
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6159–6169
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6159

Neural Mixed Counting Models for Dispersed Topic Discovery
Jiemin Wu1,∗, Yanghui Rao1,†, Zusheng Zhang1,

Haoran Xie2, Qing Li3, Fu Lee Wang4, Ziye Chen1

1School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
2Department of Computing and Decision Sciences, Lingnan University, Hong Kong

3Department of Computing, The Hong Kong Polytechnic University, Hong Kong
4School of Science and Technology, The Open University of Hong Kong, Hong Kong

wujm29@mail2.sysu.edu.cn, raoyangh@mail.sysu.edu.cn,
hrxie2@gmail.com, csqli@comp.polyu.edu.hk,

pwang@ouhk.edu.hk, {zhangzsh3, chenzy35}@mail2.sysu.edu.cn

Abstract

Mixed counting models that use the negative
binomial distribution as the prior can well
model over-dispersed and hierarchically de-
pendent random variables; thus they have at-
tracted much attention in mining dispersed
document topics. However, the existing pa-
rameter inference method like Monte Carlo
sampling is quite time-consuming. In this pa-
per, we propose two efficient neural mixed
counting models, i.e., the Negative Binomial-
Neural Topic Model (NB-NTM) and the Gam-
ma Negative Binomial-Neural Topic Model
(GNB-NTM) for dispersed topic discovery.
Neural variational inference algorithms are de-
veloped to infer model parameters by using the
reparameterization of Gamma distribution and
the Gaussian approximation of Poisson distri-
bution. Experiments on real-world datasets in-
dicate that our models outperform state-of-the-
art baseline models in terms of perplexity and
topic coherence. The results also validate that
both NB-NTM and GNB-NTM can produce
explainable intermediate variables by generat-
ing dispersed proportions of document topics.

1 Introduction

Mixture modeling is an essential topic in statistics
and machine learning areas, owing to generating
the random probability measure of data samples
belonging to multiple clusters. In unsupervised
learning tasks such as topic discovery, mixture
modeling has gained increasing attention from re-
searchers (Wang et al., 2011; Zhou and Carin, 2012,
2015; Zhou, 2018; Zhao et al., 2019). Specifically,
mixture modeling over document words devotes
to assign these words to different topics via ran-
dom probability measures. Hierarchical Dirichlet
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Process (HDP) (Teh et al., 2004) is one of the repre-
sentative methods in mixture modeling, which can
characterize the two-level dependency of random
probability measures. Although we can use Monte
Carlo sampling or variational inference to estimate
the parameters in HDP, it requires the help of indi-
rect construction of random variables such as the
Chinese Restaurant Franchise (Teh et al., 2004) or
the Stick-Breaking construction (Wang et al., 2011)
due to the lack of conjugation between the two-tier
Dirichlet processes. This makes the inference of
HDP mostly complicated (Zhou et al., 2016).

The mixed counting models represented by the
Negative Binomial (NB) process (Titsias, 2007)
and the Gamma Negative Binomial (GNB) process
(Zhou and Carin, 2012) have solved this problem
to a certain extent, in which, the normalized GNB
process has been proven to be equivalent to HDP
(Zhou and Carin, 2012). Because both NB and
GNB processes satisfy the properties of completely
random measures (Charles Kingman, 1967), the
generative process of random probability measures
among various mixed components is independent
and becomes straightforward. Moreover, they natu-
rally introduce non-negative constraints and have
been proven as able to model over-dispersed data.
In the case of mining latent topics of documents,
the over-dispersed property indicates that the vari-
ance is larger than the mean for document-topic
distributions. When compared to the NB process,
the GNB process has an extra feature of describing
more flexible stochastic phenomena with hierarchi-
cal dependencies. Despite the above advantages,
with the increase of data size and observable in-
formation, the aforementioned parameter inference
method like Monte Carlo sampling or variation-
al inference has gradually become an important
factor limiting the usage scenarios of mixed count-
ing models (Miao et al., 2016). The reason is that
Monte Carlo sampling has a high computational



6160

cost, and variational inference becomes intractable
when applied to models with complex variable de-
pendencies (Acharya et al., 2015).

Neural variational inference (NVI) is a flexible
and fast parameter inference framework based on
neural networks (Mnih and Gregor, 2014). It can
be regarded as a generalization of variational auto-
encoder applicable to natural language processing
tasks. Based on NVI, several neural topic mod-
els had been proposed and achieved encouraging
performance in document modeling (Miao et al.,
2016; Srivastava and Sutton, 2017; Miao et al.,
2017). These models used the neural network to
learn the distribution relationship between input
documents and latent topics due to its excellent
function fitting ability and scalability. Particularly,
the neural network parameters can be trained by
back-propagation through the reparameterization
of a continuous distribution (Naesseth et al., 2017)
or using variance reduction techniques for a dis-
crete distribution (Mnih and Gregor, 2014). How-
ever, the hidden variables in the above neural topic
models lack good interpretability, and it is also im-
possible to model over-dispersed and hierarchically
dependent document sets for these methods.

In this paper, we propose two novel neural mixed
counting models dubbed the Negative Binomial-
Neural Topic Model (NB-NTM) and the Gam-
ma Negative Binomial-Neural Topic Model (GNB-
NTM) based on NB and GNB processes, respec-
tively. The general motivation is to combine the
advantages of NVI and mixed counting models.
On the one hand, NVI-based models are fast and
easy to estimate but hard to interpret. On the other
hand, document modeling via mixed counting mod-
els is easy to interpret but difficult to infer. In our
NB-NTM and GNB-NTM, we develop NVI algo-
rithms to infer parameters by using the reparame-
terization of Gamma distribution and the Gaussian
approximation of Poisson distribution. Extensive
experiments on real-world datasets validate the ef-
fectiveness of our proposed models in perplexi-
ty, topic coherence, and dispersed topic learning.
Furthermore, the proposed models can describe
the hierarchical dependence of random probability
measures and introduce non-negative constraints,
which renders the intermediate variables generated
by our methods to have good interpretability.

The remainder of this article is organized as fol-
lows. In Section 2, we summarize the related stud-
ies on topic discovery. In Section 3, we introduce

the definitions and properties of background meth-
ods. The proposed models are described in Section
4, the experimental evaluations are shown in Sec-
tion 5, and we draw the conclusions in Section 6.

2 Related Work

Topic discovery aims to use the statistical infor-
mation of word occurrences to obtain the abstract
semantic structure embedded in a document set.
From Bayesian methods represented by latent se-
mantic analysis (LSA) (Deerwester et al., 1990),
probabilistic latent semantic analysis (PLSA) (Hof-
mann, 1999), latent Dirichlet allocation (LDA)
(Blei et al., 2003), and Hierarchical Dirichlet Pro-
cess (HDP) (Teh et al., 2004), topic discovery had
been widely researched in natural language process-
ing and applied to many scenarios. For instance,
the above models were extended to capture topic
relevance (Blei and Lafferty, 2005) and topic evo-
lution over time (Wang and McCallum, 2006; Blei
and Lafferty, 2006). Algorithms for short text (Yan
et al., 2013), tagged data (Ramage et al., 2009), and
stream data (Yao et al., 2009) were also proposed.
Considering the importance of prior distributions in
LDA-based models, some research efforts tried to
use beta and Gaussian distributions instead of the
Dirichlet distribution as the prior of probabilistic
graphical models (Thibaux and Jordan, 2007; Das
et al., 2015). Although the Bayesian method is a
natural way to represent the latent structure of a
document set in topic discovery, as the structure of
such a model becomes deeper and more complex,
pure Bayesian inference becomes intractable due to
the high dimensional integrals required (Miao et al.,
2016). To address this issue, Cheng and Liu (2014)
proposed a parallel Monte Carlo sampling method
for HDP based on multi-threading. Unfortunately,
it needs to traverse every word of all topics (i.e.,
threads) in the whole corpus when updating the
topic-word distribution, rendering a large time cost
for thread communication.

With the development of deep learning, especial-
ly the introduction of NVI, there is a new direction
to discover topics based on neural networks. For
example, Miao et al. (2016) assumed that word dis-
tributions in each document could be represented
by hidden variables sampled from multiple Gaus-
sian distributions, and they used the variational low-
er bound as the objective function of their model
named NVDM. Srivastava and Sutton (2017) em-
ployed the logical Gaussian distribution to approxi-
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mate the Dirichlet distribution, which improved the
variational auto-encoder and LDA simultaneously.
Miao et al. (2017) proposed a method named GSM
to model the document-topic distribution explicitly.
In their study, the topic-word distribution was in-
troduced into the decoder. Besides the above NVI-
based methods, Nalisnick and Smyth (2017) de-
veloped a stick-breaking variational auto-encoder
for image generation. Nan et al. (2019) proposed
a model named W-LDA in the Wasserstein auto-
encoder framework. They employed the Maximum
Mean Discrepancy (MMD) in W-LDA to match
the proposed distribution and the prior distribution.
However, the accuracy of MMD relied heavily on
the number of samples for each distribution, and
the kernel function in MMD had a significant in-
fluence on the performance. By leveraging word
embeddings, Gupta et al. (2019) proposed a neural
autoregressive topic model dubbed iDocNADE to
enrich the context of short text. Experiments indi-
cate that iDocNADE outperformed state-of-the-art
generative topic models.

The recent relevant work to ours is the method
proposed in (Zhao et al., 2019), which regarded
the NB distribution as the prior in modeling the
over-dispersed discrete data. However, the param-
eters of this method were still derived from the
latent variables that obey the Gaussian distribu-
tion. Thus, these latent variables do not satisfy
the non-negative constraint and lack good inter-
pretability. Furthermore, the above method did not
model topics explicitly, making it hard to generate
document-topic and topic-word distributions.

3 Background

3.1 Negative Binomial Process

LetX ∼ NBP(G0, p) denote a NB process defined
on the product space R+ × Ω, where G0 is a finite
continuous basic measure on a completely separa-
ble measure space Ω, and p is a scale parameter.
For each Borel set A ⊂ Ω, we use X(A) to denote
a count random variable describing the number of
observations that reside within A. Then, X(A)
obeys the NB distribution NB(G0(A), p). Given
the kth component πk and its weight rk on Ω, if
G0 is expressed as G0 =

∑∞
k=1 rkδπk , where δ is

the Dirac delta function, then X ∼ NBP(G0, p)
can be expressed by X =

∑∞
k=1 nkδπk , where

nk ∼ NB(rk, p).
The NB distribution m ∼ NB(r, p) has a prob-

ability density function fM (m) = Γ(r+m)
m!Γ(r) (1 −

p)rpm, where Γ(·) denotes the gamma function.
For the above probability density function, the
mean and the variance are µ = r/(1 − p) and
σ2 = rp/(1− p)2 = µ+ r−1µ2, respectively. Be-
cause the mean is smaller than the variance, i.e.,
the variance-to-mean ratio is greater than 1, NB
distributions have shown great advantages in over-
dispersed data modeling (Zhou and Carin, 2012).
Moreover, since the NB distribution m ∼ NB(r, p)
can be extended to a Gamma distribution and a
Poisson distribution, i.e., m ∼ Poisson(λ) and
λ ∼ Gamma(r, p/(1 − p), the NB process men-
tioned earlier can be extended to a Gamma-Poisson
process (Zhou and Carin, 2015) as follows: X ∼
PP (Λ), and Λ ∼ GaP (G0, (1− p) /p), where
PP(·) and GaP(·) denote the Poisson process and
the Gamma process, respectively. The random
probability measure corresponding to each mixed
component in the NB process can be directly sam-
pled from the NB distribution without resorting
to the Chinese Restaurant Franchise, the Stick-
Breaking, or other construction methods, because
each random measure is independent of the others,
i.e., the NB process is completely random.

3.2 Gamma Negative Binomial Process
In the NB process, each Poisson process shares
the same Gamma process prior with a fixed mean.
Based on the NB process, the GNB process assigns
another Gamma process as a prior to its mean, mak-
ing it easier to model over-dispersed data (Zhou
et al., 2016). Particularly, the generative process of
random variables for the GNB process is as follows:
G ∼ GaP (G0, η), Λj ∼ GaP (G, (1− pj) /pj),
and Xj ∼ PP (Λj), where j is the subset index, η
is the scale parameter of the first-level Gamma pro-
cess, and the basic measure G0 in the NB process
is replaced by another random measure G. It has
been shown that HDP is a normalized form of the
GNB process in (Zhou and Carin, 2012). However,
unlike HDP, the GNB process explicitly introduces
the parameter pj to control the dispersion degree
of instantaneous measurement, making the latter
model more flexible.

3.3 Neural Variational Inference
NVI is often used as an efficient parameter in-
ference framework for complex and deep-seated
structural models. Inspired by the variational auto-
encoder, NVI assumes that the observed data d
is subject to a certain probability distribution de-
termined by a hidden variable h. In contrast to
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variational auto-encoders on handling the case of
continuous latent variables (Kingma and Welling,
2014), NVI can deal with both discrete and contin-
uous latent variables. Specifically, a neural net-
work is used to infer the proposed distribution
q(h|d). As stated in (Miao et al., 2017), Monte
Carlo estimates of the gradient must be employed
for models with discrete latent variables. In the
case of q(h|d) being continuous, the hidden vari-
able h is firstly obtained by sampling from q(h|d)
through the corresponding reparameterization ap-
proach. Then, the likelihood p(d|h) is used to
reproduce the observed data from hidden variables,
and the objective is to minimize the Kullback-
Leibler (KL) divergence of the proposed distri-
bution and the actual posterior distribution. Fi-
nally, the variational lower bound is obtained by
L = Eq(h|d) log p (d|h) − DKL [q(h|d)‖p(h)],
where the first term is the expectation of the log-
likelihood, and the second one is the KL divergence
between the inferred distribution and a predefined
prior. To sum up, NVI first uses a neural network
to infer the proposed distribution q(h|d), and then
maximizes the variational lower bound by back-
propagation to fit the actual posterior distribution
p(h|d). Such a framework learns the distribution
of input data well, enabling it to combine with
the traditional probability graphical models (e.g.,
LDA) and infer model parameters quickly (Srivas-
tava and Sutton, 2017). However, how to effective-
ly integrate the distributed dependencies in mixed
counting models into the framework of variational
inference is still quite a challenging problem.

4 Proposed Models

In this section, we respectively detail our NB-NTM
and GNB-NTM for dispersed topic discovery.

4.1 Negative Binomial-Neural Topic Model

With a NB process prior, we propose the NB-NTM
to model the counting of document words. Fur-
thermore, a novel NVI framework is developed for
parameter inference. Let D = {d1, ...,d|D|} be
the input with |D| documents and each document
d ∈ RV be a bag-of-words representation, where
V is the vocabulary size. Since it is impossible to
draw all the countably infinite atoms of a Gamma
process, we first employ the finite truncation strate-
gy, in which, a number of topics K (i.e., the trun-
cated level) is set manually (Nalisnick and Smyth,
2017; Zhou, 2018). Note that although K is fixed,

if K is set to be large enough, not necessarily all
topics would be used and hence a truncated model
still preserves its nonparametric ability; whereas if
K is set to be small, asymmetric priors on the topic
weights are also maintained (Zhou, 2018). Then
we can express the generative process of NB-NTM
for document d as follows:

r = f1(d), p = f2(d), (1)

λ ∼ Gamma (r,p/ (1− p)) , (2)

n ∼ Poisson (λ) , (3)

where f1(·) and f2(·) are two multilayer percep-
trons (MLPs) applying to generate the variational
parameters r and p. Specifically, r is the com-
ponent weight of G, i.e., the topic measure at the
corpus level, and G =

∑K
k=1 rkδπk . λ represents

the weights of topics at the document level, which
can be used to estimate the topic measure on d by
Λ =

∑K
k=1 λkδπk . In the above, λk denotes the

kth component of λ. Finally, n is the component
weight of Π that represents a Poisson process at the
word level, and Π =

∑K
k=1 nkδπk . The framework

of NB-NTM is shown in Figure 1, and the parame-
ter inference process is described as follows.

Figure 1: Framework of NB-NTM.

For the logarithmic likelihood of each doc-
ument d, we can derive the variational low-
er bound by L = −DKL(q(λ|d)||p(λ)) +

Eq(λ|d)

[∑Nd
i=1 log p(ωi|λ)

]
. In the above, q(λ|d)

is the encoder’s inference of posterior probabili-
ty, i.e., Gamma(r,p), ωi ∈ RV is the one-hot
representation of the word at the ith position, Nd
is the number of words in document d, and p(λ)
is the Gamma prior for λ, i.e., Gamma(ξ, c).
The KL divergence between q(λ|d) and p(λ),
i.e., Gamma(r,p) and Gamma(ξ, c), is calcu-
lated by following (Mathiassen et al., 2002):
DKL(q(λ|d)||p(λ)) =

∑K
k=1[(rk − 1)Ψ(rk) −



6163

log pk−rk−log Γ(rk)−(ξ−1)(Ψ(rk)+log pk)+
log Γ(ξ)+ξ log c+ rkpk

c ], where Ψ(·) is the Digam-
ma function. The conditional probability over each
word p(ωi|λ) is modeled by softmax function,
as follows: p(ωi|λ) = exp{σ(nTRωi+bi)}∑V

j=1 exp{σ(nTRωj+bj)}
,

where R and b denote the weight matrix and the
bias term, respectively. We present the parameter
inference process of NB-NTM in Algorithm 1, in
which, the variational lower bound L is used to cal-
culate gradients and model parameters are updated
by Adam (Kingma and Ba, 2015).

Algorithm 1: Parameter Inference for NB-NTM
Input: Number of topics K, gamma priors ξ

and c, document setD;
Output: Document-topic distribution θ,

topic-word distribution φ.
1 repeat
2 for document d ∈D do
3 Compute gamma distribution

parameters r = f1(d),p = f2(d);
4 Compute the KL divergence between

Gamma(r,p) and Gamma(ξ, c);
5 for k ∈ [1,K] do
6 Sample the Poisson distribution

parameter by
λk ∼ Gamma(rk, pk/(1− pk));

7 Sample word numbers by
nk ∼ Poisson (λk);

8 end
9 for ωi ∈ d do

10 Compute log-likelihood
log p(ωi|λ);

11 end
12 Compute variational lower bound L;
13 Update f1(·), f2(·), R, and b;
14 end
15 until convergence;
16 for document d ∈D do
17 Normalize λ to obtain θd;
18 end
19 Apply softmax to R in row to obtain φ.

4.2 Gamma Negative Binomial-Neural Topic
Model

Based on the NB-NTM, we further propose the
GNB-NTM by assigning another Gamma process
as a prior to the NB process. As shown in Figure 2,
the generative process of GNB-NTM for document

d is given below:

γ = f1(d), η = f2(d), (4)

r ∼ Gamma (γ,η) , (5)

λ ∼ Gamma (r, p/ (1− p)) , (6)

p = f3(d), n ∼ Poisson (λ) . (7)

In the above, γ and η are the parameters of the
first-level Gamma process, and p is the scale pa-
rameter of the second-level Gamma process. The
differences between GNB-NTM and NB-NTM are
three-fold. Firstly, another Gamma process G0 is
introduced over the existing Gamma process G
as a prior of its shape parameter, so as to char-
acterize the multi-level dependencies of random
variables. In particular, G0 =

∑K
k=1 γkδπk . Sec-

ondly, a scale parameter p is introduced for each
document to describe the dispersion degree of all
words in the document. Thirdly, the GNB-NTM
employs n+ r as the input of the decoder by fol-
lowing the production rule of the observed variable
in (Zhou and Carin, 2012). Using n+ r as the
input also helps to incorporate the global topic in-
formation into the decoder’s inference of posterior
probability q(r|d). Thus, the conditional probabil-
ity over each word p(ωi|r) is modeled as follows:

p(ωi|r) = exp{σ((n+r)TRωi+bi)}∑V
j=1 exp{σ((n+r)TRωj+bj)}

.

Figure 2: Framework of GNB-NTM, where both r and
n are used as input in the decoder.

Similar to NB-NTM, the variational lower bound
is derived by: L = Eq(r|d)

[∑Nd
i=1 log p(ωi|r)

]
−

DKL(q(r|d)||p(r)), where p(r) is the Gamma pri-
or for r, i.e., Gamma(ξ, c). The parameter infer-
ence for GNB-NTM is presented in Algorithm 2.
We use the variational lower bound to calculate
gradients and apply Adam to update parameters of
GNB-NTM, which are the same as NB-NTM.

4.3 Reparameterization Approach
The Gamma and Poisson sampling operation can-
not be differentiated, making it intractable to up-
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Algorithm 2: Parameter Inference for GNB-
NTM
Input: Number of topics K, gamma priors ξ

and c, document setD;
Output: Document-topic distribution θ,

topic-word distribution φ.
1 repeat
2 for document d ∈D do
3 Compute the 1st gamma distribution

parameters γ = f1(d),η = f2(d);
4 Compute the KL divergence between

Gamma(γ,η) and Gamma(ξ, c);
5 Compute the 2nd gamma distribution

parameter p = f3(d);
6 for k ∈ [1,K] do
7 Sample the 2nd gamma

distribution parameter by
rk ∼ Gamma(γk, ηk);

8 Sample the Poisson distribution
parameter by
λk ∼ Gamma(rk, p/(1− p));

9 Sample word numbers by
nk ∼ Poisson (λk);

10 end
11 for ωi ∈ d do
12 Compute log-likelihood

log p(ωi|r);
13 end
14 Compute variational lower bound L ;
15 Update f1(·), f2(·), f3(·), R, and b;
16 end
17 until convergence;
18 for document d ∈D do
19 Normalize λ to obtain θd;
20 end
21 Apply softmax to R in row to obtain φ.

date model parameters through back-propagation.
Here, we describe the reparameterization approach
for smoothing gradients. For the Gamma dis-
tribution x ∼ Gamma(α, β) with α > 1, the
reparameterization can be obtained by the reject-
sampling method (Naesseth et al., 2017), i.e., x =
1
β

(
α− 1

3

) (
1 + ε√

9α−3

)3
, ε ∼ N (0, 1). Besides,

the shape augmentation method (Naesseth et al.,
2017) is applied to convert α ≤ 1 to α > 1 to
increase the accept rate of each rejection sampler.
For the Poisson distribution which is discrete, we
use the Gaussian distribution as an approxima-

tion (Rezende et al., 2014; Kingma and Welling,
2014). Based on the central limit theorem, N (µ =
λ, σ2 = λ) can approximate Poisson(λ). Thus,
we sample from the Poisson distribution directly to
avoid the issue of discretization and use the Gaus-
sian distribution as an approximation when calculat-
ing the Poisson distribution’s gradient. Particularly,
the reparameterization of a Gaussian distribution
x ∼ N (µ, σ2) is x = µ+ ε · σ, ε ∼ N (0, 1).

5 Empirical Results

5.1 Datasets

We employ the following three datasets to evaluate
the effectiveness of our models: Reuters1, 20News,
and MXM song lyrics (Miao et al., 2017). The
Reuters dataset contains 7,758 training documents
and 3,005 testing documents. The 20News corpus
consists of 18,773 news articles under 20 categories.
These news articles are divided into 11,268 training
documents and 7,505 testing documents. The 20
categories include sports, electronics, automotive,
and so forth, and the number of documents under
each category is almost the same. MXM is the offi-
cial lyrics collection of the Million Song Dataset,
which contains 210,519 training documents and
27,143 testing documents, respectively. By fol-
lowing (Miao et al., 2017), we use the originally
provided vocabulary with 5,000 words for MXM,
while for Reuters and 20News, we use stemming,
stop words filtering, and the 2,000 most frequently
occurred words as vocabularies. The statistics of
these datasets are presented in Table 1.

Dataset Reuters 20News MXM

Train.Size 7,758 11,268 210,519
Test.Size 3,005 7,505 27,143

Label number 90 20 -
Vocabulary size 2,000 2,000 5,000

Table 1: Statistics of the datasets.

5.2 Experimental Setup

The following models are adopted as baselines:
HDP (Teh et al., 2004), NVDM (Miao et al., 2016),
NVLDA and ProdLDA (Srivastava and Sutton,
2017), GSM (Miao et al., 2017), and iDocNADE
(Gupta et al., 2019). Among these baselines, HDP
is a classical mixture modeling method followed

1https://www.nltk.org/book/ch02.html

https://www.nltk.org/book/ch02.html
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the equivalence with the normalized GNB process
(Zhou and Carin, 2012). In HDP, the model pa-
rameters are estimated by Monte Carlo sampling.
NVDM, NVLDA, ProdLDA, and GSM are all neu-
ral topic models based on NVI. Considering that
word embeddings have shown to capture both the
semantic and syntactic relatedness in words and
demonstrated impressive performance in natural
language processing tasks, we also present the re-
sult of a neural autoregressive topic model that
leverages word embeddings (i.e., iDocNADE). Par-
ticularly, the publicly available codes of HDP2, N-
VDM3, NVLDA and ProdLDA4, and iDocNADE5

are directly used. As an extended model of NVDM,
the baseline of GSM is implemented by us based
on the code of NVDM. To ensure fair comparisons
on various NVI-based methods, unless explicitly
specified, we set the number of topics to 50, the hid-
den dimension of MLP to 256, and use one sample
for NVI by following (Miao et al., 2017). For the
batch size, the learning rate, and other model pa-
rameters, grid search is carried out on the training
set to determine their optimal values and achieve
the held-out performance.

To evaluate the quality of topics generated by
different models, we use perplexity and topic coher-
ence as evaluation criteria. The perplexity of each
model on a testing set D̃ is: perplexity (D̃) =

exp
(
− 1

|D̃|

∑
d̃

1
N

d̃
log p(d̃)

)
, where log p(d̃) rep-

resents the log-likelihood of the model on docu-
ment d̃, and N

d̃
is the number of words in d̃. The

lower the perplexity is, the more likely for a mod-
el to generate D̃. Therefore, if a model obtains a
lower perplexity than others in the testing set, it
can be considered as the better one. For all NVI-
based topic models, the variational lower bound,
which is proven to be the upper bound of perplexity
(Mnih and Gregor, 2014), is used to calculate the
perplexity by following (Miao et al., 2016, 2017).
When calculating the topic coherence, we use the
normalised pointwise mutual information (NPMI)
which measures the relationship between word wi
and other T − 1 top words (Lau et al., 2014) as
follows: NPMI (wi) =

∑T−1
j=1 [log

P (wi,wj)
P (wi)P (wj)/−

logP (wi, wj)]. The higher the value of topic co-
herence, the more explainable the topic is.

2https://github.com/soberqian/
TopicModel4J

3https://github.com/ysmiao/nvdm
4https://github.com/akashgit/

autoencoding_vi_for_topic_models
5https://github.com/pgcool/iDocNADEe

5.3 Performance Comparison

Table 2 shows the perplexity and topic coherence
of different models on the test datasets. We can
observe that NB-NTM outperforms most baselines,
and GNB-NTM performs the best in all cases. The
results validate that the NB distribution can model
over-dispersed documents well. Furthermore, the
latent semantics of these corpora may be hierarchi-
cally dependent. In other words, the topics at the
corpus level and those of each document are not
independent but correlated with one another.

Model Perplexity Topic coherence

Reuters 20News MXM Reuters 20News MXM

HDP 302.3 730.7 319.5 0.305 0.223 0.356
NVDM 224.9 855.0 252.3 0.133 0.138 0.109
NVLDA 578.6 1252.2 668.7 0.253 0.240 0.216
prodLDA 648.1 1267.2 852.9 0.332 0.329 0.313

GSM 266.2 963.5 330.5 0.192 0.211 0.177
iDocNDAE 202.8 844.6 294.7 0.130 0.151 0.222
NB-NTM 181.0 740.6 247.5 0.341 0.343 0.340

GNB-NTM 146.7 602.8 216.8 0.377 0.375 0.427

Table 2: Perplexity and topic coherence results, where
the latter is an average of three coherence scores by
calculating 5, 10, and 15 top words for each topic.

In terms of the model efficiency, neural topic
models can be trained much faster than HDP on a
large corpus by GPU acceleration. Take the large-
scaled MXM dataset as an example, the training
time of both NB-NTM and GNB-NTM is around
one hour using a GeForce GTX 960 GPU, while
HDP needs more than three hours to converge us-
ing an AMD R5 3600 CPU. Under the same envi-
ronment, the training time of all NVI-based topic
models is close. In general, NVLDA, prodLDA,
and NVDM run slightly faster than NB-NTM be-
cause the Gaussian reparameterization approach
is simpler than the Gamma one. GSM and GNB-
NTM are slightly slower than others because the
former introduces more parameters to model the
topic-word distribution, while the latter introduces
more sampling operations.

As an illustration, we also qualitatively evalu-
ate the semantic information learned by different
models on the 20News training set. The baselines
of HDP, NVLDA, and prodLDA, which achieve
competitive topic coherence scores, are selected
for comparison. Table 3 presents 5 of the most
representative topics with the corresponding top 10
words, from which we can observe that although
all these models can identify the chosen topics rea-
sonably, our NB-NTM and GNB-NTM perform
better than the other baselines in most cases.

https://github.com/soberqian/TopicModel4J
https://github.com/soberqian/TopicModel4J
https://github.com/ysmiao/nvdm
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/pgcool/iDocNADEe
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Topic HDP NVLDA prodLDA NB-NTM GNB-NTM

Religion

god• heaven• shall belief• athos•
who christ• worship religion• beliefs•

people interpretation christians• athos• moral•
atheism• scripture• religious• moral• truth•
believe• christian• belief• scripture• church•
religion• church• bible• jesus• christ•

does truth• atheists• church• christian•
atheists• lord• heaven• christian• jesus•

his believe• acts christianity• christianity•
evidence christianity• religions• god• belief•

Encryption

key• keys• encryption• rsa• cryptography•
unit brad court agencies• crypto•

keyboard chip clipper encrypted• encrypted•
keys• crypto• semi cryptography• security•
cable phone escrow• security• keys•
lock• encryption• encrypted• scheme• nsa•

fit cryptography• drugs government secure•
cross agencies• gun escrow• key•
back agency• criminal nsa• government

women secure• criminals secure• agencies•

Sport

game• cup• players• player• hockey•
fighting• toronto team• win• sport•

four played• teams• play• game•
games• patrick winning• boston games•
almost wings ice detroit baseball•
level players• him cup• fans•

police rangers nhl• playoffs• season•
co leafs season• players• teams•
kill teams• hockey• season• wings

effective baseball• leafs games• leafs

Space

its shuttle• commercial lunar• mission•
earth• jpl• cryptography his algorithm

organizations development mission• toronto nasa•
first physics image orbit• chip
high orbit• lunar• years• orbit•

mission• rocket• processing mission• development
shell• cost established dc solar•
their energy rocket• year• space•
such earth• remote national technology

program space• soviet space• satellite•

Hardware

card• cable• mouse• floppy• cache•
bit floppy• floppy• bus• vga•

mac• dx card• ram• display•
mb controller• lib printer• printer•

memory• mb simms memory• interface•
mhz pin• button• card• pc•
ram• shipping printer• controller• dx

monitor• brand meg motherboard• processor•
speed drive ram• ide motherboard•
bus• motherboard• motherboard• monitor• ram•

Table 3: Top 10 words of 5 topics learned by different
models on 20News, where • means the word is related
to the corresponding topic by checking manually.

5.4 Impact of the Number of Topics

In this part, we test the impact of the number of
topics on the performance of our models. Figure
3 shows the convergence process of NB-NTM and
GNB-NTM on the 20News training set with K =
20, 50, 100, 200 in terms of the perplexity. We
can observe that as K increases, the perplexity
values of both models decrease under each epoch.
This is because the NVI framework is essentially
an encoder-decoder, and the increase of the topic
number enables the models to encode and recon-
struct documents better. We also notice that with
the continuous growth of K, the improvement of
perplexity is getting lower. Table 4 presents the re-
sults of our models on the 20News testing set under
the above conditions, in which a similar trend can
be observed as aforementioned.

5.5 Evaluation on Learning Dispersed Topics

Compared to the existing neural topic models, an-
other feature of our models is that the generated
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Figure 3: The convergence behavior of our models with
different numbers of topics on the 20News training set.

Number of topics
Perplexity Topic coherence

NB-NTM GNB-NTM NB-NTM GNB-NTM

20 800.8 717.3 0.307 0.351
50 740.6 602.8 0.343 0.375
100 654.3 501.2 0.331 0.360
200 572.4 424.4 0.330 0.351

Table 4: Perplexity and topic coherence of our models
on the 20News testing set with different topic numbers.

topics are dispersed, and thus, the intermediate
variables can be more explainable. To validate the
effectiveness of our models on learning dispersed
topics, we first count the total number of words
under each manually labeled category (i.e., top-
ic) as the topic-word number distribution shown
in Figure 4 (a). Then we run our NB-NTM and
GNB-NTM on the entire 20News testing set to get
the corresponding values of r. After normaliza-
tion, the proportion of different topics obtained by
NB-NTM and GNB-NTM at the corpus level is pre-
sented in Figure 4 (b) and Figure 4 (c), respectively.
For the convenience of the result presentation, we
set the number of topics to 20 for both models.
Note that the 20 topics do not need to correspond
to the 20 categories, because we here focus on test-
ing whether the topic proportions generated by our
two models are in accordance with their model
structures/characteristics. From these results, we
can observe that the proportion of topics obtained
by NB-NTM is close to the topic-word number
distribution. On the other hand, GNB-NTM obtain-
s more dispersed proportions of topics than NB-
NTM. These results suggest that GNB-NTM tends
to allocate less but more important topics to the
corpus, i.e., the topics generated by GNB-NTM are
more discriminative. Since the document-topic dis-
tribution is not directly modeled and the Gaussian
distribution samples are not non-negative, the pre-
vious neural methods except GSM cannot obtain
explainable intermediate variables. For the base-
line of GSM, Miao et al. (2017) had demonstrated
that the topics with higher probabilities were evenly
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distributed on the same 20News dataset, which indi-
cates that our models outperform GSM on learning
dispersed document topics.
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Figure 4: Qualitative analysis on the model inter-
pretability at the corpus level, where (a) is the topic-
word number distribution generated by the label infor-
mation, (b) is the proportion of 20 topics obtained by
NB-NTM, and (c) is the proportion of 20 topics ob-
tained by GNB-NTM. All results are generated from
the 20News testing set.

We also study the dispersion of intermediate
variables (i.e., topics) at the document level. By
randomly select a document as an example, we
get the normalized document topic weight λ from
NB-NTM and GNB-NTM to explore whether the
topic distributions of the document generated by
our models are reasonable. As shown in Figure 5,
the document is about a standard computer, and
the most related topics with large topic distribu-
tions are all related to computers, which validates
the practical meaning of intermediate variables of
both NB-NTM and GNB-NTM at the document
level. From the keywords in the most related top-
ics, we further observe that GNB-NTM can iden-
tify more computer-related words than NB-NTM.
When compared to the whole semantic space as
shown in Figure 4, both NB-NTM and GNB-NTM
generate more dispersed proportions of topics at
the document level. This phenomenon is consistent
with the over-dispersed feature (i.e., the variance is
larger than the mean) of documents.

6 Conclusion

In this paper, we present two neural mixed count-
ing models named NB-NTM and GNB-NTM. Dif-
ferent from the current time consuming Bayesian
methods, our models apply to large-scale datasets
through the efficient back-propagation algorithm
and GPU acceleration. When compared to the exist-
ing neural topic models, both NB-NTM and GNB-
NTM can well model the random variables with

I have a Standard Computer 486DX2/66mhz EISA Tower with 16MB RAM, a Quantum 240MB Hard 

Drive, 1.2 and 1.44 MB floppies and a Colorado 250MB tape drive. I also have a Sound Blaster Pro 

and a 3COM Ethernet card (3C507) installed. The machine is completely stable in non-Turbo mode. 

In Turbo mode, Windows for Workgroups crashes or won't come up at all. If Windows does come up, 

I get General Protection Faults and Divide by Zero System Errors. Is there a problem with memory 

keeping up with the speed of the CPU on these machines?

I have tried to reach Standard Computers, but their phones have been disconnected.

Does anyone know what happened to this company?

YAMOHS- Yet Another Mail Order Horror Story!

I'd prefer e-mailed responses as I don't get to read this newsgroup often.
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20:  ftp  programs  directory

Key words of most related topics:

8:  serial  server  unix

17:  meg  drive  isa 

14:  printer  ram  memory

5:  bus  isa  dx

13:  serve  lebanese  villages

Key words of most unrelated topics:

6:  hockey  sport  game

7:  kids  him  took 

10: population  turks  law

16:  jobs  going  pay

20:  ftp  programs  directory

Key words of most related topics:

4:  computer  scsi  space

18:  serial  algorithm  installed 

7:  anybody  really  windows

20:  mb  card  windows

1:  drivers  key  car

Key words of most unrelated topics:

15:  secure  truth  Citizens

16:  christ  church  turks 

19: jewish  arab  religion

6:  riding  truth  moral

5:  baseball  season  games

Key words of most related topics:

4:  computer  scsi  space

18:  serial  algorithm  installed 

7:  anybody  really  windows

20:  mb  card  windows

1:  drivers  key  car

Key words of most unrelated topics:

15:  secure  truth  Citizens

16:  christ  church  turks 

19: jewish  arab  religion

6:  riding  truth  moral

5:  baseball  season  games

Figure 5: The proportion and key words of 20 topics
obtained by our models on a document instance.

over-dispersed and hierarchically dependent char-
acteristics. Extensive experiments on real-world
datasets validate the effectiveness of our models in
terms of perplexity, topic coherence, and producing
explainable intermediate variables by generating
dispersed proportions of document topics. The re-
sults also indicate that NB distribution families can
characterize text data aptly, which is essentially
due to their conformity with the over-dispersed and
sparse properties of natural language.
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