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Abstract

As a crucial step in extractive document sum-
marization, learning cross-sentence relations
has been explored by a plethora of approaches.
An intuitive way is to put them in the graph-
based neural network, which has a more com-
plex structure for capturing inter-sentence rela-
tionships. In this paper, we present a hetero-
geneous graph-based neural network for ex-
tractive summarization (HETERSUMGRAPH),
which contains semantic nodes of different
granularity levels apart from sentences. These
additional nodes act as the intermediary be-
tween sentences and enrich the cross-sentence
relations. Besides, our graph structure is
flexible in natural extension from a single-
document setting to multi-document via intro-
ducing document nodes. To our knowledge,
we are the first one to introduce different types
of nodes into graph-based neural networks for
extractive document summarization and per-
form a comprehensive qualitative analysis to
investigate their benefits. The code will be re-
leased on Github1.

1 Introduction

Extractive document summarization aims to extract
relevant sentences from the original documents and
reorganize them as the summary. Recent years
have seen a resounding success in the use of deep
neural networks on this task (Cheng and Lapata,
2016; Narayan et al., 2018; Arumae and Liu, 2018;
Zhong et al., 2019a; Liu and Lapata, 2019b). These
existing models mainly follow the encoder-decoder
framework in which each sentence will be encoded
by neural components with different forms.

To effectively extract the summary-worthy sen-
tences from a document, a core step is to model

∗These two authors contributed equally.
†Corresponding author.

1https://github.com/brxx122/
HeterSUMGraph

the cross-sentence relations. Most current mod-
els capture cross-sentence relations with recurrent
neural networks (RNNs) (Cheng and Lapata, 2016;
Nallapati et al., 2017; Zhou et al., 2018). How-
ever, RNNs-based models are usually hard to cap-
ture sentence-level long-distance dependency, es-
pecially in the case of the long document or multi-
documents. One more intuitive way is to model
the relations of sentences using the graph struc-
ture. Nevertheless, it is challenging to find an ef-
fective graph structure for summarization. Efforts
have been made in various ways. Early traditional
work makes use of inter-sentence cosine similar-
ity to build the connectivity graph like LexRank
(Erkan and Radev, 2004) and TextRank (Mihalcea
and Tarau, 2004). Recently, some works account
for discourse inter-sentential relationships when
building summarization graphs, such as the Ap-
proximate Discourse Graph (ADG) with sentence
personalization features (Yasunaga et al., 2017) and
Rhetorical Structure Theory (RST) graph (Xu et al.,
2019). However, they usually rely on external tools
and need to take account of the error propagation
problem. A more straightforward way is to create
a sentence-level fully-connected graph. To some
extent, the Transformer encoder (Vaswani et al.,
2017) used in recent work(Zhong et al., 2019a;
Liu and Lapata, 2019b) can be classified into this
type, which learns the pairwise interaction between
sentences. Despite their success, how to construct
an effective graph structure for summarization re-
mains an open question.

In this paper, we propose a heterogeneous graph
network for extractive summarization. Instead of
solely building graphs on sentence-level nodes, we
introduce more semantic units as additional nodes
in the graph to enrich the relationships between
sentences. These additional nodes act as the in-
termediary that connects sentences. Namely, each
additional node can be viewed as a special rela-

https://github.com/brxx122/HeterSUMGraph
https://github.com/brxx122/HeterSUMGraph
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tionship between sentences containing it. During
the massage passing over the heterogeneous graph,
these additional nodes will be iteratively updated
as well as sentence nodes.

Although more advanced features can be used
(e.g., entities or topics), for simplicity, we use
words as the semantic units in this paper. Each
sentence is connected to its contained words. There
are no direct edges for all the sentence pairs and
word pairs. The constructed heterogeneous word-
sentence graph has the following advantages: (a)
Different sentences can interact with each other in
consideration of the explicit overlapping word in-
formation. (b) The word nodes can also aggregate
information from sentences and get updated. Un-
like ours, existing models usually keep the words
unchanged as the embedding layer. (c) Differ-
ent granularities of information can be fully used
through multiple message passing processes. (d)
Our heterogeneous graph network is expandable
for more types of nodes. For example, we can in-
troduce document nodes for multi-document sum-
marization.

We highlight our contributions as follows:
(1) To our knowledge, we are the first one to con-

struct a heterogeneous graph network for extractive
document summarization to model the relations be-
tween sentences, which contains not only sentence
nodes but also other semantic units. Although we
just use word nodes in this paper, more superior
semantic units (e.g. entities) can be incorporated.

(2) Our proposed framework is very flexible
in extension that can be easily adapt from single-
document to multi-document summarization tasks.

(3) Our model can outperform all existing com-
petitors on three benchmark datasets without the
pre-trained language models2. Ablation studies and
qualitative analysis show the effectiveness of our
models.

2 Related Work

Extractive Document Summarization With
the development of neural networks, great progress
has been made in extractive document summa-
rization. Most of them focus on the encoder-
decoder framework and use recurrent neural net-
works (Cheng and Lapata, 2016; Nallapati et al.,
2017; Zhou et al., 2018) or Transformer encoders

2Since our proposed model is orthogonal to the methods
that using pre-trained models, we believe our model can be
further boosted by taking the pre-trained models to initialize
the node representations, which we reserve for the future.

(Zhong et al., 2019b; Wang et al., 2019a) for the
sentential encoding. Recently, pre-trained language
models are also applied in summarization for con-
textual word representations (Zhong et al., 2019a;
Liu and Lapata, 2019b; Xu et al., 2019; Zhong
et al., 2020).

Another intuitive structure for extractive summa-
rization is the graph, which can better utilize the
statistical or linguistic information between sen-
tences. Early works focus on document graphs
constructed with the content similarity among sen-
tences, like LexRank (Erkan and Radev, 2004) and
TextRank (Mihalcea and Tarau, 2004). Some re-
cent works aim to incorporate a relational priori
into the encoder by graph neural networks (GNNs)
(Yasunaga et al., 2017; Xu et al., 2019). Method-
ologically, these works only use one type of nodes,
which formulate each document as a homogeneous
graph.

Heterogeneous Graph for NLP Graph neural
networks and their associated learning methods
(i.e. message passing (Gilmer et al., 2017), self-
attention (Velickovic et al., 2017)) are originally
designed for the homogeneous graph where the
whole graph shares the same type of nodes. How-
ever, the graph in the real-world application usu-
ally comes with multiple types of nodes (Shi et al.,
2016), namely the heterogeneous graph. To model
these structures, recent works have made prelim-
inary exploration. Tu et al. (2019) introduced a
heterogeneous graph neural network to encode doc-
uments, entities and candidates together for multi-
hop reading comprehension. Linmei et al. (2019)
focused on semi-supervised short text classifica-
tion and constructed a topic-entity heterogeneous
neural graph.

For summarization, Wei (2012) proposes a het-
erogeneous graph consisting of topic, word and
sentence nodes and uses the markov chain model
for the iterative update. Wang et al. (2019b) modify
TextRank for their graph with keywords and sen-
tences and thus put forward HeteroRank. Inspired
by the success of the heterogeneous graph-based
neural network on other NLP tasks, we introduce
it to extractive text summarization to learn a better
node representation.

3 Methodology

Given a document D = {s1, · · · , sn} with n sen-
tences, we can formulate extractive summarization
as a sequence labeling task as (Narayan et al., 2018;
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Figure 1: Model Overview. The framework consists of
three major modules: graph initializers, the heteroge-
neous graph layer and the sentence selector. Green cir-
cles and blue boxes represent word and sentence nodes
respectively. Orange solid lines denote the edge feature
(TF-IDF) between word and sentence nodes and the
thicknesses indicate the weight. The representations of
sentence nodes will be finally used for summary selec-
tion.

Liu and Lapata, 2019b). Our goal is to predict a
sequence of labels y1, · · · , yn (yi ∈ {0, 1}) for sen-
tences, where yi = 1 represents the i-th sentence
should be included in the summaries. The ground
truth labels, which we call ORACLE, is extracted
using the greedy approach introduced by Nallapati
et al. (2016) with the automatic metrics ROUGE
(Lin and Hovy, 2003).

Generally speaking, our heterogeneous summa-
rization graph consists of two types of nodes: basic
semantic nodes (e.g. words, concepts, etc.) as relay
nodes and other units of discourse (e.g. phrases,
sentences, documents, etc.) as supernodes. Each
supernode connects with basic nodes contained in
it and takes the importance of the relation as their
edge feature. Thus, high-level discourse nodes can
establish relationships between each other via basic
nodes.

In this paper, we use words as the basic seman-
tic nodes for simplicity. HETERSUMGRAPH in
Section 3.1 is a special case which only contains
one type of supernodes (sentences) for classifica-
tion, while HETERDOCSUMGRAPH in Section
3.5 use two (documents and sentences). Based on

our framework, other types of supernodes (such as
paragraphs) can also be introduced and the only
difference lies in the graph structure.

3.1 Document as a Heterogeneous Graph

Given a graph G = {V,E}, where V stands
for a node set and E represents edges between
nodes, our undirected heterogeneous graph can
be formally defined as V = Vw ∪ Vs and E =
{e11, · · · , emn}. Here, Vw = {w1, · · · , wm} de-
notes m unique words of the document and Vs =
{s1, · · · , sn} corresponds to the n sentences in the
document. E is a real-value edge weight matrix
and eij 6= 0 (i ∈ {1, · · · ,m}, j ∈ {1, · · · , n})
indicates the j-th sentence contains the i-th word.

Figure 1 presents the overview of our model,
which mainly consists of three parts: graph ini-
tializers for nodes and edges, the heterogeneous
graph layer and the sentence selector. The ini-
tializers first create nodes and edges and encode
them for the document graph. Then the heteroge-
neous graph updates these node representations by
iteratively passing messages between word and sen-
tence nodes via Graph Attention Network (GAT)
(Velickovic et al., 2017). Finally, the representa-
tions of sentence nodes are extracted to predict
labels for summaries.

3.2 Graph Initializers

Let Xw ∈ Rm×dw and Xs ∈ Rn×ds represent the
input feature matrix of word and sentence nodes re-
spectively, where dw is the dimension of the word
embedding and ds is the dimension of each sen-
tence representation vector. Specifically, we first
use Convolutional Neural Networks (CNN) (Le-
Cun et al., 1998) with different kernel sizes to cap-
ture the local n-gram feature for each sentence lj
and then use the bidirectional Long Short-Term
Memory (BiLSTM) (Hochreiter and Schmidhuber,
1997) layer to get the sentence-level feature gj .
The concatenation of the CNN local feature and
the BiLSTM global feature is used as the sentence
node feature Xsj = [lj ; gj ].

To further include information about the im-
portance of relationships between word and sen-
tence nodes, we infuse TF-IDF values in the edge
weights. The term frequency (TF) is the number
of times wi occurs in sj and the inverse document
frequency (IDF) is made as the inverse function of
the out-degree of wi.
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3.3 Heterogeneous Graph Layer

Given a constructed graph G with node features
Xw ∪ Xs and edge features E, we use graph atten-
tion networks (Velickovic et al., 2017) to update
the representations of our semantic nodes.

We refer to hi ∈ Rdh , i ∈ {1, · · · , (m + n)}
as the hidden states of input nodes and the graph
attention (GAT) layer is designed as follows:

zij = LeakyReLU (Wa[Wqhi;Wkhj ]) , (1)

αij =
exp(zij)∑

l∈Ni
exp(zil)

, (2)

ui = σ(
∑
j∈Ni

αijWvhj), (3)

where Wa, Wq, Wk, Wv are trainable weights
and αij is the attention weight between hi and hj .
The multi-head attention can be denoted as:

ui = ‖Kk=1σ

∑
j∈Ni

αk
ijW

khi

 . (4)

Besides, we also add a residual connection to
avoid gradient vanishing after several iterations.
Therefore, the final output can be represented as:

h′i = ui + hi. (5)

We further modify the GAT layer to infuse
the scalar edge weights eij , which are mapped
to the multi-dimensional embedding space eij ∈
Rmn×de . Thus, Equal 1 is modified as follows:

zij = LeakyReLU (Wa[Wqhi;Wkhj ; eij ]) . (6)

After each graph attention layer, we introduce a
position-wise feed-forward (FFN) layer consisting
of two linear transformations just as Transformer
(Vaswani et al., 2017).

Iterative updating To pass messages between
word and sentence nodes, we define the information
propagation as Figure 2. Specifically, after the
initialization, we update sentence nodes with their
neighbor word nodes via the above GAT and FFN
layer:

U1
s←w = GAT(H0

s,H
0
w,H

0
w), (7)

H1
s = FFN

(
U1

s←w +H0
s

)
, (8)

where H1
w = H0

w = Xw, H0
s = Xs and U1

s←w ∈
Rm×dh . GAT(H0

s,H0
w,H0

w) denotes that H0
s is

used as the attention query and H0
w is used as the

key and value.
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Figure 2: The detailed update process of word and sen-
tence nodes in Heterogeneous Graph Layer. Green and
blue nodes are word and sentence nodes involved in
this turn. Orange edges indicate the current informa-
tion flow direction. First, for sentence s1, word w1 and
w3 are used to aggregate word-level information in (a).
Next,w1 is updated by the new representation of s1 and
s2 in (b), which are the sentences it occurs. See Section
3.3 for details on the notation.

After that, we obtain new representations for
word nodes using the updated sentence nods and
further update sentence nodes iteratively. Each
iteration contains a sentence-to-word and a word-
to-sentence update process. For the t-th iteration,
the process can be represented as:

Ut+1
w←s = GAT(Ht

w,H
t
s,H

t
s), (9)

Ht+1
w = FFN

(
Ut+1

w←s +Ht
w

)
, (10)

Ut+1
s←w = GAT(Ht

s,H
t+1
w ,Ht+1

w ), (11)

Ht+1
s = FFN

(
Ut+1

s←w +Ht
s

)
. (12)

As Figure 2 shows, word nodes can aggregate the
document-level information from sentences. For
example, the high degree of a word node indicates
the word occurs in many sentences and is likely
to be the keyword of the document. Regarding
sentence nodes, the one with more important words
tends to be selected as the summary.

3.4 Sentence Selector

Finally, we need to extract sentence nodes included
in the summary from the heterogeneous graph.
Therefore, we do node classification for sentences
and cross-entropy loss is used as the training objec-
tive for the whole system.

Trigram blocking Following Paulus et al. (2017)
and Liu and Lapata (2019b), we use Trigram Block-
ing for decoding, which is simple but powerful ver-
sion of Maximal Marginal Relevance (Carbonell
and Goldstein, 1998). Specifically, we rank sen-
tences by their scores and discard those which have
trigram overlappings with their predecessors.



6213

𝑤!

𝑤"

𝑤#

𝑠"!

𝑠""

𝑑!

𝑑"

𝑠!!

𝑠!"

𝑤$

Figure 3: Graph structure of HETERDOCSUMGRAPH
for multi-document summarization (corresponding to
the Graph Layer part of Figure 1). Green, blue and
orange boxes represent word, sentence and document
nodes respectively. d1 consists of s11 and s12 while d2
contains s21 and s22. As a relay node, the relation of
document-document, sentence-sentence, and sentence-
document can be built through the common word nodes.
For example, sentence s11, s12 and s21 share the same
word w1, which connects them across documents.

3.5 Multi-document Summarization

For multi-document summarization, the document-
level relation is crucial for better understanding the
core topic and most important content of this clus-
ter. However, most existing neural models ignore
this hierarchical structure and concatenate docu-
ments to a single flat sequence(Liu et al., 2018;
Fabbri et al., 2019). Others try to model this rela-
tion by attention-based full-connected graph or take
advantage of similarity or discourse relations(Liu
and Lapata, 2019a).

Our framework can establish the document-level
relationship in the same way as the sentence-level
by just adding supernodes for documents(as Fig-
ure 3), which means it can be easily adapted from
single-document to multi-document summariza-
tion. The heterogeneous graph is then extended
to three types of nodes: V = Vw ∪ Vs ∪ Vd
and Vd = {d1, · · · , dl} and l is the number of
source documents. We name it as HETERDOC-
SUMGRAPH.

As we can see in Figure 3, word nodes become
the bridges between sentences and documents. Sen-
tences containing the same words connect with
each other regardless of their distance across doc-
uments, while documents establish relationships
based on their similar contents.

Document nodes can be viewed as a special type
of sentence nodes: a document node connects with
contained word nodes and the TF-IDF value is used
as the edge weight. Besides, document nodes also
share the same update process as sentence nodes.

The differences lie in the initialization, where the
document node takes the mean-pooling of its sen-
tence node features as its initial state. During the
sentence selection, the sentence nodes are concate-
nated with the corresponding document representa-
tions to obtain the final scores for multi-document
summarization.

4 Experiment

We evaluate our models both on single- and multi-
document summarization tasks. Below, we start
our experiment with the description of the datasets.

4.1 Datasets

CNN/DailyMail The CNN/DailyMail question
answering dataset (Hermann et al., 2015; Nal-
lapati et al., 2016) is the most widely used
benchmark dataset for single-document summa-
rization. The standard dataset split contains
287,227/13,368/11,490 examples for training, val-
idation, and test. For the data prepossessing, we
follow Liu and Lapata (2019b), which use the non-
anonymized version as See et al. (2017), to get
ground-truth labels.

NYT50 NYT50 is also a single-document sum-
marization dataset, which was collected from New
York Times Annotated Corpus (Sandhaus, 2008)
and preprocessed by Durrett et al. (2016). It con-
tains 110,540 articles with summaries and is split
into 100,834 and 9706 for training and test. Fol-
lowing Durrett et al. (2016), we use the last 4,000
examples from the training set as validation and
filter test examples to 3,452.

Multi-News The Multi-News dataset is a large-
scale multi-document summarization introduced
by Fabbri et al. (2019). It contains 56,216 articles-
summary pairs and each example consists of 2-10
source documents and a human-written summary.
Following their experimental settings, we split the
dataset into 44,972/5,622/5,622 for training, vali-
dation and test examples and truncate input articles
to 500 tokens.

4.2 Settings and Hyper-parameters

For both single-document and multi-document
summarization, we limit the vocabulary to 50,000
and initialize tokens with 300-dimensional GloVe
embeddings (Pennington et al., 2014). We filter
stop words and punctuations when creating word
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nodes and truncate the input document to a max-
imum length of 50 sentences. To get rid of the
noisy common words, we further remove 10% of
the vocabulary with low TF-IDF values over the
whole dataset. We initialize sentence nodes with
ds = 128 and edge features eij in GATe with
de = 50. Each GAT layer is 8 heads and the hidden
size is dh = 64, while the inner hidden size of FFN
layers is 512.

During training, we use a batch size of 32 and
apply Adam optimizer (Kingma and Ba, 2014) with
a learning rate 5e-4. An early stop is performed
when valid loss does not descent for three contin-
uous epochs. We select the number of iterations
t = 1 based on the performance on the validation
set.3 For decoding, we select top-3 sentences for
CNN/DailyMail and NYT50 datasets and top-9 for
Multi-New according to the average length of their
human-written summaries.

4.3 Models for Comparison

Ext-BiLSTM Extractive summarizer with BiL-
STM encoder learns the cross-sentence relation by
regarding a document as a sequence of sentences.
For simplification, we directly take out the initial-
ization of sentence nodes for classification, which
includes a CNN encoder for the word level and 2-
layer BiLSTM for sentence level. This model can
also be viewed as an ablation study of our HETER-
SUMGRAPH on the updating of sentence nodes.

Ext-Transformer Extractive summarizers with
Transformer encoder learn the pairwise interaction
(Vaswani et al., 2017) between sentences in a purely
data-driven way with a fully connected priori. Fol-
lowing (Liu and Lapata, 2019b), we implement a
Transformer-based extractor as a baseline, which
contains the same encoder for words followed by
12 Transformer encoder layers for sentences. Ext-
Transformer can be regarded as the sentence-level
fully connected graph.

HETERSUMGRAPH Our heterogeneous sum-
marization graph model relations between sen-
tences based on their common words, which can be
denoted as sentence-word-sentence relationships.
HETERSUMGRAPH directly selects sentences for
the summary by node classification, while HETER-
SUMGRAPH with trigram blocking further utilizes
the n-gram blocking to reduce redundancy.

3The detailed experimental results are attached in the Ap-
pendix Section.

Model R-1 R-2 R-L

LEAD-3 (See et al., 2017) 40.34 17.70 36.57
ORACLE (Liu and Lapata, 2019b) 52.59 31.24 48.87

REFRESH (Narayan et al., 2018) 40.00 18.20 36.60
LATENT (Zhang et al., 2018) 41.05 18.77 37.54
BanditSum (Dong et al., 2018) 41.50 18.70 37.60
NeuSUM (Zhou et al., 2018) 41.59 19.01 37.98
JECS (Xu and Durrett, 2019) 41.70 18.50 37.90
LSTM+PN (Zhong et al., 2019a) 41.85 18.93 38.13
HER w/o Policy (Luo et al., 2019) 41.70 18.30 37.10
HER w Policy (Luo et al., 2019) 42.30 18.90 37.60

Ext-BiLSTM 41.59 19.03 38.04
Ext-Transformer 41.33 18.83 37.65
HSG 42.31 19.51 38.74
HSG + Tri-Blocking 42.95 19.76 39.23

Table 1: Performance (Rouge) of our proposed mod-
els against recently released summarization systems on
CNN/DailyMail.

5 Results and Analysis

5.1 Single-document Summarization
We evaluate our single-document model on
CNN/DailyMail and NYT50 and report the uni-
gram, bigram and longest common subsequence
overlap with reference summaries by R-1, R-2 and
R-L. Due to the limited computational resource, we
don’t apply pre-trained contextualized encoder (i.e.
BERT (Devlin et al., 2018)) to our models, which
we will regard as our future work. Therefore, here,
we only compare with models without BERT for
the sake of fairness.

Results on CNN/DailyMail Table 1 shows the
results on CNN/DailyMail. The first part is the
LEAD-3 baseline and ORACLE upper bound, while
the second part includes other summarization mod-
els.

We present our models (described in Section
4.3) in the third part. Compared with Ext-
BiLSTM, our heterogeneous graphs achieve more
than 0.6/0.51/0.7 improvements on R-1, R-2 and
R-L, which indicates the cross-sentence relation-
ships learned by our sentence-word-sentence struc-
ture is more powerful than the sequential struc-
ture. Besides, Our models also outperform Ext-
Transformer based on fully connected relationships.
This demonstrates that our graph structures effec-
tively prune unnecessary connections between sen-
tences and thus improve the performance of sen-
tence node classification.

Compared with the second block of Figure 1, we
observe that HETERSUMGRAPH outperforms all
previous non-BERT-based summarization systems
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and trigram blocking leads to a great improvement
on all ROUGE metrics. Among them, HER (Luo
et al., 2019) is a comparable competitor to our HET-
ERSUMGRAPH, which formulated the extractive
summarization task as a contextual-bandit problem
and solved it with reinforcement learning. Since the
reinforcement learning and our trigram blocking
plays a similar role in reorganizing sentences into
a summary (Zhong et al., 2019a), we additionally
compare HER without policy gradient with HETER-
SUMGRAPH. Our HETERSUMGRAPH achieve
0.61 improvements on R-1 over HER without pol-
icy for sentence scoring, and HETERSUMGRAPH

with trigram blocking outperforms by 0.65 over
HER for the reorganized summaries.

Model R-1 R-2 R-L

First sentence (Durrett et al., 2016) 28.60 17.30 -
First k words (Durrett et al., 2016) 35.70 21.60 -
LEAD-3 38.99 18.74 35.35
ORACLE 60.54 40.75 57.22

COMPRESS (Durrett et al., 2016) 42.20 24.90 -
SUMO (Liu et al., 2019) 42.30 22.70 38.60
PG* (See et al., 2017) 43.71 26.40 -
DRM (Paulus et al., 2017) 42.94 26.02 -

Ext-BiLSTM 46.32 25.84 42.16
Ext-Transformer 45.07 24.72 40.85
HSG 46.89 26.26 42.58
HSG + Tri-Blocking 46.57 25.94 42.25

Table 2: Limited-length ROUGE Recall on NYT50 test
set. The results of models with * are copied from Liu
and Lapata (2019b) and ’-’ means that the original pa-
per did not report the result.

Results on NYT50 Results on NYT50 are sum-
marized in Table 2. Note that we use limited-length
ROUGE recall as Durrett et al. (2016), where the
selected sentences are truncated to the length of
the human-written summaries and the recall scores
are used instead of F1. The first two lines are base-
lines given by Durrett et al. (2016) and the next two
lines are our baselines for extractive summarization.
The second and third part report the performance
of other non-BERT-based works and our models
respectively.

Again, we observe that our cross-sentence rela-
tionship modeling performs better than BiLSTM
and Transformer. Our models also have strong ad-
vantages over other non-BERT-based approaches
on NYT50. Meanwhile, we find trigram block
doesn’t work as well as shown on CNN/DailyMail,
and we attribute the reason to the special formation

of summaries of CNN/DailyMail dataset. 4

Ablation on CNN/DailyMail In order to better
understand the contribution of different modules
to the performance, we conduct ablation study us-
ing our proposed HETERSUMGRAPH model on
CNN/DailyMail dataset. First, we remove the fil-
tering mechanism for low TF-IDF words and the
edge weights respectively. We also remove residual
connections between GAT layers. As a compen-
sation, we concatenate the initial sentence feature
after updating messages from nearby word nodes
in Equal 8:

H1
s = FFN

(
[U1

s←w;H0
s]
)
. (13)

Furthermore, we make iteration number t = 0,
which deletes the word updating and use the sen-
tence representation H1

s for classification. Finally,
we remove the BiLSTM layer in the initialization
of sentence nodes.

As Table 3 shows, the removal of low TF-IDF
words leads to increases on R-1 and R-L but drops
on R-2. We suspect that filtering noisy words
enable the model to better focus on useful word
nodes, at the cost of losing some bigram informa-
tion. The residual connection plays an important
role in the combination of the original representa-
tion and the updating message from another type
of nodes, which cannot be replaced by the concate-
nation. Besides, the introduction of edge features,
word update and BiLSTM initialization for sen-
tences also show their effectiveness.

5.2 Multi-document Summarization

We first take the concatenation of the First-k sen-
tences from each source document as the baseline
and use the codes and model outputs5 released by
Fabbri et al. (2019) for other models.

To explore the adaptability of our model to multi-
document summarization, we concatenate multi-
source documents to a single mega-document and
apply HETERSUMGRAPH as the baseline. For
comparison, we extend HETERSUMGRAPH to
multi-document settings HETERDOCSUMGRAPH

4Nallapati et al. (2016) concatenate summary bullets,
which are written for different parts of the article and have
few overlaps with each other, as a multi-sentence summary.
However, when human write summaries for the whole article
(such as NYT50 and Multi-News), they will use key phrases
repeatedly. This means roughly removing sentences by n-gram
overlaps will lead to loss of important information.

5https://github.com/Alex-Fabbri/ Multi-News
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Model R-1 R-2 R-L

HSG 42.31 19.51 38.74
- filter words 42.24 19.56 38.68
- edge feature 42.14 19.41 38.60
- residual connection 41.59 19.08 38.05
- sentence update 41.59 19.03 38.04
- word update 41.70 19.16 38.15
- BiLSTM 41.70 19.09 38.13

Table 3: Ablation studies on CNN/DailyMail test set.
We remove various modules and explore their influence
on our model. ’-’ means we remove the module from
the original HETERSUMGRAPH. Note that HETER-
SUMGRAPH without the updating of sentence nodes
is actually the Ext-BiLSTM model described in Section
4.3.

as described in Section 3.5. Our results are pre-
sented in Table 4.

Specifically, we observe that both of our HETER-
SUMGRAPH and HETERDOCSUMGRAPH out-
perform previous methods while HETERDOC-
SUMGRAPH achieves better performance improve-
ments. This demonstrates the introduction of
document nodes can better model the document-
document relationships and is beneficial for multi-
document summarization. As mentioned above,
trigram blocking does not work for the Multi-News
dataset, since summaries are written as a whole
instead of the concatenations of summary bullets
for each source document.

Model R-1 R-2 R-L

First-1 25.44 7.06 22.12
First-2 35.70 10.28 31.71
First-3 40.21 12.13 37.13
ORACLE 52.32 22.23 47.93

LexRank* (Erkan and Radev, 2004) 41.77 13.81 37.87
TextRank* (Mihalcea and Tarau, 2004) 41.95 13.86 38.07
MMR* (Carbonell and Goldstein, 1998) 44.72 14.92 40.77
PG† (Lebanoff et al., 2018) 44.55 15.54 40.75
BottomUp† (Gehrmann et al., 2018) 45.27 15.32 41.38
Hi-MAP† (Fabbri et al., 2019) 45.21 16.29 41.39

HSG 45.66 16.22 41.80
HSG + Tri-Blocking 44.92 15.59 40.89
HDSG 46.05 16.35 42.08
HDSG + Tri-Blocking 45.55 15.78 41.29

Table 4: Results on the test set of Multi-News. We
reproduce models with ‘*’ via the released code and
directly use the outputs of † provided by Fabbri et al.
(2019) for evaluation.

5.3 Qualitative Analysis
We further design several experiments to probe into
how our HETERSUMGRAPH and HETERDOC-

0.4

0.6

0.8

∆
R̃
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Figure 4: Relationships between the average degree of
word nodes of the document (x-axis) and R̃, which is
the mean of R-1, R-2 and R-L (lines for left y-axis),
and between ∆R̃, which is the delta R̃ of HETERSUM-
GRAPH and Ext-BiLSTM (histograms for right y-axis).

SUMGRAPH help the single- and multi-document
summarization.

Degree of word nodes In HETERSUMGRAPH,
the degree of a word node indicates its occurrence
across sentences and thus can measure the redun-
dancy of the document to some extent. Meanwhile,
words with a high degree can aggregate informa-
tion from multiple sentences, which means that
they can benefit more from the iteration process.
Therefore, it is important to explore the influence
of the node degree of words on the summarization
performance.

We first calculate the average degree of word
nodes for each example based on the constructed
graph. Then the test set of CNN/DailyMail is di-
vided into 5 intervals based on it (x-axis in Figure
4). We evaluate the performance of HETERSUM-
GRAPH and Ext-BiLSTM in various parts and the
mean score of R-1, R-2, R-L is drawn as lines
(left y-axis R̃). The ROUGE increases with the
increasing of the average degree of word nodes
in the document, which means that articles with
a high redundancy are easier for neural models to
summarize.

To make ∆R̃ between models more obvious, we
draw it with histograms (right y-axis). From Fig-
ure 4, we can observe that HETERSUMGRAPH

performs much better for documents with a higher
average word node degree. This proves that the ben-
efit brought by word nodes lies in the aggregation
of information from sentences and the propagation
of their global representations.

Number of source documents We also investi-
gate how the number of source documents influ-
ences the performance of our model. To this end,
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Figure 5: Relationship between number of source doc-
uments (x-axis) and R̃ (y-axis).

we divide the test set of Multi-News into different
parts by the number of source documents and dis-
card parts with less than 100 examples. Then, we
take First-3 as the baseline, which concatenates the
top-3 sentences of each source document as the
summary.

In Figure 5, we can observe that the lead base-
line raises while both of our model performance
degrade and finally they converge to the baseline.
This is because it is more challenging for models to
extract limited-number sentences that can cover the
main idea of all source documents with the increas-
ing number of documents. However, the First-3
baseline is forced to take sentences from each doc-
ument which can ensure the coverage. Besides, the
increase of document number enlarges the perfor-
mance gap between HETERSUMGRAPH and HET-
ERDOCSUMGRAPH. This indicates the benefit of
document nodes will become more significant for
more complex document-document relationships.

6 Conclusion

In this paper, we propose a heterogeneous graph-
based neural network for extractive summarization.
The introduction of more fine-grained semantic
units in the summarization graph helps our model
to build more complex relationships between sen-
tences . It is also convenient to adapt our single-
document graph to multi-document with document
nodes. Furthermore, our models have achieved
the best results on CNN/DailyMail compared with
non-BERT-based models, and we will take the pre-
trained language models into account for better
encoding representations of nodes in the future.
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A Appendices

In order to select the best iteration number for HET-
ERSUMGRAPH, we compare performances of dif-
ferent t on the validation set of CNN/DM. All mod-
els are trained on a single GeForce RTX 2080 Ti
GPU for about 5 epochs. As Table 5 shows, our
HETERSUMGRAPH has comparable results for
t = 1 and t = 3. However, when the iteration num-
ber goes from 1 to 3, the time for one epoch nearly
doubles. Therefore, we take t = 1 as a result of the
balance of time cost and model performance.

Number R-1 R-2 R-L Time

t = 0 43.63 19.58 37.39 3.16h
t = 1 44.26 19.97 38.03 5.04h
t = 2 44.13 19.85 37.87 7.20h
t = 3 44.28 19.96 37.98 8.93h

Table 5: Different turns of iterative updating of sen-
tence nodes. The experiments are performed on the
validation set of CNN/DM. Time is the average time
of one epoch.


