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Abstract

Neural generative models have achieved
promising performance on dialog generation
tasks if given a huge data set. However, the
lack of high-quality dialog data and the expen-
sive data annotation process greatly limit their
application in real-world settings. We propose
a paraphrase augmented response generation
(PARG) framework that jointly trains a para-
phrase model and a response generation model
to improve the dialog generation performance.
We also design a method to automatically con-
struct paraphrase training data set based on di-
alog state and dialog act labels. PARG is ap-
plicable to various dialog generation models,
such as TSCP (Lei et al., 2018) and DAMD
(Zhang et al., 2019). Experimental results
show that the proposed framework improves
these state-of-the-art dialog models further on
CamRest676 and MultiWOZ. PARG also sig-
nificantly outperforms other data augmenta-
tion methods in dialog generation tasks, espe-
cially under low resource settings. ! 2

1 Introduction

Task-oriented dialog systems that are applied to
restaurant reservation and ticket booking have at-
tracted extensive attention recently (Young et al.,
2013; Wen et al.,, 2017; Bordes et al., 2016;
Eric and Manning, 2017). Specifically, with the
progress on sequence-to-sequence (seq2seq) learn-
ing (Sutskever et al., 2014), neural generative mod-
els have achieved promising performance on dialog
response generation (Zhao et al., 2017; Lei et al.,
2018; Zhang et al., 2019).
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However, training such models requires a large
amount of high-quality dialog data. Since each dia-
log is collected through a human-human or human-
machine interaction, it is extremely expensive and
time-consuming to create large dialog dataset cov-
ering various domains (Budzianowski et al., 2018).
After dialogs are collected, we also need to anno-
tate dialog states and dialog acts, which are then
used to train language understanding models and
learn dialog policy. Hiring crowd-sourcing workers
to perform these annotations is very costly. There-
fore, we propose automated data augmentation
methods to expand existing well-annotated dialog
datasets, and thereby train better dialog systems.

We propose to augment existing dialog data
sets through paraphrase. Paraphrase-based data-
augmentation methods have been proved to be use-
ful in various tasks, such as machine translation
(Callison-Burch et al., 2006), text classification
(Zhang et al., 2015), question answering (Fader
et al., 2013) and semantic parsing (Jia and Liang,
2016). All these approaches first find a set of se-
mantically similar sentences. However, finding
isolated similar sentences are not enough to con-
struct a dialog utterances’ paraphrase. Because an
utterance’s paraphrase must fit the dialog history as
well. For example, when the system says “Do you
prefer a cheap or expensive restaurant?”, the user
may state his intent of asking for a cheap restaurant
by “Cheap please.” or “Could you find me a cheap
restaurant?” . However, the latter is obviously an
improper response which is not coherent with the
system question. In other words, a paraphrased
dialog utterance needs to serve the same function
as the original utterance under the same dialog con-
text. Therefore, we propose to construct dialog
paraphrases that consider dialog context in order to
improve dialog generation quality.

We also propose the Paraphrase Augmented Re-
sponse Generation (PARG), an effective learning
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framework that jointly optimizes dialog paraphrase
and dialog response generation. To obtain dialog
paraphrases, we first find all the user utterances
that serve the same function in different dialogs,
such as different ways of asking for Italian food.
Then we select the utterances that have the same
semantic content but different surface form, to con-
struct a high-quality dialog paraphrase corpus. The
corpus is then used to train a paraphrase generation
model to generate additional user utterances. Fi-
nally, the augmented dialog data is used to train a
response generation model. We leverage the multi-
stage seq2seq structure (Lei et al., 2018; Zhang
et al., 2019) for both paraphrase and response gen-
eration. Moreover, these two models are connected
through an additional global attention (Bahdanau
et al., 2014) between their decoders, so they can be
optimized jointly during training.

In our experiments, we apply our framework on
two state-of-the-art models, TSCP (Lei et al., 2018)
and DAMD (Zhang et al., 2019) on two datasets
CamRest676 (Wen et al., 2017) and MultiwOZ
(Budzianowski et al., 2018), respectively. After
applying our framework, the response generation
models can generate more informative responses
that significantly improves the task completion rate.
In particular, our framework is extremely useful
under low-resource settings. Our paraphrase aug-
mented model only needs 50% of data to obtain
similar performance of a model without paraphrase
augmentation. Our proposed method also outper-
forms other data augmentation methods, and its
comparative advantage increases in settings where
only a small amount of training data is available.

2 Related Work

Data Augmentation has been used in various ma-
chine learning tasks, such as object detection (Red-
mon et al., 2016) and machine translation (Fadaee
et al., 2017). It aims to expand training data to
improve model performance. In computer vision,
many classical data augmentation methods such as
random copy (Krizhevsky et al., 2012) and image
pair interpolation (Zhang et al., 2017) have been
widely used.

However, those approaches are not applicable
for natural language processing since language is
not spatially invariant like images. The word or-
der in a sentence impacts its semantic meaning
(Zhang et al., 2015). Therefore, human language
augmentation methods aim to generate samples

with the same semantic meaning but in different
surface forms. Such an idea led to recent augmenta-
tion work on the language understanding task (Hou
etal.,2018; Kimetal., 2019; Yoo et al., 2019; Zhao
et al., 2019). However, there is no data augmenta-
tion work on task-oriented dialog generation.

Paraphrase is the technique that generates al-
ternative expressions. Most of the existing work
on paraphrase aims to improve the quality of gen-
erated sentences. For example, phrase dictionary
(Cao et al., 2017) and semantic annotations (Wang
et al., 2019) are used to assist the paraphrase model
to improve the language quality. To make a con-
trollable paraphrase model, syntactic information
(Iyyer et al., 2018) is also adopted. And, recently,
different levels of granularity (Li et al., 2019b) are
considered to make paraphrase decomposable and
interpretable. In this paper, we utilize a language
environment to assist paraphrase, and use para-
phrase as a tool to augment the training data of
dialog systems.

3 Proposed Framework

In this section, we first introduce how to construct
a paraphrase dataset to train paraphrase generation
models. Then we describe the work flow of the
proposed PARG model.

3.1 Paraphrase Data Construction

We propose a three-step procedure to find dialog
utterances that are a paraphrase of each other. First,
we perform delexicalization to pre-process dialog
utterances to reduce the surface form language vari-
ability. Then for each user utterance, we match the
utterances in other dialogs that play the same func-
tion to find its paraphrase candidates. Finally, we
filter out unqualified paraphrases which have a low
semantic similarity or a low surface form diversity
comparing to the original utterance.

Similar to the delexicalization process intro-
duced in Henderson et al. (2014), we replace the
slot values in each utterance by their slot name in-
dicator. For example, the user utterance “I want
a cheap restaurant.” is delexicalized as “I want
a [pricerange] restaurant.”. The slot values can
be dropped since their varieties only influence the
database search results but have no impact on how
the dialog progresses. In other words, no matter
whether the user is asking for a cheap or an ex-
pansive restaurant, he represents the same intent of
requesting a restaurant with a specific price range
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[ Hit What can I help you?

ZI am so hungry - can you find me a place to }

eat in the city center?
[ Sure. Which kind of food would you like? }%

E Dialog Function:

1 (a) previous system action: greet

i (b) domain: restaurant

) | want to have a taste of true Italian cuisine.

E Dialog Function:

! (a) previous system action: request-food

1 (b) domain: restaurant
Figure 1: Illustration of the dialog function of each
turn’s user utterance.

in the dialog. Therefore through delexicalization,
the language variations brought by numerous slot
values can be reduced, thus it is easier to find para-
phrases.

After delexicalization, we find utterances that
play the same role or serve the same dialog func-
tion in different dialogs. We denote the dialog
function of turn ¢ as D F;. It consists of three types
of information: 1) current dialog domain Dy, 2)
slots mentioned S; in the current turn, and 3) sys-
tem’s dialog act A;_1 in the previous turn, which
is formulated as:

DF; = (Dy, St, Ae—1) (D

The slots mentioned represent the key information
towards task completion, which is the most im-
portant information to determine the function of
the utterance. The dialog domain is included in
the function to avoid ambiguities brought by slots
that shared across different domains. For example,
asking for the location of a hotel is different from
asking for a restaurant. The previous system act
is considered to ensure a coherent dialog context,
since each turn’s user utterance is a reply to the
previous system response. Fig.1 gives out an exam-
ple of dialog function. For each user utterance in
the dialog dataset, we go through all the available
training data and find all utterances with the same
dialog function as paraphrase candidates of it.

As each utterance may have many paraphrase
candidates, we only keep the high-quality para-
phrase pairs that are similar in semantic but differ-
ent in surface form. We use the BLEU (Papineni
et al., 2002) score and the diversity score proposed
in Hou et al. (2018) to evaluate the paraphrase qual-
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Figure 2: Overview of our Paraphrase Augmented Re-
sponse Generation (PARG) framework. Solid arrows
denote the input or output word sequence. Dash ar-
rows denote hidden states shared between modules. Uy,
B; and R, represent turn t’s user utterance, dialog
state and system response respectively. U represents
the paraphrase utterance generated by the paraphrase
model. The input of the generation model can be either
the generated U! or U, denoted as Ut,, together with
the corresponding dialog state and previous system re-
sponse.
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ity. Specifically, if the BLEU score is too low
(below 0.2 in our experiments), we consider the
paraphrase pair as semantically irrelevant and filter
it out. If the diversity score is too low (below 3.4 in
our experiments), we also filter out the paraphrase
pair since it is too alike in terms of surface form
language. For those utterances that do not have any
paraphrases after filtering, we gradually reduce the
filter threshold of diversity score until each of them
matches a paraphrase.

3.2 Paraphrase Augmented Response
Generation

Figure 2 shows an overview of our paraphrase
based data augmentation framework. It consists
of a paraphrase generation model, a low-quality
paraphrase filter and a response generation model.
We describe each module in detail below.
Paraphrase Generation Model. Our para-
phrase generation model has a seq2seq architecture
with a context encoder and two decoders for action
decoding and paraphrase decoding. The context
encoder takes the concatenation of previous system
response R;_; and current user utterance U, as in-
put and encodes them into hidden states. Then the



hidden states are used to decode the previous sys-
tem action A;_1, where the system action is also a
sequence of tokens that first introduced in Zhang
et al. (2019). Finally the paraphrase decoder de-
codes the paraphrase U? based on the hidden states
of both the encoder and the action decoder.

h1 = Seq2Seq(Ry—1, Uy) 2)
UP = Seq2Seq(Ri_1, Us|h4=1)  (3)

where hA4*-1 denotes the hidden states of the ac-
tion decoder. We leverage copy mechanism (Gu
et al., 2016) to copy words from input utterances
to previous system action and paraphrase. The ac-
tion decoding process is used to help paraphrase
decoding through an attention connection between
the decoders, whose significance lies in improving
dialog context awareness.

Paraphrase Filter. We then send the generated
paraphrase into a filter module to determine if it
qualifies as an additional training instance. We
aim to keep paraphrases that can serve the same
dialog function with the original utterance. So
we filter out paraphrases that did not include all
of the slots mentioned in the original utterance.
Besides, we also filter out paraphrases that have
a different meaning and/or a similar surface form
compared to the original utterance by the same way
in our paraphrase data construction process. We
still use 0.2 and 3.4 as the thresholds for BLEU and
diversity score respectively in our experiments.

Response Generation Model. We use two
state-of-the-art seq2seq model, TSCP (Lei et al.,
2018) and DAMD (Zhang et al., 2019) for single
domain and multi-domain response generation re-
spectively. We will describe the workflow of our
framework based on the TSCP model, as shown
in Fig.2. For DAMD the process is similar since
the only difference between these two models is
that DAMD has an additional action span decoder
between the belief span decoder and the response
decoder. The model input is the concatenation of
the current user utterance Ut/ , the previous belief
span B;_1 (slots mentioned by user) and the system
response ;_1, where Ut, is either the original user
utterance U, or its paraphrase U} generated by the
paraphrase generation model. The model is a two-
stage decoding network, where the belief span and
system response are decoded sequentially using the
copy mechanism. Specifically, we introduce an at-
tention connection between the paraphrase decoder
and the belief span decoder to allow the gradient in

the response generation model to back-propagate to
the paraphrase generation model. So the response
generation model can guide the paraphrase decoder
to generate better paraphrases and vice versa. This
process can be formulated as:

hPt = Seq2Seq(R;-1, Uy, Bia|hUF)  (4)
Ry = Seq2Seq(Ry—1, Uy |hP") )

where hBt and hU7 denote the hidden states of
the belief span decoder and paraphrase decoder
respectively.

Training and Evaluation. The model is joint
optimized through supervised learning. Specifi-
cally, the system action labels, the paraphrase data
(collected through the process introduced in the
previous section), the dialog state labels and the
reference responses are used to calculate the cross-
entropy loss of the four decoders, denoted as lossg,
lossy, lossy, and loss,., respectively. Then we cal-
culate the sum of all the losses and perform gradi-
ent descent for training. The total loss function for
training are formulated as:

loss = loss, 4 loss), + lossy + loss, (6)

Note that we only augment user utterance as
additional input utterances during training. We al-
ternatively use the original U; and generated UY
as input to the response generation model, while
other elements such as belief spans and responses
remain the same. Since both decoders are forced to
recognize more user expressions, the language un-
derstanding and response generation performance
improve simultaneously. If the generated U} is in
low quality and filtered out, only the original Uy
is used to train the response generation model in
that turn. This often happens at the beginning of
training when the paraphrase model is under-fitting.
During testing, only the ground truth user utter-
ances are used as input. However, we still utilize
the paraphrase generation model to compute atten-
tion between the paraphrase decoder and the belief
span decoder. This is because we believe that the
paraphrase decoding process can help the belief
span decoding process since it provides additional
explanations of the user utterance.

4 Experimental Settings

4.1 Datasets and Evaluation Metrics

We conduct our experiments based on two datasets,
CamRest676 (Wen et al., 2017) and MultiwOZ
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(Budzianowski et al., 2018). Dialogs in both are
collected through crowd-sourcing on the Amazon
Mechanical Turk platform. Besides experiments on
the full datasets, we also conduct experiments using
only 20% or 50% of dialog data for training to
evaluate the promotion through data augmentation
under low-resource settings.

CamRest676 is a single domain dataset consist-
ing of dialogs about restaurant reservation. The
dataset has 676 dialogs which are split into training,
development and testing set by the ratio of 3:1:1.
The average number of turns is 4.06. There are 3
slot types and 99 allowable values in the task ontol-
ogy. We use three metrics for evaluation following
Lei et al. (2018). Entity Match Rate (EMR) is
the proportion that the system capture the correct
user goal. Success F1 (Succ.F1) score measures
whether the system can provide correct information
requested by user. While these two metrics are used
for evaluating system’s task completion ability, we
use BLEU (Papineni et al., 2002) to evaluate the
language fluency of generated responses.

MultiWOZ is a challenging large-scale multi-
domain dataset proposed recently (Budzianowski
et al., 2018). It consists of dialogs between tourists
and clerks at an information center, across seven do-
mains including hotel, restaurant, train, etc. There
are 8433/1000/1000 dialogs in training, develop-
ment and testing set respectively, and the number of
turn is 6.85 on average. Meanwhile, MultiWOZ has
a complex ontology with 32 slot types and 2,426
corresponding slot values. We use the evaluation
metrics proposed by Budzianowski et al. (2018),
which are how often the system provides an cor-
rect entity (inform rate) and answers all the re-
quested information (success rate), and how fluent
the response is (BLEU). We also report a combined
score computed via (Inform + Success) x 0.5 +
BLEU for overall quality measure as suggested in
(Mehri et al., 2019).

4.2 Implementation Settings

We use a one-layer, bi-directional GRU as the con-
text encoder and two standard GRU as the action
decoder and paraphrase decoder. The embedding
size and hidden size are both 50 on CamRest676
and 100 for MultiWOZ. The copy mechanism and
attention connection are added as shown in Fig.2.
For the response generation model, we leverage
the state-of-the-art model on each dataset, which
is the Two-stage Copy Net (TSCP) (Lei et al.,

2018) for CamRest676 and Domain Aware Multi-
Decoder (DAMD) (Zhang et al., 2019) for Mul-
tiWOZ. We use the model structures that follow
the default settings in the open source implementa-
tion of TSCP? and DAMD*. We use the the Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.003 and 0.005 for CamRest676 and Mul-
tiWOZ, respectively. We halve the learning rate
when the total loss of our model on development
set does not reduce in three consecutive epochs,
and we stop the training when the total loss does
not reduce in five consecutive epochs. We set the
learning rate to 0.0001 and the decay parameter to
0.8 during reinforcement fine tuning in TSCP.

4.3 Baseline Methods

We compare the proposed method with five other
data augmentation methods, three of which are
based on text replacement and the other two are
based on neural paraphrase generation models.

o WordSub denotes the rare word substitution
method proposed by Fadaee et al. (2017). It
generates new sentences by replacing com-
mon words with rare ones. A bi-directional
LSTM language model is trained to select the
proper substitution words. We do not substi-
tute key words associated with slot values to
maintain the dialog function of utterances.

e TextSub denotes the text span replacement
method proposed by Yin et al. (2019). It re-
places a sequence of tokens (text span) by
their paraphrase candidates from the lexicon
database (PPDB (Pavlick et al., 2015)). The
selection of text spans is based on a policy net-
work, which is trained jointly with the belief
span decoder through reinforcement learning.
The slot values are also fixed with the same
purpose as in WordSub.

e UtterSub denotes the simple utterance re-
placement augmentation. We use the para-
phrases obtained in dialog dataset as new train-
ing samples directly instead of training the
paraphrase model to generate new samples.

o NAEPara denotes a paraphrase model with
single encoder-decoder structure. This model,
denoted as noising auto-encoder (NAE) in Li

3https://github.com/WING-NUS/sequicity
*https://gitlab.com/ucdavisnlp/damd-multiwoz
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Model 20% Data 50% Data Full Data
BLEU EMR SuccFl | BLEU EMR Succ.F1 | BLEU EMR Succ.Fl
TSCP 0.154 0.791 0.806 0.225 0.853 0.817 0.253 0927 0.854
WordSub | 0.140 0.821 0.818 0.212 0.866 0.822 0.239 0930 0.846
TextSub | 0.144 0.834  0.826 0.220 0.895 0.831 0.245 0942 0.850
UtterSub | 0.149 0.826  0.829 0.216 0.876  0.838 0.245 0938 0.852
NAEPara | 0.155 0.830 0.831 0.222 0.891 0.843 0.251 0940 0.855
SRPara | 0.154 0.832 0.826 0.228 0.886  0.840 0.254 0938 0.852
PARG 0.155 0.852 0.849 0.226 0908 0.853 0.252 0943 0.861
Table 1: Results on CamRest676. The best scores are in bold.
Model 20% Data 50% Data Full Data
BLEU Info Succ Comb | BLEU Info Succ Comb | BLEU Info Succ Comb
DAMD | 0.121 0.779 0.703 0.862 | 0.169 0.830 0.729 0.948 | 0.183 0.895 0.758 1.009
WordSub | 0.119 0.783 0.712 0.866 | 0.166 0.821 0.736 0.944 | 0.176 0.882 0.754 0.994
TextSub | 0.123 0.813 0.719 0.889 | 0.174 0.841 0.741 0.965 | 0.182 0.890 0.760 1.007
UtterSub | 0.112 0.802 0.714 0.870 | 0.169 0.853 0.737 0.964 | 0.179 0.893 0.761 1.006
NAEPara | 0.126 0.820 0.723 0.898 | 0.164 0.850 0.750 0.964 | 0.179 0.893 0.761 1.006
SRPara | 0.130 0.817 0.725 0901 | 0175 0.864 0.753 0.984 | 0.186 0.903 0.773 1.024
PARG 0.127 0.825 0.739 0.909 | 0.172 0.878 0.768 0.995 | 0.188 0.911 0.789 1.038

Table 2: Results on MultiWOZ. The best scores are in bold.

et al. (2019a), injects random noise to the en-
coder’s hidden states to improve generation
varieties, which has proven to be effective in
(Kurata et al., 2016). For model implemen-
tation, we use the same GRU nets as in our
paraphrase model. And we multiply perturba-
tions, sampled from the uniform distribution
between 0.6 and 1.4, to the encoder’s hidden
states when generating paraphrases.

e SRPara denotes a paraphrase model with SR-
PB (Wang et al., 2019) structure. In this struc-
ture, a semantic parser SLING (Ringgaard
et al., 2017) is used to analyze the semantic
frame of an utterance and the semantic role
of each token in it. Then the sequences of to-
ken, semantic frame labels and semantic role
labels are fed into three parallel encoders sep-
arately. The outputs of the three encoders are
projected through a linear layer, and then sent
to a decoder to generate the paraphrase. The
implementation of encoders and the decoder
is the same as NAEPara.

We utilize the same dataset (CamRest676 or Mul-
tiWOZ) to train all the models for fair comparison.
Specifically, we use all the user utterances in the
training corpus of CamRest676 or MultiWwOZ to
train the LSTM language model of WordSub and
the policy network of TextSub. And we use the
same paraphrase data constructed in 3.1 to train the
paraphrase models in NAEPara and SRPara.

5 Results and Analysis

The experimental results on CamRest676 and Mul-
tiWOZ are shown in Table 1 and Table 2, respec-
tively. In both tables, the first line is the base-
line results without data augmentation, the sec-
ond to sixth lines are results obtained by different
data augmentation methods (substitution-based or
paraphrase-based), and the last line is the perfor-
mance of our proposal. The results are grouped
into three columns according to the size of training
data (20%/50%/full).

We observe some common conclusions sup-
ported by the experimental results on both datasets.
First, our proposed data augmentation framework
significantly improves the system’s task comple-
tion ability (EMR, Succ.F1, Info and Succ) consis-
tently without harming the language fluency. This
indicates that incorporating additional dialog para-
phrases is beneficial for learning informative re-
sponses, since more user expressions are seen by
the model during training.

Secondly, our framework outperforms other data
augmentation methods in terms of dialog task rele-
vant metrics under all circumstances. In particular,
paraphrase based methods are more likely to pro-
duce more fluent and informative responses than
local substitution methods (WordSub and TextSub),
because neural generative models consider dialog
history to generate more coherent utterances. The
improvement of PARG over UtterSub suggests that
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our paraphrase generation model provides a more
robust way of utilizing the additional information
contained in paraphrases. Our paraphrase gener-
ation model outperforms other paraphrase based
methods (NAEPara and SRPara) since the decoding
process of previous system action and the gradient
back-propagation through the belief span decoder
provide strong dialog context information for para-
phrase generation.

Thirdly, the less data is available, the more im-
provement can be achieved through our data aug-
mentation. It is worth noting that after applying
PARG, the model trained on only 50% data obtain
comparable results to the model trained on the full
dataset without data augmentation, in terms of task
relevant metrics. The similar results are also ob-
served by comparing the models trained on 20%
data with augmentation and 50% data without aug-
mentation. This indicates that our method is of
great significance under low resource settings.

PARG sometimes gets a slightly lower BLEU
score compared to other methods. This is poten-
tially because that although seq2seq models can
learn responses which corresponding to a correct
action, the surface language can still vary among
training and testing utterances due to the natural
variety of human languages. Therefore, the BLEU
score, which measures the likeness of surface lan-
guage, may drop despite the system generate good
functional responses.

We also observe some diverse results on Cam-
Rest676 and MultiWOZ. Under the full data setting,
the improvement gained by our data augmentation
method on CamRest676 is lower than on Multi-
WOZ, since the single domain task in CamRest676
is easy and the data is enough for model training
without conducting augmentation. While for Mul-
tiWwOZ, due to large language variations and the
complex ontology, the utterance space is not well-
explored, thus the response generation process can
benefit more through incorporating additional dia-
log data.

6 Ablation Study

In this section we investigate the function of each
component in our paraphrase augmented response
generation framework. In particular, we discard 1)
the act decoder (PARG w/o Act), 2) the utterance
filter (PARG w/o Filt) or 3) joint training (PARG
w/o Join) one at a time, then do model training
and evaluation on the full MultiWwOZ dataset. The
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results are shown in Table 3.

Model BLEU Info  Succ Comb

DAMD 0.183 0.895 0.758 1.009

PARG 0.188 0911 0.789 1.038
PARG w/o Filt | 0.173 0.887 0.765 0.999 (-0.039)
PARG w/o Act | 0.180 0.897 0.763 1.010 (-0.028)
PARG w/o Join | 0.185 0.905 0.782 1.028 (-0.010)

Table 3: Ablation results on MultiWwOZ. The changes
of combine score compared to PARG are shown in
parentheses.

We observe that removing the utterance filter
brings the biggest drop in response quality in terms
of combined score (-0.039). This suggests the im-
portance of using only high-quality paraphrases to
train the response generation model, because the ill
generation utterances will introduce errors to the
downstream model. The model also suffers from a
performance drop (-0.028) after removing the pre-
vious system action decoder, which indicates that
the supervision from previous system action labels
is beneficial for generating better paraphrases. Fi-
nally, we train the paraphrase generation model and
response generation model separately and observe
a slight drop of combined score (-0.010). This is
because through the attention connection between
the paraphrase decoder and belief span decoder,
the loss computed for response generation can also
guide the paraphrase generation model to generate
paraphrases that directly benefit to the response
generation process. Although the improvement is
relatively marginal, joint training has additional ad-
vantages in simplifying the training process. Specif-
ically, we only need to conduct a single run of train-
ing and optimize a single set of hyperparameters.

7 Case Study and Error Analysis

We conduct several case studies to illustrate the
response generation quality, paraphrase generation
quality, as well as errors made by our model.
Table 4 compares the dialog state and system
response generated by the original model TSCP
to those generated by PARG. We investigate the
results from both the 50% and the full scale Cam-
Rest676 experiments, to further show our frame-
work’s superiority in low resource scenarios. On
full training data, TSCP and PARG both generate
correct dialog state slots. However, TSCP gener-
ates a wrong question “Would you like something
different?”, as if no restaurant satisfies the user’s
request. While PARG generates an appropriate



User Utterance: Can you help me find a restaurant in the south that doesn’t cost a lot of money.

Ground Truth Dialog State: pricerange=cheap, area=south

Reference Response: Nandos is a nice place, it serves Portuguese food. Is there anything else?

TSCP Generated Dialog State: pricerange=cheap, area=south
Full Data Generated Response: Nandos is a restaurant in the south. Would you like something different?
Generated Dialog State: pricerange=cheap, area=south
PARG . . .
Generated Response: Nandos is a Portuguese restaurant in the south. Anything else you need?
Generated Dialog State: area=south
TSCP . . . o . .
50% Data Generated Response: Taj Tandoori is an Indian restaurant, it is in the expensive price range.
7 PARG Generated Dialog State: pricerange=cheap, area=south
Generated Response: Nandos serves Portuguese food. Would you like the address?

Table 4: Comparison of response generation results before and after applying our paraphrase augmented method.
Models trained on full data and 50% data are compared respectively.

Dialog Function

Utterance Paraphrase

Domain: train
Slots Mentioned: leave
Previous System Act: request-leave

Previous Response: What time would you like to leave from norwich?
Original Utterance: I would like to leave at 14:45. What is the price?
Matched Paraphrase: 14:45, please. What is the duration of the train ride?

Domain: hotel
Slots Mentioned: parking
Previous System Act: inform-name

Previous Response: Acorn Guest House is available if that works for you.
Original Utterance: That is good. And I need a free parking, does it have?
Matched Paraphrase: This place is fine. Is it near a hotel with free parking?

Table 5: Examples of ill-matched paraphrase pairs obtained by our paraphrase matching method.

Original Utterance:
I need an inexpensive restaurant on the north side.

I’m looking for place inexpensive
TextSub g P . P
restaurant is located in the north.
Please find me an inexpensive
SRPara . P
restaurant in the north part of the town.
Can you recommend me a chea
PARG y ! P
restaurant in the north area.

Table 6: Paraphrased utterances generated by different
methods.

question “Anything else you need?” to ask user for
further request about the recommended restaurant.
When we reduce the training data to half, TSCP
generates wrong dialog state slots, and therefore
recommends an expensive restaurant. But PARG
does not suffer from this problem and generates
a correct response. This example suggests that
PARG can effectively improve the quality of dialog
generation in low resource settings.

Although our paraphrase augmented data aug-
mentation framework shows a notable superiority
on the dialog generation quality, it still has some
limitations. Table 5 shows some errors that PARG
made in our paraphrase data construction process.
In the first case, the question “What is the price?”
raised by the original utterance doesn’t match the
question “What is the duration of the train ride?” in
the paraphrase. This error is made since we do not
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have user act labels in the dialog datasets. Defining
the dialog function of user utterance more precisely
by adding its user act can solve this problem. An-
other incoherence of paraphrase sources from the
switch of dialog domains in multi-domain dialogs.
In the example, the word “place” in the paraphrase
refers to another site irrelevant to the hotel in the
previous system response, which might be an at-
traction or a restaurant. The domain of the previous
turn should also be considered in the dialog func-
tion to provide more domain information, which is
regarded as a potential solution for this issue.

We also compare the utterances generated by dif-
ferent data augmentation methods to show the supe-
riority of PARG in terms of paraphrase generation
quality. We select TextSub and SRPara for compar-
ison, since they are the best replacement-based and
paraphrase-based methods achieving the highest
combined scores on MultiWOZ respectively. Table
6 shows an example of paraphrases generated by
the three methods. We find that the paraphrase gen-
erated by TextSub is of bad quality because it is not
in accordance with normal grammar, while the para-
phrase generated by SRPara is fluent and semanti-
cally similar to the original utterance. However, the
paraphrase generated by our proposed PARG has
higher quality. It flexibly changes the rare word “in-
expensive” to the common word “cheap”, which en-
larges the surface form diversity. The high-quality



paraphrases can give better guidance to the down-
stream response generation model, which explains
the significant improvement in terms of task com-
pletion rate obtained by PARG.

8 Human Evaluation

We conduct human evaluation to further illustrate
PARG’s superiority in terms of paraphrase genera-
tion. We use one-to-one comparison to evaluate the
relative quality of paraphrases generated by PARG
versus strong baselines (NAEPara and SRPara).

In our experiments, we advise the judges to eval-
uate the quality of a paraphrase according to its
similarity of user intent with the original utterance.
We sample one hundred dialog turns. And in each
turn, the paraphrase generated by PARG is given
one-to-one comparisons with each baseline’s para-
phrase by five judges. Specifically, we ask the
judges to choose whether the paraphrase generated
by PARG is of better, equal or worse quality than
the paraphrase generated by NAEPara or SRPara,
given the original utterance.

Comparison Better% Equal% Worse%
PARG vs. NAEPara | 59.2% 18.4% 22.4%
PARG vs. SRPara 55.4%  20.8% 23.8%

Table 7: Human evaluation results.

The results are shown in Table 7. We report the
percentage of different choices made by the judges
in each one-to-one comparison, including the per-
centage of cases that PARG generates better (Bet-
ter%), so-so (Equal%), or worse (Worse%) para-
phrases. We observe that PARG generates better
paraphrases in a large proportion of cases, no mat-
ter compared to NAEPara or SRPara. This suggests
that PARG outperforms both NAEPara and SRPara
in terms of paraphrase generation quality, which
further proves that the dialog data augmented by
PARG can provide better guidance to the response
generation tasks.

9 Conclusion

In this paper, we propose to use dialog paraphrase
as data augmentation to improve the response gen-
eration quality of task-oriented dialog systems. We
give out the definition of the paraphrase for a dia-
log utterance and design an approach to construct
paraphrase dataset from a dialog corpus. We pro-
pose a Paraphrase Augmented Response Genera-
tion (PARG) framework which consists of a para-
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phrase generation model, an utterance filter and
a response generation model, where the models
are trained jointly to take fully advantage of the
paraphrase data for better response generation per-
formance. Our framework achieves significant im-
provements when it is applied to state-of-the-art
response generation models on two datasets. It also
beats other data augmentation methods, especially
under the low-resource settings.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2016. Learning end-to-end goal-oriented dialog.
arXiv preprint arXiv:1605.07683.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine transla-
tion using paraphrases. In Proceedings of the main
conference on Human Language Technology Confer-
ence of the North American Chapter of the Associa-
tion of Computational Linguistics, pages 17-24. As-
sociation for Computational Linguistics.

Zigiang Cao, Chuwei Luo, Wenjie Li, and Sujian Li.
2017. Joint copying and restricted generation for
paraphrase. In Thirty-First AAAI Conference on Ar-
tificial Intelligence.

Mihail Eric and Christopher D Manning. 2017. Key-
value retrieval networks for task-oriented dialogue.
arXiv preprint arXiv:1705.05414.

Marzieh Fadaee, Arianna Bisazza, and Christof
Monz. 2017. Data augmentation for low-
resource neural machine translation. arXiv preprint
arXiv:1705.00440.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1608—1618.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.



Matthew Henderson, Blaise Thomson, and J. Steve
Young. 2014. Robust dialog state tracking using
delexicalised recurrent neural networks and unsu-
pervised adaptation. Spoken Language Technology
Workshop, pages 360-365.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.
2018. Sequence-to-sequence data augmentation for
dialogue language understanding. arXiv preprint
arXiv:1807.01554.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
arXiv preprint arXiv:1804.06059.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22.

Hwa-Yeon Kim, Yoon-Hyung Roh, and Young-Gil
Kim. 2019. Data augmentation by data noising
for open-vocabulary slots in spoken language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Student Research Work-
shop, pages 97-102.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097-1105.

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Labeled data generation with encoder-decoder Istm
for semantic slot filling. In INTERSPEECH, pages
725-729.

Wengiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1437-1447.

Juntao Li, Lisong Qiu, Bo Tang, Dongmin Chen,
Dongyan Zhao, and Rui Yan. 2019a. Insufficient
data can also rock! learning to converse using
smaller data with augmentation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6698-6705.

Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu.
2019b. Decomposable neural paraphrase generation.
arXiv preprint arXiv:1906.09741.

Shikib Mehri, Tejas Srinivasan, and Maxine Eskenazi.
2019. Structured fusion networks for dialog. arXiv
preprint arXiv:1907.10016.

648

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311-318. Association for
Computational Linguistics.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 425-430.

Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. 2016. You only look once: Unified,
real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 779-788.

Michael Ringgaard, Rahul Gupta, and Fernando CN
Pereira. 2017. Sling: A framework for frame seman-
tic parsing. arXiv preprint arXiv:1710.07032.

I Sutskever, O Vinyals, and QV Le. 2014. Sequence to
sequence learning with neural networks. Advances
in NIPS.

Su Wang, Rahul Gupta, Nancy Chang, and Jason
Baldridge. 2019. A task in a suit and a tie: para-
phrase generation with semantic augmentation. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7176-7183.

TH Wen, D Vandyke, N Mrksic, M Gasic, LM Rojas-
Barahona, PH Su, S Ultes, and S Young. 2017. A
network-based end-to-end trainable task-oriented di-
alogue system. In I5th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, EACL 2017-Proceedings of Conference,
volume 1, pages 438-449.

Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen,
and Qun Liu. 2019. Dialog state tracking with
reinforced data augmentation. arXiv preprint
arXiv:1908.07795.

Kang Min Yoo, Youhyun Shin, and Sang-goo Lee.
2019. Data augmentation for spoken language un-
derstanding via joint variational generation. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 7402—7409.

Steve Young, Milica Gasi¢, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160-1179.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin,
and David Lopez-Paz. 2017. mixup: Beyond
empirical risk minimization. arXiv preprint
arXiv:1710.09412.



Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649—657.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2019. Task-
oriented dialog systems that consider multiple ap-
propriate responses under the same context. arXiv
preprint arXiv:1911.10484.

Tiancheng Zhao, Allen Lu, Kyusong Lee, and
Maxine Eskenazi. 2017. Generative encoder-
decoder models for task-oriented spoken dialog
systems with chatting capability. arXiv preprint
arXiv:1706.08476.

Zijian Zhao, Su Zhu, and Kai Yu. 2019. Data augmen-
tation with atomic templates for spoken language un-
derstanding. arXiv preprint arXiv:1908.10770.

649



