetorical structure
theory (RST; MANN and Thompson, 1988) based
parsing, centering theory (CT; Grosz et al., 1995;
Barzilay and Lapata, 2008) based parsing and DRT
based parsing in this study.

Discourse Representation Theory (DRT) based
parsing is a relatively classic, yet not fully re-
searched semantic analysis task because of its com-
plexity. Le and Zuidema (2012) present the first
work of a data-driven DRT parser, using a graph-
based representation of DRT structures. Recently,
van Noord et al. (2018b) apply the idea of neural
machine translation for graph-based DRT parsing,
achieving impressing performance. These studies
only focus on sentence-level DRT representations,
as the complexity would increase much at the para-
graph level. In contrast, we investigate the para-
graph level DRT parsing.

DRTS parsing simplifies graphs into trees. There
are two existing papers in this line. Liu et al. (2018)
are the first to work on DRTS parsing, who propose
an end-to-end sequence-to-sequence model for the
task. Further, Liu et al. (2019) improve the model
by suggesting several effective strategies includ-
ing supervised attention, copying from alignments,
and constraint-based inference. In this work, we
improve DRTS parsing instead of Liu et al. (2019)
with two types of structure information.

Syntax information has been widely exploited
for NLP tasks. Seminal work exploits discrete fea-
tures designed by experts (Feng and Hirst, 2014;
Heilman and Sagae, 2015). Recently, a range of
neural modules have been proposed to encode syn-
tax, such as Tree-LSTM (Tai et al., 2015; Zhu
et al.; Teng and Zhang, 2016), Tree-CNN (Roy

et al., 2020) and the recently proposed implicit
approaches (Yin et al., 2018; Zhang et al., 2019).
Syntax has been demonstrated effective for RST
based discourse parsing as well (Yu et al., 2018).
Our work is to build a syntax tree-aware model
and we are the first to use syntax for DRT based
discourse parsing.

GNN has received increasing interests for its
strong capability of encoding structural informa-
tion (Kipf and Welling, 2016; Bastings et al., 2017;
Zhang et al., 2018; Zhang and Zhang, 2019; Song
et al., 2018). GAT is one representative model,
which demonstrates success in a number of NLP
tasks (Huang and Carley, 2019; Linmei et al., 2019).
In this work, we exploit GAT to represent tree-
structural information for DRTS parsing.

7 Conclusion

We investigated the representation of structural in-
formation for discourse representation tree struc-
ture parsing, showing that a graph neural network
can bring significant improvements. In particular,
we use GAT for representing syntax in encoding,
and representing a structural backbone for decod-
ing. Experiments on the standard GMB dataset
show that our method is high effective, achieving
the best results in the literature.
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