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Abstract

Existing end-to-end dialog systems perform
less effectively when data is scarce. To ob-
tain an acceptable success in real-life online
services with only a handful of training exam-
ples, both fast adaptability and reliable perfor-
mance are highly desirable for dialog systems.
In this paper, we propose the Meta-Dialog
System (MDS), which combines the advan-
tages of both meta-learning approaches and
human-machine collaboration. We evaluate
our methods on a new extended-bAbI dataset
and a transformed MultiWOZ dataset for low-
resource goal-oriented dialog learning. Exper-
imental results show that MDS significantly
outperforms non-meta-learning baselines and
can achieve more than 90% per-turn accura-
cies with only 10 dialogs on the extended-
bAbI dataset.

1 Introduction

End-to-end neural models have shown a great po-
tential in building flexible goal-oriented dialog sys-
tems. They can be directly trained on past dialogs
without any domain-specific handcrafting, which
makes it easy to automatically scale up to new do-
mains (Bordes et al., 2017). However, these mod-
els are normally data-hungry and have only been
successfully applied to domains with rich datasets
(Perez et al., 2017; Luo et al., 2019; Kim et al.,
2019).

In real-world scenarios, common issues with
end-to-end dialog models include: (1) the short-
age of proper training dialogs because of the high
cost of data collection and cleaning, i.e., the data
scarcity problem (Zhao and Eskenazi, 2018), and
(2) a large gap between limited data and unknown
online test examples, i.e., the covariate shift effect
(Liu et al.). Such problems can lead to a significant
performance degradation in dialog systems, which
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may harm the users’ experience and result in loss of
customers in commercial applications. Therefore,
both fast adaptability and reliable performance are
strongly desirable for practical system deployment.
Fast adaptability reflects the efficiency of adapt-
ing dialog systems to domains with low-resource
data. Reliable performance reflects the robustness
of handling unpredictable user behaviors in online
services.

To boost the online performance of dialog sys-
tems, there have been some recent work (Rajendran
et al., 2019; Wang et al., 2019; Lu et al., 2019) on
designing end-to-end models in a human-machine
joint-teaming manner. For instance, the dialog sys-
tem in (Rajendran et al., 2019) can identify an on-
going dialog during testing when the system might
fail and transfer it to a human agent. But all these
methods are trained with sufficient data, which hin-
ders the possibility of rapidly prototyping the mod-
els in new domains with restricted resources.

In this paper, we formulate the low-resource
goal-oriented dialog learning as a few-shot learning
problem, where a limited numbers of dialogs are
used for training and the remaining for the test. We
propose the Meta-Dialog System (MDS), an end-to-
end human-machine teaming framework optimized
by the model-agnostic meta-learning (MAML) al-
gorithm (Finn et al., 2017). In general, MDS learns
to make prediction and requests human by finding
good initial parameters, which can be adapted to
new tasks fast and reliably by using fewer dialogs.
We evaluate our methods on a new multi-domain
dialog dataset called extended-bAbI. Results show
that MDS achieves obvious performance improve-
ment over baselines and attains more than 90%
per-turn accuracy on new domains with only 10 di-
alogs. We also perform experiments on MultiWOZ
dataset (Eric et al., 2019) which has been trans-
formed into simplified bAbI format and observe
similar superior results with MDS.



610

In summary, the main contributions of this paper
are three-fold: (1) To the best of our knowledge,
this is the first study on applying meta-learning
to retrieval-based end-to-end goal-oriented dialog
systems; (2) we leverage the MAML algorithm
to optimize a human-machine collaborative dialog
system and show very promising results on the low-
resource dialog tasks; and (3) we propose a new
dataset and hope that can help bring forward the
research in this area.

2 The Proposed Method
In this section, we first introduce the problem defi-
nition and our new dataset; we then elaborate the
framework of MDS and meta-learning procedures.

Problem Definition. We focus on the retrieval-
based goal-oriented dialog tasks (Perez et al.,
2017), where a training data di usually contains
a triple (Hi, yi,R). Hi denotes the dialog his-
tory consisting of all user utterances and system
responses up to the current turn,R is a set of given
candidate responses and yi is the index of the cor-
rect response in R. The main task is to train an
end-to-end dialog model to predict yi fromR based
on Hi.

Extended-bAbI Dataset. The original bAbI
dataset (Bordes et al., 2017) is not suitable for low-
resource settings due to the lack of domains and
tasks. We extend it into a multi-domain dataset
through complicated simulation rules and construct
templates with a more diversity to raise the diffi-
culty. There are 7 domains in total: restaurant,
flights, hotels, movies, music, tourism and weather,
each of which has its own ontology and the candi-
date response set. Similar to (Bordes et al., 2017),
a complete dialog in extended-bAbI contains four
phases of interactions: (1) the system asks for re-
quired attributes to constrain the search and issues
the first API call; (2) the user updates their re-
quests for revised API calls; (3) the system con-
firms for multiple times to determine the entity the
user wants; (4) the user requests more attributes
for extra information based on the final entity. The
total number of dialogs is 21,000 and the detailed
examples and statistics are given in Appendix A.1.

2.1 Model Architecture
In MDS, there is an encoding module to extract neu-
ral features of dialogs and a policy module to make
system actions of either predicting responses or re-
questing human. All modules are jointly optimized

with the MAML algorithm. The main framework
of training MDS is shown in Figure 1.

Encoding Module. It contains a history encoder
to compute the dialog state vector si for Hi and a
response encoder to compute the response embed-
ding rj for the j-th response inR. The dimensions
of si and rj are set as the same. In this paper,
we use the MemN2N (Sukhbaatar et al., 2015) as
the history encoder and a simple additive model
for the response encoder, but many other models
optimized by gradient descent may be applied here.

Policy Module. This module consists of a switch
S that makes a binary decision whether to request
human to select the response, and a response pre-
dictor P that predicts the right response itself if
human is not requested. We assume that the re-
sponse chosen by human is always correct.

For the optimization of P , the widely used large-
margin cosine loss (Wang et al., 2018; Lin and
Xu, 2019) is employed since it maximizes the de-
cision margin in the angular space and is able
to force the model to learn more discriminative
deep features. Suppose a batch of training data is
D = {d1, ...di, ..., d|D|}, then the formulation is:

LLMC =

|D|∑
i=1

− log
ea·(cos(si,ryi )−b)

ea·(cos(si,ryi )−b) +
∑

j 6=yi e
a·cos(si,rj)

(1)
where cos(·, ·) is a function that calculates the co-

sine similarity of two input vectors. a is the scaling
factor and b is the cosine margin (a = 30,m = 0.1
in our experiments). In the test phase, the model
predicts an answer according to the maximal cosine
angle y∗i = argmaxj cos(si, rj).

The switch S is a neural binary classifier that
also takes si and each rj as input and calculate
the decision probability of requesting human as
follows:

wij = es
T
iWrj/

∑|R|

k=1
es

T
iWrk (2)

ci =
∑|R|

j=1
wijrj (3)

fi = si ⊕ ci (4)

pi = σ(FC(fi)) (5)

where σ is the sigmoid function and ⊕ the con-
catenation function for vectors. FC(·) is a fully-
connected neural network with one hidden layer
that has half size of the input layer and is activated
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Figure 1: An overview of training the Meta-Dialog System.

by tanh function. |R| is the size of R and W is a
trainable square matrix.

Learning to switch. Since there are no actual la-
bels for S to indicate whether it is correct to ask
human or not, some previous work (Woodward and
Finn, 2016; Rajendran et al., 2019) proposes to use
the REINFORCE algorithm (Williams, 1992) for
weakly-supervised training, but their reward set-
tings fail to penalize the case when the model asks
human while it can give right prediction, which
may lead to redundant requests. To consider this
effect, we propose a new reward definition here.
For the batch data D, we calculate the F1 scores1

for positive data and negative data, respectively,
and take the average of them to get a scalar value
score(D). Then each data di ∈ D is assigned with
a reward by computing an incremental value as
below:

rt = score(D)− score(D − di) (6)

Through maximizing such rewards, the switch S
learns to be more effective and asks human when it
is necessary. The reinforcement learning loss for
S is LRL =

∑|D|
i=1−ri log pi, and the final loss of

our model is L = LLMC + LRL.

2.2 Training Procedure
We rewrite the final loss L as L(Mθ,D) for clarity,
whereMθ denotes the dialog model with trainable
parameters θ and D is the batch data for training.

During meta-learning, we first choose one do-
main as the target domain and the rest as source
domains. Then we uniformly sample K different
domains T = {τ1, . . . , τK} from source domains
as meta-tasks. For each meta-task τk, we sample
N data as the support set Dsup

k and other N data
with the same answers as the query set Dque

k .

1Detailed explanations can be found in Appendix A.2.

Algorithm 1 Meta-learning for MDS

Input: The learning rates α, β
Output: optimal meta-learned model
1: Initialize model parameters θ randomly
2: while not converged do
3: Sample T from source domains and prepare

Dsup
k ,Dque

k

4: for each τk do
5: Evaluate L(Mθ,Dsup

k )

6: Compute θ
′
k = θ − α∇θL(Mθ,Dsup

k )
7: Evaluate L(M

θ
′
k
,Dque

k )

8: end for
9: Update θ ← θ − β∇θ

∑K
k=1 L(Mθ

′
k
,Dque

k )

10: end while

Mθ is first updated on support sets for each τk:

θ
′
k = θ − α∇θL(Mθ,Dsup

k ) (7)

Then Mθ is evaluated on each Dque
k with θ

′
k

respectively and is optimized as follows:

θ ← θ − β∇θ
∑K

k=1
L(M

θ
′
k
,Dque

k ) (8)

where α, β are learning rates. By training on mul-
tiple tasks via MAML,Mθ can learn good initial
parameters that is applicable on new tasks or do-
mains (Finn et al., 2017; Mi et al., 2019). The
algorithm is summarised in Algorithm 1.

After this meta-learning as pre-training, we fine-
tuneMθ on the target domain with the first L di-
alogs of its training set, where L is a small number.
To mimic the situation of online testing, we eval-
uateMθ on the whole test sets and regard those
unseen user utterances as new user behaviours.

3 Experiments and Results
In our experiments, we first verify the capability
of MDS on our newly simulated dialog dataset
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extended-bAbI, and then conduct extra evaluation
on the more realistic dataset MultiWOZ 2.1 (Eric
et al., 2019).

3.1 Setup
We select each domain as the target domain in turn
and take the average of the results in all domains.

Metric. Following (Wang et al., 2019), we re-
port the user-perceived per-turn accuracy (‘per-turn
accuracy’ is used in the remainder of the paper),
where the prediction of one turn is considered cor-
rect if the model either selects the right response
by itself or asks human. To be fair, we also report
the human request rate. The less the request rate
and higher per-turn accuracy are, the more reliable
the model performs online.

Implementation details. For the meta-learning,
we use SGD for the inner loop and Adam for the
outer loop with learning rate α=0.01 and β=0.001.
The meta-task size K is 4 and the support or query
set size N is 16. For the standard MLE training,
we use Adam with a learning rate of 0.001 and
set the batch size as 32. Both schemes are trained
for a maximum of 5000 iterations with early stop-
ping on the validation set. During fine-tuning on
new domains, we use SGD with the learning rate
0.01 for all models and report the final results after
fine-tuning 10 iterations on L training dialogs of
the target domain, where L=0, 1, 5, 10. The word
vector size is 25 and all MemN2Ns take 3 hops.

3.2 Baselines
We compare MDS with the following baselines:
• Mem: A MemN2N (Sukhbaatar et al., 2015)

model trained with standard MLE.
• MetaMem: A MemN2N trained with

MAML. Both Mem and MetaMem can not
request human.
• Mem+C: A MemN2N model combined with

a binary classifier in (Rajendran et al., 2019),
which has different objective functions and
optimization.
• IDS: The incremental dialog system used in

(Wang et al., 2019), which requests human
by estimating the uncertainty through a varia-
tional autoencoder.
• MDS-switch: A MDS without the switch S.
• MDSrand: A MDS whose switch is replaced

with a random classifier that has the same
request rate.
• MDSmle: A MDS whose meta-learning opti-

mization is replaced with standard MLE.

Figure 2: The per-turn accuracy of different methods
on the test set during fine-tuning with 1 dialog adapta-
tion where the target domain is restaurant.

3.3 Results on Extended-bAbI

Table 1 shows few-shot adaptation results for differ-
ent methods. MDS significantly outperforms other
models under all adaptation sizes of new dialogs
and can achieve a 91.31% per-turn accuracy on
average with only 10 new dialogs.

There is a gap between methods without the
switch (such as Mem, MetaMem and MDS-switch)
and methods with the switch in Table 1, indicat-
ing that the switch S is crucial for improving the
overall per-turn accuracy because of the human
agent. However, without proper objective func-
tions and meta-learning optimization, Mem+C and
IDS2 have poorer performances in both metrics
than MDS even if they contain the switch module.

In the ablation study, we see a steady increase of
about 10% per-turn accuracy from the comparison
between MDS and MDSrand, suggesting that the
switch does identify intractable dialogs. MDSmle
is the closest baseline to MDS, but we still observe
an obvious improvement, which means joint op-
timization of S and P via meta-learning allows
faster and better adaptation while maintaining sim-
ilar request rates. Appendix A.3 illustrates detailed
case studies for different methods.

To further investigate the adaptation process, we
present the fine-tuning curves for different methods
with 1 dialog adaptation in Figure 2. As it can
be seen, MDS achieves the best accuracy at the
beginning and converges fastest as well, showing
that it can transfer on new tasks quickly by finding
better parameter initialization.

2We only report the result of IDS with 10 dialog adaptation
since its request rates are too high to be fair in other settings.
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Method
No adaptation Adapt with 1 dialog Adapt with 5 dialogs Adapt with 10 dialogs

accuracy request accuracy request accuracy request accuracy request

Mem 32.28±1.86 n.a. 45.02±1.39 n.a. 64.07±0.76 n.a. 71.56±0.48 n.a.
MetaMem 39.45±1.13 n.a. 48.95±1.18 n.a. 65.57±0.69 n.a. 72.19±0.81 n.a.
Mem+C 58.74±2.89 37.34±5.23 68.27±2.19 34.83±4.35 81.41±2.26 36.96±5.05 87.46±2.07 38.09±5.29
IDS - - - - - - 90.91±4.29 83.98±6.43
MDS-switch 41.03±0.98 n.a. 50.31±1.16 n.a. 65.72±1.13 n.a. 72.35±0.90 n.a.
MDSrand 61.05±1.20 34.75 66.02±0.91 32.31 77.27±0.76 34.31 79.70±0.98 35.26
MDSmle 59.89±3.11 34.36±6.09 69.40±2.25 32.46±4.06 83.04±2.07 33.90±5.22 88.13±1.63 35.28±5.08
MDS 64.93±2.39 34.75±5.87 74.71±2.15 32.31±4.34 86.49±2.01 34.31±4.36 91.31±1.16 35.26±4.23

Table 1: Few-shot results on the extended-bAbI dataset. The numbers represent the average of means and standard
deviations of Task 5 in all target domains. Each experiment run 10 times with different seeds; ’n.a.’ means no
switch in the model; ’accuracy’ is the user-perceived per-turn accuracy and ’request’ is the request rate.

3.4 Results on MultiWOZ

MultiWOZ (Budzianowski et al., 2018) is a widely-
used multi-domain Wizard-of-Oz dialog dataset
spanning 7 distinct domains and containing 10k
dialogs. This realistic dataset has been a standard
benchmark for various dialog tasks such as belief
tracking and policy optimization.

In our experiment, we use the corrected version
MultiWOZ 2.1 (Eric et al., 2019) for evaluation. To
translate the MultiWOZ dialogs into bAbI-format
data, we first delexicalize the slot-values in user ut-
terances using dialog labels, and then produce a set
of canonical system acts as the candidate responses
by simplifying the original dialog acts. Only di-
alogs containing single domain are used in our ex-
periments and a MultiWOZ dialog sample is given
in Appendix A.4.

Table 2 shows the adaptation results for differ-
ent models on MultiWOZ 2.1. It can be seen that
MDS still largely outperforms other models with
the adaptation of 10 dialogs. The degradation of
per-turn accuracy from extended-bAbI to Multi-
WOZ is reasonable since the user utterance is more
diverse and the dialog policy is more flexible.

4 Related Work

End-to-end neural approaches of building dialog
systems have attracted increasing research interest.
The work of (Bordes et al., 2017) is the first at-
tempt to solve goal-oriented dialog tasks with end-
to-end models. Further improvements has been
made in (Williams et al., 2017) to combine explicit
domain-specific knowledge and implicit RNN fea-
tures. Luo et al. (2019) take user personalities into
consideration for better user satisfaction. Rajen-
dran et al. (2018) learn dialogs with multiple possi-
ble answers. Our work is inspired by the work of
(Rajendran et al., 2019; Wang et al., 2019), which

Method
Adapt with 10 dialogs

accuracy request

Mem 56.87±1.63 n.a.
MetaMem 62.78±2.05 n.a.
Mem+C 80.59±3.13 38.18±5.01
MDS-switch 64.50±3.75 n.a.
MDSrand 74.78±4.35 38.34
MDSmle 80.92±3.02 37.91±4.20
MDS 83.52±3.30 38.34±6.96

Table 2: Few-shot test results on MultiWOZ 2.1.

propose to solve unseen user behaviors through
human-machine teamwork. The research of (Liu
et al.; Chen et al., 2017; Lu et al., 2019) also show
the advantages of incorporating the role of human
to teach online. However, dialog learning in low-
resource scenarios has not been investigated.

Meta-learning aims to learn new tasks rapidly
with a few training examples (Sung et al., 2018;
Finn et al., 2017), which fits well to our task. There
have been some work applying meta-learning to
other tasks in dialog research, such as that in (Dou
et al., 2019; Geng et al., 2019) for natural language
understanding and (Qian and Yu, 2019; Mi et al.,
2019) for natural language generation.

5 Conclusion and Future Work
In this paper, we leverage the MAML algorithm
to optimize a human-machine collaborative dialog
system, which shows good results for both fast
adaptability and reliable performance. In the fu-
ture, we plan to use more powerful encoders and
evaluate our methods on real dialog data.
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A Appendices

A.1 Extended-bAbI dialog dataset

We extend bAbI dataset (Bordes et al., 2017) into
a larger dialog dataset consisting of multiple do-
mains, where each domain has its own ontology
and the candidate response set. The main task is a
reponse retrieval problem, where the dialog system
needs to select the right response for current dialog
history from the given candidate response set. The
size of candidate sets in each domain are shown
in Table 3. The total number of dialogs for each
task is 3000 (1500/500/1000 for train/dev/test set
respectively). More statistics are given in Table 4.
Detailed dialog samples of extended-bAbI can be
found in Table 6.

Domain # responses

restaurant 333
flights 71
hotels 472
movies 68
music 56

tourism 47
weather 22

Table 3: The number of candidate responses in each
domain.

Item number

# of domains 7
# of dialog tasks 35
# of total system responses 1069
# of total templates for user utterances 685
# vocabulary size 386
# of sentences per dialog 12.4
# of words per sentence 4.9

Table 4: Statistics of extended-bAbI dataset.

A.2 Reward Settings

(Woodward and Finn, 2016; Rajendran et al., 2019)
defined rewards for S as follows:

• Rreq: if human is requested

• Rcor: if human is not requested and the model
prediction is correct

• Rinc: if human is not requested and the model
prediction is wrong

This kind of reward setting did not penalize the
case that human is requested but model prediction
is correct, and the value of rewards is fixed during
reinforcement learning.

Here we propose better reward definition. Let
a batch of data be D = {d1, d2, ...di, ...}. The
label of each data is set as positive if the response
predictor P selects a wrong answer and negative if
not. The prediction of each data is set as positive
if the switch S chooses human and negative if not.
Then we calculate the F1 scores for positive data
and negative data separately and take the average
of them to get a scalar value score(D). Each data
di in the batch D is assigned to a reward value by
computing the difference of total scores with or
without di

ri = score(D)− score(D − di)

In this way, the reward function is less sensitive to
the model prediction accuracy and can self-adjust
dynamically during training. Both situations that
human is asked while the model predicts correct
and human is not asked while the model predicts
wrong are given negative rewards.

A.3 Case Studies
There are two sample dialog generated by different
models adapted with 10 dialogs on extended-bAbI
in Table 5. It shows that MDS can predict the
response correctly and choose to request human
properly.

A.4 MultiWOZ Data
Table 7 shows a bAbI-format dialog example trans-
ferred from MultiWOZ. The data and code for dia-
log transformation of MultiWOZ and dialog gener-
ation of exteneded-bAbI are attached in the supple-
mental material.
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sample 1 target domain = music
Usr how do you do
Sys hello what can i do for you
Usr i ’d like to hear taylor ’s music
Sys what kind of music do you like
Usr input i would like to hear some country songs
Correct answer api call taylor country

Predictions:
Mem hello what can i do for you [incorrect]
MetaMem what kind of music do you like [incorrect]
Mem+C what do you think of this song:entityOrder=0 [incorrect][no-request]
MDS api call taylor country [correct][request]
sample 2 target domain = weather
Usr hello
Sys hello how i can help you
Usr i want to know the weather in guangzhou
Sys which date do you want to check
Usr input i want to know the weather today
Correct answer api call london today

Predictions:
Mem which date do you want to check [incorrect]
MetaMem api call guangzhou today [correct]
Mem+C hello how i can help you [incorrect][no-request]
MDS api call guangzhou today [correct][no request]

Table 5: Prediction of different methods on two sampled dialogs. The flag [incorrect] or [correct] indicate the
result of response prediction. The flag [request] or [no-request] indicate whether human is requested or not.
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Domain: music
Usr: what ’s up
Sys: how can i help you
Usr: how can i find some music
Sys: any singer in your mind
Usr: i ’d like some songs by my idol taylor
Sys: what kind of music do you like
Usr: do you have country music
Sys: api call taylor country
Usr: nice
Sys: what do you think of this song : entityOrder=0
Usr: do you have other suggestions
Sys: how about another song : entityOrder=1
Usr: let ’s do it
Sys: great let me play this song for you
Usr: what is the album of the music
Sys: here you are entityOrder=3 album
Usr: thanks a lot
Sys: can i help you with anything else
Usr: no thank you
Sys: you are welcome
Domain: weather
Usr: i want to know the weather tomorrow
Sys: which city would you like to check
Usr: hangzhou please
Sys: api call hangzhou tomorrow
Usr: what ’s the weather today
Sys: api call hangzhou today
Usr: thanks
Sys: it ’s my pleasure

Table 6: Two dialog samples from music and weather domains on extended-bAbI.

Domain: restaurant
Usr: I would like a v price restaurant which serves v food food.
Sys: api call v food v price
Usr: What is their address and what part of town are they in?
Sys: Inform Addr Area
Usr: Sorry what type of food do they serve?
Sys: Inform Food
Usr: Thank you. goodbye.
Sys: general bye

Table 7: An example of bAbI-format MultiWOZ dialog.


