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Abstract

Aspect-based sentiment classification is a pop-
ular task aimed at identifying the correspond-
ing emotion of a specific aspect. One sentence
may contain various sentiments for different
aspects. Many sophisticated methods such
as attention mechanism and Convolutional
Neural Networks (CNN) have been widely
employed for handling this challenge. Re-
cently, semantic dependency tree implemented
by Graph Convolutional Networks (GCN) is
introduced to describe the inner connection
between aspects and the associated emotion
words. But the improvement is limited due to
the noise and instability of dependency trees.
To this end, we propose a dependency graph
enhanced dual-transformer network (named
DGEDT) by jointly considering the flat repre-
sentations learnt from Transformer and graph-
based representations learnt from the corre-
sponding dependency graph in an iterative
interaction manner. Specifically, a dual-
transformer structure is devised in DGEDT to
support mutual reinforcement between the flat
representation learning and graph-based repre-
sentation learning. The idea is to allow the
dependency graph to guide the representation
learning of the transformer encoder and vice
versa. The results on five datasets demonstrate
that the proposed DGEDT outperforms all
state-of-the-art alternatives with a large mar-
gin.

1 Introduction

Aspect-based or aspect-level sentiment classifica-
tion is a popular task with the purpose of identify-
ing the sentiment polarity of the given aspect (Yang
et al., 2017; Zhang and Liu, 2017; Zeng et al.,
2019). The goal is to predict the sentiment po-
larity of a given pair (sentence, aspect). Aspects in
our study are mostly noun phrases appearing in the
∗Corresponding author.

input sentence. As shown in Figure 1, where the
comment is about the laptop review, the sentiment
polarities of two aspects battery life and memory
are positive and negative, respectively. Giving a
specific aspect is crucial for sentiment classification
owing to the situation that one sentence sometimes
contains several aspects, and these aspects may
have different sentiment polarities.

Modern neural methods such as Recurrent Neu-
ral Networks (RNN), Convolutional Neural Net-
works (CNN) (Dong et al., 2014; Vo and Zhang,
2015) have already been widely applied to aspect-
based sentiment classification. Inspired by the
work (Tang et al., 2016a) which demonstrates the
importance of modeling the semantic connection
between contextual words and aspects, RNN aug-
mented by attention mechanism (Bahdanau et al.,
2015; Luong et al., 2015; Xu et al., 2015) is widely
utilized in recent methods for exploring the poten-
tially relevant words with respect to the given as-
pect (Yang et al., 2017; Zhang and Liu, 2017; Zeng
et al., 2019; Wang et al., 2016). CNN based atten-
tion methods (Xue and Li, 2018; Li et al., 2018)
are also proposed to enhance the phrase-level rep-
resentation and achieved encouraging results.

Although attention-based models have achieved
promising performance on several tasks, the limita-
tion is still obvious because attention module may
highlight the irrelevant words owing to the syntac-
tical absence. For example, given the sentence “it
has a bad memory but a great battery life.” and
aspect “battery life”, attention module may still
assign a large weight to word “bad” rather than

“great”, which adversely leads to a wrong sentiment
polarity prediction.

To take advantages of syntactical information
among aspects and contextual words, Zhang et al.
(2019) proposed a novel aspect-based GCN method
which incorporates dependency tree into the at-
tention models. Actually, using GCN (Kipf and
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Aspect: memory   Sentiment: Negative

Aspect: battery life   Sentiment: Positive

Figure 1: A typical utterance sample of aspect-based sentiment classification task with a proper dependency tree,
notice that different aspects may have different sentiment polarities.

Welling, 2017) to encode the information conveyed
by a dependency tree has already been investigated
in several fields, e.g., modeling document-word re-
lationships (Yao et al., 2019) and tree structures
(Marcheggiani and Titov, 2017; Zhang et al., 2018).
As shown in Figure 1, an annotated dependency
tree of original sentence is provided, and we can
observe that word-aspect pairs (bad, memory) and
(great, battery life) are well established.

Direct application of dependency tree has two
obvious shortcomings: (1) the noisy information
is inevitably introduced through the dependency
tree, due to imperfect parsing performance and the
casualness of input sentence; (2) GCN would be
inherently inferior in modeling long-distance or
disconnected words in the dependency tree. It is
reported that lower performance is achieved even
with the golden dependency tree, by comparing
against using only the flat structure (Zhang et al.,
2019).

To address these two challenges, we propose
a dependency graph enhanced dual-transformer
network (named DGEDT) for aspect-based sen-
timent classification. DGEDT consists of a tra-
ditional transformer (Vaswani et al., 2017) and a
transformer-like structure implemented via a de-
pendency graph based bidirectional GCN (BiGCN).
Specifically, a dual-transformer structure is intro-
duced in DGEDT to fuse the flat representations
learnt by the transformer and the graph-based rep-
resentations learnt based on the dependency graph.
These two kinds of representations are jointly re-
fined through a mutual BiAffine transformation pro-
cess, where the dependency graph can guide and
promote the flat representation learning. The final
flat representations derived by the transformer is
then used with an aspect-based attention for senti-
ment classification. We have conducted extensive

experiments over five benchmark datasets. The ex-
perimental results demonstrate that the proposed
DGEDT achieves a large performance gain over
the existing state-of-the-art alternatives.

To the best of our knowledge, the proposed
DGEDT is the first work that jointly considers
the flat textual knowledge and dependency graph
empowered knowledge in a unified framework. Fur-
thermore, unlike other aspect-based GCN models,
we aggregate the aspect embeddings from multi-
ple aspect spans which share the same mentioned
aspect before feeding these embeddings into sub-
modules. We also introduce an aspect-modified
dependency graph in DGEDT.

2 Related Work

Employing modern neural networks for aspect-
based sequence-level sentiment classification task,
such as CNNs (Kim, 2014; Johnson and Zhang,
2015), RNNs (Castellucci et al., 2014; Tang et al.,
2016a), Recurrent Convolutional Neural Networks
(RCNNs) (Lai et al., 2015), have already achieved
excellent performance in several sentiment analysis
tasks. Many attention-based RNN or CNN meth-
ods (Yang et al., 2017; Zhang and Liu, 2017; Zeng
et al., 2019) are also proposed to handle sequence
classification tasks. Tai et al. (2015) proposed a
tree-LSTM structure which is enhanced with de-
pendency trees or constituency trees, which outper-
forms traditional LSTM. Dong et al. (2014) pro-
posed an adaptive recursive neural network using
dependency trees. Since being firstly introduced
in (Kipf and Welling, 2017), GCN has recently
shown a great ability on addressing the graph struc-
ture representation in Natural Language Process-
ing (NLP) field. Marcheggiani and Titov (2017)
proposed a GCN-based model for semantic role
labeling. Vashishth et al. (2018) and Zhang et al.
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(2018) used GCN over dependency trees in docu-
ment dating and relation classification, respectively.
Yao et al. (2019) introduced GCN to text classifi-
cation task with the guidance of document-word
and word-word relations. Furthermore, Zhang et al.
(2019) introduced aspect-based GCN to cope with
aspect-level sentiment classification task using de-
pendency graphs. On the other hand, Chen and
Qian (2019) introduced and adapted Capsule Net-
works along with transfer learning to improve the
performance of aspect-level sentiment classifica-
tion. Gao et al. (2019) introduced BERT into a
target-based method, and Sun et al. (2019) con-
structed BERT-based auxiliary sentences to further
improve the performance.

3 Preliminaries

Since Transformer (Vaswani et al., 2017) and GCN
are two crucial sub-modules in DGEDT, here we
briefly introduce these two networks and illustrate
the fact that GCN can be considered as a special-
ized Transformer.

Assume that there are three input matrices Q ∈
Rn×dk ,K ∈ Rm×dk , V ∈ Rm×dv , which repre-
sent the queries, keys and values respectively. n
and m are the length of two inputs.

Q′ = Attention(Q,K, V )

= softmax(
QKT

√
dk

)V,
(1)

where Q′ ∈ Rn×dv , dk and dv are the dimension
size of keys and values, respectively. Actually,
Transformer adopts multi-head attention mecha-
nism to further enhance the representative ability
as follows:

hi = Attention(QWQ
i ,KW

K
i , V W

V
i ), (2)

Q′ = Concat([h1, ...])W
O, (3)

where i ∈ [1, H], H is the head size, WQ
i ∈

Rdk×dk/H ,WK
i ∈ Rdk×dk/H ,W V

i ∈ Rdv×dv/H

and WO ∈ Rdv×dv , and hi is the i-th head embed-
ding. Then, two normalization layers are employed
to extract higher-level features as follows:

Q′1 = Norm(Q′ +Q), (4)

Q′2 = Norm(Q′1 + FFN(Q′1)), (5)

where FFN(x) = Relu(xW1 + b1)W2 + b2 is a
two-layer multi-layer perceptron (MLP) with the
activation functionRelu,Norm is a normalization
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Figure 2: An overall demonstration of our proposed
DGEDT. Aspect representation is accumulated from
the embeddings in its aspect span, thus the attention
module is also aspect-sensitive.

layer, Q′2 is the output vector of this transformer
layer. Equations (1)-(5) can be repeated for T times.
Note that if Q = K = V , this operation can be
considered as self alignment.

As for GCN, the computation can be conducted
as follows when the adjacent matrix of each word
in the input is explicitly provided.

Q′ = Norm(Q+Relu(
1

|Aadj |
AadjQW )), (6)

where Aadj ∈ Rn×n is the adjacent matrix formed
from the dependency graph, n is the number of
words, Q ∈ Rn×dk ,W ∈ Rdk×dk . 1

|Aadj |Aadj is

similar to softmax(QKT
√
dk

) which is denoted as a
generated alignment matrix, except for the main
difference that Aadj is fixed and discrete. It is ob-
vious that Equation (6) can be decomposed into
Equations (1)-(4), and it can be also repeated for
T times. In our perspective, GCN is a specialized
Transformer with the head size set to one and the
generated alignment matrix replaced by a fixed ad-
jacent matrix.

4 DGEDT

The network architecture of our proposed DGEDT
is shown in Figure 2. For a given input text, we
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Figure 3: A simplified demonstration of dual-
transformer structure, which consists of two sub-
modules, one is a standard transformer, another is
a transformer-like structure implemented by BiGCN
with the supervision of dependency graph.

first utilize BiLSTM or Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2019) as the aspect-based encoder to ex-
tract hidden contextual representations. Then these
hidden representations are fed into our proposed
dual-transformer structure, with the guidance of
aspect-modified dependency graph. At last, we
aggregate all the aspect representations via max-
pooling and apply an attention module to align
contextual words and the target aspect. In this way,
the model can automatically select relevant aspect-
sensitive contextual words with the dependency
information for sentiment classification.

4.1 Aspect-based Encoder

We use wk to represent the k-th word embedding.
Bidirectional LSTMs (Schuster and Paliwal, 1997;
Hochreiter and Schmidhuber, 1997) (BiLSTM) are
applied for the encoder if we do not use BERT.

h1, ... = Encoder([w1, ...]), (7)

where hk ∈ Rh is the k-th output of Encoder
(BERT or BiLSTM), k ∈ [1, N ] and h is the hid-
den size, and N is the text length. Note that for a
given aspect, there may existM aspect mentions re-
ferring to the same aspect in the text. Also, each as-
pect mention could contain more than one word. To
ease aspect-level representation in the later stage,

we choose to collapse each aspect mention as a sin-
gle word. The summation of the representations of
each constituent word within the mention works as
its hidden representation. We also develop a span
set span with the size Ns. Each span records the
start and end position of the given aspect. spanj
denotes the j-th aspect span in original text. Note
that for non-aspect words, spans involved in the
computation are their original positions with the
length as one.

sj = SUM([hspanj ]), (8)

where j ∈ [1, Ns], Ns <= N denotes the number
of words after aspect-based sum operation. sj is
the j-th output of the aspect-based encoder layer.
This process can be illuminated by an example
transforming ‘It has a bad memory but a great
battery life’ to ‘It has a bad memory but a great
[battery life]’. N is ten andNs is nine in this case.

4.2 Dual-transformer Structure
After obtaining the contextual hidden representa-
tions from the aspect-based encoder, we develop
a dual-transformer structure to fuse the flat textual
knowledge and dependency knowledge in a mu-
tual reinforcement manner. Specifically, as demon-
strated in Figure 3, dual-transformer structure con-
sists of a multi-layer Transformer and a multi-layer
BiGCN.

Bidirectional GCN: We design a BiGCN by
considering the direction of each edge in the depen-
dency graph. Note that dependency graph is con-
structed on the word-level. Hence, similar to aspect-
level representation performed in Section 4.1, we
merge the edges corresponding to the constituent
word of the given aspect in the adjacent matrix,
resulting in an aspect-level adjacent matrix. Then,
we derive the graph-based representations for the
input text as follows:

Qt
out = Relu(

1

|Aout
adj |

Aout
adjQtWout), (9)

Qt
in = Relu(

1

|Ain
adj |

Ain
adjQtWin), (10)

Qt+1 = Norm(Qt +Relu([Qt
out

, Qt
in]WO + bO)),

(11)

Qt+1 = BiGCN(Qt, A
out
adj , A

in
adj), (12)

where Aout
adj and Ain

adj are outgoing and incoming
aspect-level adjacent matrices gathered from the de-
pendency graph respectively. Here, we concatenate
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the representations of two directions to produce the
final output in each iteration, while other similar
methods conduct the merging only in the last itera-
tion. BiGCN represents Equations (9)-(11). We
use a simple method to merge the adjacent matrix
of the words in the same aspect span as follows:

A′adji =MIN(~1, SUM([Aadjspani
])), (13)

where Aadj can be replaced by Aout
adj and Ain

adj , and
we can thus get Aout

adj
′ and Ain

adj
′. Each span records

the start and end position of the given aspect. spani
denotes the i-th span in original text.

BiAffine Module: Assume that there are two
inputs S1 ∈ Rn×h and S2 ∈ Rn′×h, we introduce
a mutual BiAffine transformation process to inter-
change their relevant features as follows:

A1 = softmax(S1W1S
T
2 ), (14)

A2 = softmax(S2W2S
T
1 ), (15)

S′1 = A1S2, (16)

S′2 = A2S1, (17)

S′1, S
′
2 = Biaffine(S1, S2), (18)

where W1,W2 ∈ Rh×h. Here, S′1 can be consid-
ered as a projection from S2 to S1, and S′2 follows
the same principle. Biaffine represents Equa-
tions (14)-(17). A1 and A2 are temporary align-
ment matrices projecting from S2 to S1 and S1 to
S2, respectively.

The Whole Procedure: We can then assemble
all the sub-modules mentioned above to construct
our proposed dual-transformer structure, and the
detailed procedures are listed below:

STr′
t = Transfomer(STr

t ), (19)

SG′
t = BiGCN(SG

t , A
out
adj
′
, Ain

adj
′
), (20)

STr′′
t , SG′′

t = Biaffine(STr′
t , SG′

t ), (21)

STr
t+1 = Norm(STr′

t + STr′′
t ), (22)

SG
t+1 = Norm(SG′

t + SG′′
t ), (23)

where STr
0 = SG

0 = H , and H ∈ RNs×h denotes
the contextual hidden representations {s1, ...} from
the aspect-based encoder. Transfomer repre-
sents the process denoted by Equations (1)-(5).
Equations (19)-(23) can be repeatedly calculated
for T times and t ∈ [0, T ]. We choose STr

T (flat
(with graph) in Figure 3) as the last representation,
because SG

T (graph (with flat) in Figure 3) heavily
depends on the dependency graph.

4.3 Aspect-based Attention Module
Given M aspect representations can be obtained
through the above mentioned procedure, we can de-
rive the final aspect representation by Max-Pooling
operation. Here, we utilize an attention mechanism
to identify relevant words with respect to the aspect.
However, these would be M aspect representations
which are all highly relevant to the aggregated as-
pect representation. To avoid that these aspect men-
tions from being assigned with too high weight,
we utilize a mask mechanism to explicitly set the
attention values of aspect mentions to zeros. Let I
be the index set of these M aspect mentions, we
form Mask vector as follows:

Maski =

{
−inf, if i ∈ I;
0, if other.

(24)

We then calculate the probability distribution p of
the sentiment polarity as follows:

hf =MaxPooling([STr
T i|i ∈ I]), (25)

af = softmax(hfW3S
Tr
T

T
+Mask), (26)

h′f = Relu([hf , afSTr
T ]W ′ + b′), (27)

p = softmax(h′fWp + bp), (28)

where W3,W
′,Wp and b′, bp are learnable weights

and biases, respectively.

4.4 Loss Function
The proposed DGEDT is optimized by the stan-
dard gradient descent algorithm with the cross-
entropy loss and L2-regularization:

Loss = −
∑

(d,yp)∈D

log(pyp) + λ||θ||2, (29)

where D denotes the training dataset, yp is the
ground-truth label and pyp means the yp-th element
of p. θ represents all trainable parameters, and λ is
the coefficient of the regularization term.

5 Experiments

5.1 Datasets
Our experiments are conducted on five datasets,
including one (Twitter) which is originally built
by Dong et al. (2014), and the other four datasets
(Lap14, Rest 14, Rest 15, Rest16) are respectively
from SemEval 2014 task 4 (Pontiki et al., 2014),
SemEval 2015 task 12 (Pontiki et al., 2015) and Se-
mEval 2016 task 5 (Hercig et al., 2016), consisting
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Dataset Category Pos Neu Neg

Twitter Train 1561 3127 1560
Test 173 346 173

Lap14 Train 994 464 870
Test 341 169 128

Rest14 Train 2164 637 807
Test 728 196 196

Rest15 Train 912 36 256
Test 326 34 182

Rest16 Train 1240 69 439
Test 469 30 117

Table 1: Detailed statistics of five datasets in our exper-
iments.

of data from two categories: laptop and restaurant.
The statistics of datasets are demonstrated in Ta-
ble 1.

5.2 Experiment Setup

We compare the proposed DGEDT∗ with a line of
baselines and state-of-the-art alternatives, includ-
ing LSTM, MemNet (Tang et al., 2016b), AOA
(Huang et al., 2018), IAN (Ma et al., 2017), TNet-
LF (Li et al., 2018), CAPSNet (Chen and Qian,
2019), Transfer-CAPS (Chen and Qian, 2019), TG-
BERT (Gao et al., 2019), AS-CNN (Zhang et al.,
2019) and AS-GCN (Zhang et al., 2019). We con-
duct the experiments with our proposed DGEDT
with BiLSTM as the aspect-based encoder, and
DGEDT +BERT with BERT as the aspect-based
encoder. Several simplified variants of DGEDT
are also investigated: DGEDT(Transformer) de-
notes that we keep standard Transformer and re-
move the BiGCN part, DGEDT(BiGCN) denotes
that we keep BiGCN and remove the Transformer
part. The layer number or iteration number (i.e.,
T ) of all available models is set to three for both
Transformer and GCN. We use Spacy toolkit† to
generate dependency trees.

5.3 Parameter Settings

We use BERT-base English version (Devlin et al.,
2019), which contains 12 hidden layers and 768
hidden units for each layer. We use Adam (Kingma
and Ba, 2014) as the optimizer for BERT and our
model with the learning rate initialized by 0.00001
and 0.001 respectively, and decay rate of learning
is set as 0.98. Except for the influence of decay
rate, the learning rate decreases dynamically ac-
cording to the current step number. Batch shuffling
∗available at https://github.com/tomsonsgs/DGEDT-senti-

master.
† available at https://spacy.io/

is applied to the training set. The hidden size of
our basic BiLSTM is 256 and the size of all em-
beddings is set as 100. The vocab size of BERT
is 30,522. The batch size of all model is set as
32. As for regularization, dropout function is ap-
plied to word embeddings and the dropout rate is
set as 0.3. Besides, the coefficient λ for the L2-
norm regularization is set as 0.0001. We train our
model up to 50 epochs and conduct the same ex-
periment for 10 times with random initialization.
Accuracy and Macro-Averaged F1 are adopted as
the evaluation metrics. We follow the experimental
setup in (Zhang et al., 2019; Chen and Qian, 2019)
and report the average maximum value for all met-
rics on testing set. If the model is not equipped
with BERT, then we use word vectors that were
pre-trained from Glove (Pennington et al., 2014).

5.4 Overall Results
As shown in Table 2, our model DGEDT out-
performs all other alternatives on all five dataset.
BERT makes further improvement on the per-
formance especially in Twitter, Rest14 and Rest
15. We can conclude that traditional Trans-
former DGEDT(Transformer) obtains better perfor-
mance than DGEDT(BiGCN) in the most datasets.
DGEDT employs and combines two sub-modules
(traditional Transformer and dependency graph
enhanced GCN) and outperforms any single sub-
module. Using dependency tree indeed contributes
to the performance when acting as a supplement
rather than a single decisive module.

5.5 Ablation Study
Note that the performance of individual modules
is already reported in Table 2. As shown in Ta-
ble 3, we investigate and report four typical abla-
tion conditions. ‘–Mask’ denotes that we remove
the aspect-based attention mask mechanism, and
‘–MultiAspect’ denotes that we only use the as-
pect representation of the first aspect mention in-
stead of MaxPooling them. We can see that these
two procedures provide slight improvement. ‘–
BiGCN(+GCN)’ means that we remove the bidi-
rectional connection and only use original GCN,
the results show that bidirectional GCN outper-
forms original GCN owing to the adequate con-
nection information. ‘–BiAffine’ indicates that
we remove the BiAffine process and use all the
outputs of dual-transformer structure, we can thus
conclude that BiAffine process is critical for our
model, and utilizing simple concatenation of the
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Model Twitter Lap14 Rest14 Rest15 Rest16
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LSTM 69.6 67.7 69.3 63.1 78.1 67.5 77.4 55.2 86.8 63.9
MemNet 71.5 69.9 70.6 65.2 79.6 69.6 77.3 58.3 85.4 66.0

AOA 72.3 70.2 72.6 67.5 80.0 70.4 78.2 57.0 87.5 66.2
IAN 72.5 70.8 72.1 67.4 79.3 70.1 78.6 52.7 84.7 55.2
TNet 73.0 71.4 74.6 70.1 80.4 71.0 78.5 59.5 89.1 70.4

AS-CNN 71.1 69.5 72.6 66.7 81.7 73.1 78.5 58.9 87.4 64.6
CAPSNet – – 72.7 68.8 78.8 69.7 – – – –

Transfer-CAPS – – 73.9 70.2 79.3 70.9 – – – –
AS-GCN 72.2 70.4 75.6 71.1 80.8 72.0 79.9 61.9 89.0 67.5

DGEDT(Transformer) 74.1 72.7 76.0 71.4 82.8 73.9 81.0 64.9 90.0 72.6
DGEDT(BiGCN) 72.8 71.0 76.2 71.8 81.8 72.5 80.4 62.9 89.4 70.4

DGEDT 74.8 73.4 76.8 72.3 83.9 75.1 82.1 65.9 90.8 73.8
TG-BERT 76.7 74.3 78.9 74.4 85.1 78.4 – – – –

DGEDT-BERT 77.9 75.4 79.8 75.6 86.3 80.0 84.0 71.0 91.9 79.0

Table 2: Overall performance of accuracy and F1 on five datasets, AS means aspect-based.

Ablation Twitter Lap14 Rest14 Rest15 Rest16
Acc Acc Acc Acc Acc

DGEDT 74.8 76.8 83.9 82.1 90.8
–Mask 74.5 76.7 83.5 82.0 90.5

–MultiAspect 74.5 76.4 83.4 81.8 90.4
–BiGCN
(+GCN) 74.3 76.2 83.2 81.4 90.2

–BiAffine 73.0 75.4 82.4 81.0 89.6

Table 3: Overall ablation results of accuracy on five
datasets.

(a) Lap14 Dataset. (b) Rest14 Dataset.

Figure 4: A demonstration of accuracy-T curves on
Lap14 and Rest 14 datasets respectively: T is the it-
eration number.

outputs of Transformer and BiGCN is worse than
DGEDT(Transformer).

5.6 Impact of Iteration Number

As shown in Figure 4, we find that three is the best
iteration number for Lap14 and Rest14. Depen-
dency information will not be fully broadcasted
when the iteration number is too small. The model
will suffer from over-fitting and redundant informa-
tion passing, which results in the performance drop
when iteration number is too large. So, numerous
experiments need to be conducted to figure out a
proper iteration number.

5.7 Case Study and Attention Distribution
Exploration

As shown in Figure 5, DGEDT and
DGEDT(BiGCN) output correct prediction
Negative while DGEDT(Transformer) fails for
the sentence The management was less than
accommodating. To figure out the essential cause,
we demonstrate the attention of self alignment
in Figure 5. We can see that for the aspect man-
agement, DGEDT(Transformer) mainly focuses
on accommodating, which is a positive word at
document level. Thus, DGEDT(Transformer)
obtains an incorrect prediction Positive. In the
dependency tree, less which is often regarded as a
negative word has a more related connection with
aspect management, so DGEDT(BiGCN) outputs
right sentiment Negative. With the assistance of
supplementary dependency graph, DGEDT also
obtains right prediction Negative owing to the high
attention value between management and less.

As shown in Figure 6, DGEDT and
DGEDT(Transformer) output correct predic-
tion Positive while DGEDT(BiGCN) fails for the
sentence This little place is wonderfully warm
welcoming. To figure out the essential cause, we
demonstrate the attention of self alignment and
dependency tree in Figure 6. We can see that for
the aspect place, DGEDT(Transformer) mainly
focuses on wonderfully, which is a positive word
at document level. Thus, DGEDT(Transformer)
obtains a correct prediction Positive. In the
dependency tree, little which is often regarded as
a negative word has a more related connection
with aspect place, so DGEDT(BiGCN) outputs
incorrect sentiment Negative. With the disturbance
of inappropriate dependency tree, DGEDT still
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Aspect: management
Golden: Negative

DGEDT(Transformer): Positive
DGEDT(BiGCN): Negative

DGEDT: Negative

(a) The attention matrix of self alignment by
DGEDT(Transformer). (b) The attention matrix of self alignment by DGEDT.

Figure 5: Case Study 1: A testing example demonstrates that the information of dependency tree contributes
to the classification performance, our dual-transformer model generates a proper attention distribution with the
assistance of dependency tree. Darker cell color indicates higher attention value, the aspect is management and
golden sentiment is Negative.

Aspect: place
Golden: Positive

DGEDT(Transformer): Positive
DGEDT(BiGCN): Negative

DGEDT: Positive

(a) The attention matrix of self alignment by
DGEDT(Transformer). (b) The attention matrix of self alignment by DGEDT.

Figure 6: Case Study 2: A testing example demonstrates that the information of dependency tree may be harmful
for the classification performance, and our dual-transformer model still obtains a proper attention distribution.
Darker cell color indicates higher attention value, the aspect is place and golden sentiment is Positive.
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obtains right prediction Positive owing to the high
attention value between place and wonderfully.

We can see from two examples above that
DGEDT is capable of achieving the proper bal-
ance between dependency graph enhanced BiGCN
and traditional Transformer according to different
situations.

6 Conclusion

Recently neural structures with syntactical infor-
mation such as semantic dependency tree and con-
stituent tree are widely employed to enhance the
word-level representation of traditional neural net-
works. These structures are often modeled and
described by TreeLSTMs or GCNs. To introduce
Transformer into our task and diminish the error
induced by incorrect dependency trees, we propose
a dual-transformer structure which considers the
connections in dependency tree as a supplementary
GCN module and a Transformer-like structure for
self alignment in traditional Transformer. The re-
sults on five datasets demonstrate that dependency
tree indeed promotes the final performance when
utilized as a sub-module for dual-transformer struc-
ture.

In future work, we can further improve our
method in the following aspects. First, the edge
information of the dependency trees needs to be
exploited in later work. We plan to employ an edge-
aware graph neural network considering the edge
labels. Second and last, domain-specific knowl-
edge can be incorporated into our method as an
external learning source.
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