
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6081–6094
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6081

Benchmarking Multimodal Regex Synthesis with Complex Structures

Xi Ye Qiaochu Chen Isil Dillig Greg Durrett
Department of Computer Science
The University of Texas at Austin

{xiye,qchen,isil,gdurrett}@cs.utexas.edu

Abstract

Existing datasets for regular expression
(regex) generation from natural language are
limited in complexity; compared to regex
tasks that users post on StackOverflow, the
regexes in these datasets are simple, and
the language used to describe them is not
diverse. We introduce STRUCTUREDREGEX,
a new regex synthesis dataset differing from
prior ones in three aspects. First, to obtain
structurally complex and realistic regexes,
we generate the regexes using a probabilistic
grammar with pre-defined macros observed
from real-world StackOverflow posts. Sec-
ond, to obtain linguistically diverse natural
language descriptions, we show crowdworkers
abstract depictions of the underlying regex
and ask them to describe the pattern they
see, rather than having them paraphrase
synthetic language. Third, we augment each
regex example with a collection of strings
that are and are not matched by the ground
truth regex, similar to how real users give
examples. Our quantitative and qualitative
analysis demonstrates the advantages of
STRUCTUREDREGEX over prior datasets.
Further experimental results using various
multimodal synthesis techniques highlight the
challenge presented by our dataset, including
non-local constraints and multi-modal inputs.1

1 Introduction

Regular expressions (regexes) are known for their
usefulness and wide applicability, and yet they
are hard to understand and write, even for many
programmers (Friedl, 2006). Recent research has
therefore studied how to construct regexes from
natural language (NL) descriptions, leading to
the emergence of NL-to-regex datasets including

1Code and data available at https://www.cs.
utexas.edu/˜xiye/streg/.

SepTemp

concat(Seg , Delimiter , Seg , Delimiter , Seg)

rep(<num>,3) <-> rep(<num>,3) rep(<num>,4)<->

Ground Truth Regex

Figure Examples

012-345-6789

341-415-0341

210-543-071

210-521-73427

positive:

negative:

Natural Language Description
I want three hyphen-separated numbers.

The first and second numbers have 3 digits
while the last one has 4 digits.

Figure 1: Our dataset collection process. A regex is
sampled from our grammar, then we render an abstract
figure and generate distinguishing positive/negative ex-
amples. We present the figure and examples to crowd-
workers to collect natural language descriptions.

KB13 (Kushman and Barzilay, 2013) and NL-
TURK (Locascio et al., 2016). However, KB13 is
small in size, with only 814 NL-regex pairs with
even fewer distinct regexes. Locascio et al. (2016)
subsequently employed a generate-and-paraphrase
procedure (Wang et al., 2015) to create the larger
NL-TURK dataset. However, the regexes in this
dataset are very simple, and the descriptions are
short, formulaic, and not linguistically diverse be-
cause of the paraphrasing annotation procedure
(Herzig and Berant, 2019). As a result, even
when models achieve credible performance on
these datasets, they completely fail when evalu-
ated on the STACKOVERFLOW dataset (Ye et al.,
2019), a real-world dataset collected from users
seeking help on StackOverflow. The limited size
of this dataset (only 62 NL-regex pairs) makes it

https://www.cs.utexas.edu/~xiye/streg/
https://www.cs.utexas.edu/~xiye/streg/

6082

(a) I need to validate the next pattern: starts with “C0” and finish with 4 digits exactly.
and(startwith(<C0>)),endwith(rep(<num>,4)))

(b) i need regular expression for : one or two digits then ”.” and one or two digits.
concat(reprange(<num>,1,2),concat(<.>,reprange(<num>,1,2)))

(c) The input will be in the form a colon (:) separated tuple of three values. The first value will be an integer, with the
other two values being either numeric or a string.
concat(repatleast(<num>,1),rep(concat(<:>,or(repatleast(<let>,1),
repatleast(<num>,1))),2))

Figure 2: Examples of complex regexes from STACKOVERFLOW. Each regex can be viewed as a set of components
composed with a high-level template. Regex (a), for example, can be as viewed the intersection of two constraints
specifying the characteristics of the desired regex. (rep means repeat).

unsuitable for large-scale training, and critically,
the complexity of regexes it features means that
regex synthesis systems must leverage the user-
provided positive and negative examples (strings
that should be matched or rejected by the target
regex) in order to do well.

To enable the development of large-scale neu-
ral models in this more realistic regex set-
ting, we present STRUCTUREDREGEX, a new
dataset of English language descriptions and pos-
itive/negative examples associated with complex
regexes. Using a new data collection procedure
(Figure 1), our dataset addresses two major limita-
tions in NL-TURK. First, we generate our regexes
using a structured probabilistic grammar which in-
cludes macro rules defining high-level templates
and constructions that involve multiple basic oper-
ators. These grammar structures allow us to sam-
ple more realistic regexes, with more terminals
and operators, while avoiding vacuous regexes.
By contrast, the random sampling procedure in
NL-TURK leads to simple regexes, and attempting
to sample more complex regexes results in atypi-
cal regex structures or even contradictory regexes
that do not match any string values (Ye et al.,
2019). Second, to achieve more realistic language
descriptions, we prompt Turkers to write descrip-
tions based on abstract figures that show the de-
sired regexes. We design a set of visual symbols
and glyphs to draw a given regex with minimal
textual hints. We thereby avoid priming Turkers to
a particular way of describing things, hence yield-
ing more linguistically diverse descriptions.

Using this methodology, we collect a total of
3,520 English descriptions, paired with ground
truth regexes and associated positive/negative ex-
amples. We conduct a comprehensive analysis and
demonstrate several linguistic features present in
our dataset which do not occur in past datasets.
We evaluate a set of baselines, including grammar-

based methods and neural models, on our dataset.
In addition, we propose a novel decoding algo-
rithm that integrates constrained decoding using
positive/negative examples during inference: this
demonstrates the potential of our dataset to en-
able work at the intersection of NLP and program
synthesis. The performance of the best existing
approach on STRUCTUREDREGEX only reaches
37%, which is far behind 84% on NL-TURK.
However, this simple model can nevertheless solve
13% of the STACKOVERFLOW dataset, indicating
that further progress on this dataset can be useful
for real-world scenarios.

2 Structured Regex Generation Process

We first describe the structured generative process
we adopt to produce the regexes in our dataset.
For better readability, we denote regexes using a
domain specific language (DSL) similar to regex
DSLs in prior work (Locascio et al., 2016; Ye
et al., 2019). Our DSL has the same expressive-
ness as a standard regular language and can be eas-
ily mapped back to standard regular expressions.2

To collect the NL-TURK dataset, Locascio
et al. (2016) sampled regexes using a hand-crafted
grammar similar to a standard regex DSL. How-
ever, regexes sampled from this process can easily
have conflicts (e.g. and(<let>,<num>)) or redun-
dancies (e.g. or(<let>,<low>)). One solution to
this problem is rejection sampling, but this still
does not yield regexes with compositional, real-
world structure.

We show three prominent types of composi-
tion observed from STACKOVERFLOW in Fig-
ure 2. Each regex above is built by assembling
several sub-regexes together according to a high-
level template: regex (a) is the intersection of two
base regexes expressing constraints, regex (b) is a
sequence of three simple parts, and regex (c) is a

2Refer to the appendix for details of our DSL.

6083

CatTemp

concat(Comp , Comp , Comp)

reprange(Expr ,1,2) Literal reprange(Expr ,1,2)

· ·
 ·

· ·
 ·

· ·
 ·

one or two digits then “.” and
one or two digits

SepTemp

concat(Seg , Delimiter , Seg , Delimiter , Seg)

CatTemp IntTemp IntTempConst Const

· ·
 ·

· ·
 ·

· ·
 ·

· ·
 ·

· ·
 ·

three delimited values, first will be an integer,
with other two being either numeric or a string

IntTemp

and(Cons , Cons)

startwith(Expr) endwith(Expr)

· ·
 ·

· ·
 ·

starts with “C0” and end with 4 digits

Cons

start[end]with(Expr) | not(start[end]with(Expr)) # must (not) start/end with
contain(Expr) | not(contain(Expr)) # must (not) contain
rep(<any>,k) | repatleast(<any>,k) |reprange(<any>,k,k) # length constraints
AdvStartwithCons | AdvEndwithCons # adversative macro (e.g., start with capitals except A)
CondContainCons # conditional macro. (e.g. letter, if contained, must be after a digit)

Comp
Literal | or(Literal,Literal,...) # literals like digits, letters, strings, or set of literals.
rep(Expr,k) | repatleast(Expr,k) | reprange(Expr,k,k) # e.g, 3 digits, 2 - 5 letter, etc.
optional(Comp) # components can be optional.

Figure 3: Examples of our top-level templates and how they cover the three regexes in Figure 2, and overview of
sub-regexes (in table) that can possibly be derived from Cons and Comp. Expr as a category here indicates various
different constrained sets of sub-regexes. More detail about this structure is available in the full grammar in the
appendix.

A string of numbers and digits that must start with a number except “0”.

IntTemp

and(Cons , Cons)

ConsistOfCons AdvStartwithCons

repatleast(LiteralSet ,1) and(startwith(Literal),not(startwith(Literal)))

or(<num>,<let>) <num> <0>

and(repatleast(or(<num>,<let>),1),and(startwith(<num>),not(startwith(<0>))))

Figure 4: The generation of a deep and complex regex
using our grammar. Here, AdvStartwithCons is a
macro rule that yields a complex sub-tree with an ad-
versative constraint.

list of three segments delimited by a constant. We
observe that these three templates actually capture
a wide range of possible regex settings. The first,
for example, handles password validation-esque
settings where we have a series of constraints to
apply to a single string. The second and third
reflect matching sequences of fields, which may
have shared structured (regex (c)) or be more or
less independent (regex (b)).

2.1 Structured Grammar

To generate realistic regexes in these forms, we
rely on a structured hand-crafted grammar. The
top level of our grammar specifies three templates
distilled from STACKOVERFLOW examples: IN-
TERSECTION, CONCATENATION, and SEPARA-
TION, which mimic patterns of real-world regexes.
In Figure 3, we show how regexes in Figure 2 can
be derived from our templates. The INTERSEC-

TION template (left) intersects several base con-
straints with the and operator; the CONCATENA-
TION template (middle) concatenates several base
components with the concat operator. SEPARA-
TION (right) is a more complex type, generat-
ing a list of constant-separated INTERSECTION or
CONCATENATION regexes which may be identical
or share common components.

Across all templates, the components are sub-
regexes falling into a few high-level types (no-
tably Cons and Comp), which are depth-limited to
control the overall complexity (discussed in Ap-
pendix B.2). To make these component regexes
more realistic as well, we design several macro
rules that expand to more than one operator. The
macros are also extracted from real-world exam-
ples and capture complex relations like adversative
(Figure 4) and conditional (Table 2) relations.

Although our hand-crafted grammar does not
cover every possible construction allowed by the
regular expression language, it is still highly ex-
pressive. Based on manual analysis, our grammar
covers 80% of the real-world regexes in STACK-
OVERFLOW, whereas the grammar of NL-TURK

only covers 24% (see Section 4). Note that some
constructions apparently omitted by our grammar
are equivalent to ones supported by our grammar:
e.g., we don’t allow a global startwith constraint
in the CONCATENATION template, but this con-
straint can be expressed by having the first compo-
nent of the concatenation incorporate the desired

6084

constraint.

2.2 Sampling from the Regex Grammar
Although our structural constraints on the gram-
mar already give rise to more realistic regexes, we
still want to impose further control over the gen-
erative process to mimic properties of real-world
regexes. For example, there are sometimes re-
peating components in CONCATENATION regexes,
such as regex (b) from Figure 2.

We encourage such regexes by dynamically
modifying the probability of applying the gram-
mar rules while we are expanding a regex based
on the status of the entire tree that has currently
been induced. For example, suppose we are
building regex (b) from Figure 2, and suppose
we currently have concat(reprange(<num>,

1,2),concat(<.>,Comp)), where Comp is
a non-terminal that needs to be expanded
into a sub-regex. Because we already have
reprrange(<num>,1,2) and <.> in the current
tree, we increase the probability of expanding
Comp to generate these particular two sub-regexes,
allowing the model to copy from what it has
generated before.3

In addition to copying, we also change the sam-
pling distribution when sampling children of cer-
tain grammar constructs to control for complexity
and encourage sampling of valid regexes. For ex-
ample, the child of a startwith expression will
typically be less complex and compositional than
the child of a Comp expression, so we tune the
probabilities of sampling compositional AST op-
erators like or appropriately.

3 Dataset Collection

3.1 Positive/Negative Example Generation
The STACKOVERFLOW dataset (Ye et al., 2019)
shows that programmers often provide both posi-
tive and negative examples to fully convey their in-
tents while specifying a complicated regex. There-
fore, we augment our dataset with positive and
negative examples for each regex. Our model will
use these examples to resolve ambiguity present
in the natural language descriptions. However, the
examples can also help Turkers to better under-
stand the regexes they are describing during the
data collection process.

3This component reuse bears some similarity to an Adap-
tor Grammar (Johnson et al., 2007). However, we modify the
distributions in a way that violates exchangeability, making it
not formally equivalent to one.

positive:

negative: A1234

negative: a123

concat(<low>,repatleast(<num>,4))

concat(<cap>,repatleast(<num>,4))

concat(<low>,rep(<num>,3))

perturb

perturb

a1234
b5678

Figure 5: The process of generating distinguishing neg-
ative examples by minorly perturbing each of the sub-
regexes in the ground truth regex.

We aim to generate diverse and distinguishing
examples similar to human-written ones, which
often include corner cases that differentiate the
ground truth regex from closely-related spurious
ones. We can achieve this by enumerating exam-
ples that cover the states in the deterministic finite
automaton (DFA) defined by the given regex4 and
reject similar but incorrect regexes. We employ
the Automaton Library (Møller, 2017) to generate
the examples in our work. Positive examples are
generated by stochastically traversing the DFA.

For negative examples, randomly sampling ex-
amples from the negation of a given regex will
typically produce obviously wrong examples and
not distinguishing negative examples as desired.
Therefore, we propose an alternative approach
shown in Figure 5 for generating negative exam-
ples. We apply minor perturbations to the ground
truth regex to cause it to accept a set of strings
that do not intersect with the set recognized by
the original regex. The negative examples can be
derived by sampling a positive string from one of
these “incorrect” regexes.

For each regex in our dataset, we generate 6
positive examples and 6 negative examples. These
numbers are comparable to the average number of
examples provided by STACKOVERFLOW users.

3.2 Figure Generation

As stated previously, we avoid the paradigm
of asking users to paraphrase machine-generated
regex descriptions, as this methodology can yield
formulaic and artificial descriptions. Instead, we
ask users to describe regexes based on figures that
illustrate how the regex is built. We show one ex-
ample figure of a SEPARATION regex in Figure 6.
In general, we abstract a given regex as a series of
blocks linked with textual descriptions of its con-
tent and constraints. For instance, startwith and
endwith are denoted by shading the head or tail of
a block. By linking multiple blocks to shared tex-

4Recall that although our DSL is tree-structured, it is
equivalent in power standard regexes, and hence our expres-
sions can be mapped to DFAs.

6085

Three comma separated segments. The first segment
is 2 digits. The other two consist of digits or letters

but must start with a letter and contain “0”.

Figure 6: An example automatically generated figure
of a SEPARATION regex and corresponding description
annotated by a Turker.

tual descriptions, we hope to encourage Turkers
to notice the correlation and write descriptions ac-
cordingly. Finally, we have different textual hints
for the same concept: “contain x” in Figure 6 may
appear as “have x” elsewhere. These figures are
rendered for each regex in the MTurk interface us-
ing JavaScript.

3.3 Crowdsourcing

Task We collected the STRUCTUREDREGEX

dataset on Amazon Mechanical Turk (MTurk).
For each HIT, the Turkers are presented with a
regex figure and a set of positive/negative exam-
ples. Then, they are asked to write down several
sentences describing the regex, as well as one ad-
ditional positive example that matches the regex.
We only accept a description if the submitted posi-
tive example is matched by the ground-truth regex;
this helps filter out some cases where the Turker
may have misunderstood the regex. We show an
example HIT in Appendix C.

In early pilot studies, we explored other ways
of abstractly explaining regexes to Turkers, such
as providing more examples and an associated set
of keywords, yet none of these methods led to
users generating sufficiently precise descriptions.
By contrast, our figures fully specify the seman-
tics of the regexes while only minimally biasing
Turkers towards certain ways of describing them.

We generated 1,200 regexes (400 from each
template), assigned each regex to three Turkers,
and collected a total of 3,520 descriptions after re-
jecting HITs. In general, each Turker spent 2 to
3 minutes on each of the HITs, and we set the re-
ward to be $0.35. The total cost of collecting our
dataset was $1,512, and the average cost for each
description is $0.43.

Dataset KB13 TURK STREG SO

size 824 10000 3520 62
#. unique words 207 557 873 301
avg. NL length 8 12 33 25
avg. reg size 5 5 15 13
avg. reg depth 2.5 2.3 6.0 4.0

Table 1: Statistics of our dataset and prior datasets.
Compared to KB13 and NL-TURK, our dataset con-
tain more diverse language and more complex regexes,
comparable to the real STACKOVERFLOW dataset.

Quality To ensure the quality of collected re-
sponses, we require the Turkers to first take a qual-
ification test which simply requires describing one
regex that we have specified in advance. We then
check that the description for this regex is suf-
ficiently long and that it contains enough of our
manually-written correct base regex concepts.

We manually observed from the responses that
various styles were adopted by different Turkers
for describing the same type of regexes. For in-
stance, given regex (b) in Figure 2, some Turkers
tend to enumerate every component in order, de-
scribing it as one or two digits followed by a dot
followed by one or two digits; some other Turk-
ers prefer grouping identical components and de-
scribing the components out of order, describing it
as the first and third parts are one or two digits,
and the second part is a dot. These distinct styles
lead to a diversity of linguistic phenomena, which
is further analyzed in Section 4. Because we aim
for high linguistic diversity in our dataset, we pro-
hibited a single Turker from doing more than 300
HITs.

Furthermore, we found anecdotal evidence that
the task was engaging for users, which we took
as a positive signal for generation quality. We re-
ceived messages about our HITs from some Turk-
ers telling us that our HIT was “really interesting”
and they “enjoyed doing it.”

Splitting the Dataset Since our dataset consists
of natural language descriptions written by anno-
tators, there is possibly bias introduced by train-
ing and testing on the same annotators (Geva
et al., 2019). Therefore, in addition to the stan-
dard Train/Development/Test splits, we also form
a Test-E (excluded) which consists only of anno-
tations from annotators unseen in the training set.
We ensure that Train, Dev, and both two test sets
(Test and Test-E) have mutually exclusive regexes
from each other (Test and Test-E can have com-
mon regexes), and Test-E is annotated entirely by

6086

TURK STREG Example NL from STREG

multi-sentence 0% 70% The string has 6 or more characters. The string must start with a digit.
ambiguity 2.3% 20.6% The sequence starts with a letter followed by 2 numbers.
abstraction 0% 13.3% The first part of a single string consists of 1 or more “0” followed by 2 capital

letters. The second part of the string must follow the same rules.
non-local constraint 0% 16.7% There are 3 dash separated strings. The first is 1 to 4 “A” . The second and

third consist of 1 or 2 “x” followed by 1 to 3 numbers and 2 letters.
coreference 5.1% 29.7% The string starts with a number. It ends with 1 to 4 lower or capital letters.

condition relation 0% 3.5% If there is a capital letter it must be after a digit.
adversative relation 0% 3.7% The string start with capital letter but it should not be a “A”.

Table 2: Qualitative analysis on 150 descriptions from NL-TURK and our dataset (50 from each template). We
show the percentage of examples containing each phenomenon. Our dataset features more of these challenging
linguistic phenomena compared to prior synthetic datasets.

a disjoint set of annotators from those who anno-
tated the training or development set. The final
size of the splits are: 2173 (61.7%), 351 (10.0%),
629 (17.9%), 367 (10.4%).

4 Dataset Analysis

We demonstrate the advantages of our dataset over
prior datasets (Kushman and Barzilay, 2013; Lo-
cascio et al., 2016) through both quantitative and
qualitative analysis.

We list the key statistics of our dataset as well
as KB13 and NL-TURK for comparison in Ta-
ble 1. Compared to past synthetic datasets, our
dataset has more diverse and sophisticated lan-
guage. The average NL length of our dataset is
twice as long as that of NL-TURK, and the de-
scriptions contain many more unique words even
though our dataset contains fewer regexes. In ad-
dition, our dataset contains more complex regexes
that are closer to the complexity of real-world
regexes found on StackOverflow, whereas regexes
in previous datasets are significantly simpler.

Manual Analysis We further manually analyze
150 descriptions from past synthetic datasets and
our dataset. Table 2 lists the proportion of de-
scriptions containing each of several phenomena:
examples that are multi-sentence, examples with
clear syntactic or semantic ambiguity, examples
using abstraction to refer to different parts of the
regex, examples invoking non-local constraints,
and examples with nontrivial coreference. The
language from our dataset is organic and diverse,
since we allow Turkers to compose their own de-
scriptions. We find that macros and complex con-
straints in our structured grammar can success-
fully trigger interesting language. For instance,
the abstraction reflects repetition in concatenation
regexes, and the bottom part of Table 2 reflects the

KB13 TURK STREG

Word Coverage 27.1% 34.4% 55.9%
Regex Coverage 23.5% 23.5% 84.3%

Table 3: Distribution mismatch analysis with re-
spect to STACKOVERFLOW on past datasets and our
dataset. Our dataset covers significantly more words
and regexes, and is closer to the real-world dataset.

complex macros.
Furthermore, the complex and ambiguous lan-

guage highlights the necessity of including ex-
amples together with language to fully spec-
ify a regex. For instance, ambiguity is com-
mon in our descriptions. However, many of
the ambiguous descriptions can be resolved with
the help of examples. Concretely, the de-
scription for ambiguity from Table 2 can be
easily interpreted as startwith(concat(<let>,

repeat(<num>,2))) while the ground truth is
concat(<let>,repeat(<num>,2)). By simply
adding one negative example, “a123”, the ground
truth can be distinguished from the spurious regex.

Comparison to STACKOVERFLOW Since our
goal was to produce realistic regex data, we
analyze how well the real-world STACKOVER-
FLOW dataset is covered by data from STRUC-
TUREDREGEX compared to other datasets (Kush-
man and Barzilay, 2013; Locascio et al., 2016).
We ignore 11 of the STACKOVERFLOW exam-
ples that involve the high-level decimal con-
cept, which is beyond the scope of our dataset
and past synthetic datasets. In addition, we
anonymize all the constants and integer param-
eters (e.g., repeat(<x>,9) is anonymized as
repeat(const,int)). The statistics (Table 3)
suggest that our dataset is more highly similar to
real-world regexes on StackOverflow, especially
in terms of regex distribution.

6087

5 Methods

We evaluate the accuracy of both existing
grammar-based approaches and neural models, as
well as a novel method that targets the multi-
modal nature of our dataset.

Existing Approaches SEMANTIC-UNIFY

(Kushman and Barzilay, 2013) is a grammar-
based approach that relies on a probabilistic
combinatory categorical grammar to build the
regexes. DEEPREGEX (Locascio et al., 2016) di-
rectly translates natural language descriptions into
regexes using a seq-to-seq model enhanced with
attention (Luong et al., 2015) without considering
examples. We re-implemented DEEPREGEX with
slightly different hyperparameters; we refer to
our re-implementation as DEEPREGEX (OURS).
DEEPREGEX+FILTER (Ye et al., 2019) adapts
DEEPREGEX so as to take examples into account
by simply filtering the k-best regexes based on
whether a regex accepts all the positive examples
and rejects all the negative ones.

Example-Guided Decoding Although DEEP-
REGEX+FILTER is able to take advantage of posi-
tive and negative string examples, these examples
are completely isolated in the training and infer-
ence phase. We propose to make use of exam-
ples during inference with the technique of over-
and under- approximation (Lee et al., 2016) used
in the program synthesis domain. The core idea
of our approach is that, for each partially com-
pleted regex during decoding, we use the approx-
imation technique to infer whether the regex can
possibly match all positive or reject all negative
examples. If this is impossible, we can prune this
partial regex from our search. This approach al-
lows us to more effectively explore the set of plau-
sible regexes without increasing the computational
budget or beam size.

As an example, consider the ground truth regex
and(startwith(<low>),endwith(<num>)) with
one corresponding positive example “00x”. Sup-
pose that the decoder has so far generated the
incomplete regex and(startwith(<cap>),. To
produce a syntactically valid regex, the decoder
needs to generate a second argument for the and.
By appending star(<any>) as its second argu-
ment, we can see that there is no completion
here that will accept the given positive exam-
ple, allowing us to reject this regex from the
beam. Under-approximation works analogously,

Approach KB13 TURK STREG

SEMANTIC-UNIFY 65.5% 38.6% 1.8%
DEEPREGEX (Locascio et al.) 65.6% 58.2% −
DEEPREGEX (Ours) 66.5% 60.2% 24.5%

DEEPREGEX + FILTER 77.7% 83.8% 37.2%

Table 4: DFA-equivalent accuracy on prior datasets and
our dataset. The performance on our dataset using any
model is much lower than the performance on existing
datasets.

completing regexes with maximally restrictive ar-
guments and checking that negative examples are
rejected.

We integrate the aforementioned technique in
the beam decoding process by simply pruning out
bad partial derivations at each timestep. We refer
to this approach as DEEPREGEX + APPROX.

6 Experiments

6.1 Comparison to Prior Datasets

We evaluate the baseline models on KB13, NL-
TURK, and our dataset (Table 4). The results
show that our dataset is far more challenging com-
pared to existing datasets. Traditional grammar
baseline can scarcely solve our dataset. The best
baseline, DEEPREGEX + FILTER, achieves more
than 77.7% on KB13 and 83.8% NL-TURK when
these datasets are augmented with examples, but
can only tackle 37.2% of our dataset. Additionally,
the comparison between DEEPREGEX and DEEP-
REGEX + FILTER demonstrates that simply filter-
ing the outputs of neural model leads to a substan-
tial performance boost on all the datasets. This
supports the effectiveness of the way we specify
regexes, i.e., using both natural language descrip-
tions and examples.

6.2 Detailed Results on STRUCTUREDREGEX

Table 5 shows the detailed accuracy regarding dif-
ferent regex templates on both Test and Test-E
sets. Our DEEPREGEX + APPROX achieves best
accuracy with 5.6% and 7.9% improvement over
DEEPREGEX + FILTER on Test and Test-E, re-
spectively, since it can leverage examples more
effectively using over- and under- approximations
during search.

Accuracy varies on different types of regexes.
Generally, models perform the best on concate-
nation regexes, slightly worse on intersection
regexes, and the worst on separation regexes. Con-
catenation regexes usually have straightforward

6088

Approach Test Test-E
Agg Int Cat Sep Agg Int Cat Sep

SEMANTIC-UNIFY 2.1% 2.9% 3.1% 0.0% 1.4% 1.6% 2.4% 0.0%
DEEPREGEX (Ours) 27.8% 20.7% 42.2% 19.2% 18.8% 18.0% 23.6% 14.8%

DEEPREGEX + FILTER 42.6% 38.9% 55.2% 32.3% 28.1% 32.0% 32.5% 19.7%
DEEPREGEX + APPROX 48.2% 45.7% 59.6% 37.9% 36.0% 39.3% 40.7% 27.9%

Table 5: Results for models trained and tested on STRUCTUREDREGEX. Using the examples (the latter two
methods) gives a substantial accuracy boost, and DEEPREGEX + APPROX is better than the post-hoc FILTER
method, but still only achieves 48.2% accuracy on Test and 36.0% on Test-E. Separation regexes are more difficult
than the other two classes, and performance for all models drops on Test-E.

Train Model Acc Equiv Consistent
Set DEEPREGEX Found Found

TURK w/o Example 0.0% 0.0% 7.8%

STREG + FILTER 9.8% 9.8% 21.6%
STREG +APPROX 13.7% 17.6% 37.7%

Table 6: The performance on STACKOVERFLOW-51
with models trained on NL-TURK and our dataset. We
report the fraction of examples where a DFA-equivalent
regex is found (Acc), where a DFA-equivalent regex is
found in the k-best list, and where a regex consistent
with the examples appears in the k-best list. Models
trained on NL-TURK do not perform well in this set-
ting, while our models can solve some examples.

descriptions in the form of listing simple compo-
nents one by one. Intersection descriptions can
be more complicated because of the high-level
macros specified by our grammar. Separation de-
scriptions are the most complex ones that often in-
volve coreferences and non-local features. Perfor-
mance on Test-E is 12% lower than on Test for the
models haven’t been trained on patterns of the un-
seen annotators.

6.3 Transferability Results

Finally, we investigate whether a model trained
on our dataset can transfer to the STACKOVER-
FLOW dataset. As in Section 4, we ignore in-
stances requiring the decimal concept and only
evaluate on the subset of STACKOVERFLOW with
51 instances. We compare our dataset with NL-
TURK for this task. As shown in Table 6, DEEP-
REGEX trained on NL-TURK completely fails on
STACKOVERFLOW and even fails to predict rea-
sonable regexes that are consistent with the ex-
amples. This is caused by the fact that the NL-
TURK dataset contains formulaic descriptions and
shallow regexes that are not representative of real-
world tasks. DEEPREGEX trained on our dataset
can at least achieve 9.8% accuracy on STACK-
OVERFLOW dataset because the English descrip-

tions in this dataset better match the desired task.
Our DEEPREGEX + APPROX model successfully
solves 13.7% and finds consistent regexes for 38%
of the tasks, which is credible given that the per-
formance of the same model on Test-E set is
only 30%. Some additional challenges in STACK-
OVERFLOW are instances involving large num-
bers of constants or slightly more formal language
since the SO users are mainly programmers. How-
ever, we believe the transfer results here show that
improved performance on our dataset may trans-
fer to STACKOVERFLOW as well, since some of
the challenges also present in our Test-E set (e.g.,
unseen language).

6.4 Human Performance Estimate

It is difficult to hire Turkers to estimate a human
performance upper bound, because our task re-
quires reckoning with both the descriptions and
positive/negative examples. Unlike many NLP
tasks where an example with ambiguous language
is fundamentally impossible, here the examples
may actually still allow a human to determine the
correct answer with enough sleuthing. But to per-
form this task, crowdworkers would minimally
need to be trained to understand the DSL con-
structs and how they compose, which would re-
quire an extensive tutorial and qualification test.
To do the task well, Turkers would need a tool to
do on-the-fly execution of their proposed regexes
on the provided examples.

We instead opted for a lighter-weight verifica-
tion approach to estimate human performance. We
adopted a post-editing approach on failure cases
from our model, where we compared the model’s
output with the input description and examples
and corrected inconsistencies.

Specifically, we sample 100 failure examples
from the test set (Test plus Test-E) and manually
assess the failure cases. We find 78% of failure
cases contain descriptions that describe all com-

6089

ponents of the target regexes, but our seq-to-seq
models are insufficient to capture these. There are
truly some mis- or under-specified examples, such
as not mentioning the optionality of one compo-
nent or mistaking “I” for “l” in constants. An addi-
tional 9% (out of 100) of the errors could be fixed
using the provided examples. This leaves roughly
13% of failure cases that are challenging to solve.

Considering that the model already achieves
43.6% accuracy on the test set, we estimate human
performance is around 90%.5

7 Related Work

Data collection in semantic parsing Collecting
large-scale data for semantic parsing and related
tasks is a long-standing challenge (Berant et al.,
2013; Wang et al., 2015). Wang et al. (2015)
proposed the generate-and-paraphrase framework,
which has been adopted to collect datasets in var-
ious domains (Locascio et al., 2016; Ravichander
et al., 2017; Johnson et al., 2017). However, this
process often biases annotators towards using for-
mulaic language (Ravichander et al., 2017; Herzig
and Berant, 2019).

Similar to our work, past work has sought to
elicit linguistically diverse data using visual ele-
ments for semantic parsing (Long et al., 2016),
natural language generation (Novikova et al.,
2016), and visual reasoning (Suhr et al., 2017,
2019). However, for these other tasks, the im-
ages used are depictions of an inherently graphi-
cal underlying world state; e.g., the NLVR dataset
(Suhr et al., 2017) and NLVR2 (Suhr et al., 2019)
are based on reasoning over the presented images,
and the Tangrams dataset (Long et al., 2016) in-
volves describing shape transformations. By con-
trast, regexes are typically represented as source
code; there is no standard graphical schema for de-
picting the patterns they recognize. This changes
the properties of the generated descriptions, lead-
ing to higher levels of compositionality and ambi-
guity because what’s being described is not natu-
rally an image.

Program and regex synthesis Recent research
has tackled the problem of program synthesis
from examples (Gulwani, 2011; Gulwani and Jain,

5In addition, the first author manually wrote regexes for
100 randomly sampled examples and achieved an accuracy
of 95% (higher than the estimate). However, the author also
has a strong prior over what synthetic regexes are likely to be
in the data.

2017; Alur et al., 2013; Wang et al., 2016; Feng
et al., 2018; Devlin et al., 2017; Nye et al., 2019).
A closer line of work to ours uses both exam-
ples and natural language input (Yaghmazadeh
et al., 2017; Ye et al., 2019; Andreas et al.,
2018), which involves fundamentally different
techniques. However, our work does not rely on
the same sort of program synthesizer to build fi-
nal outputs (Yaghmazadeh et al., 2017; Ye et al.,
2019). Moreover, Andreas et al. (2018) only use
language at train time, whereas we use NL at both
train and test time.

Finally, while several datasets on regex syn-
thesis specifically have been released (Kushman
and Barzilay, 2013; Locascio et al., 2016), we are
the first to incorporate examples in the dataset.
Other methods have been proposed to parse nat-
ural language into regex via rule-based (Ranta,
1998), grammar-based (Kushman and Barzilay,
2013), or neural models (Locascio et al., 2016;
Zhong et al., 2018; Ye et al., 2019). Notably,
Zhong et al. (2018) also generate distinguishing
examples to facilitate translation, but they require
a trained model to generate examples, and we or-
ganically derive examples from the structure of
regexes without additional input.

8 Conclusion

We introduce STRUCTUREDREGEX, a new
dataset for regex synthesis from natural language
and examples. Our dataset contains composition-
ally structured regexes paired with linguistically
diverse language, and organically includes distin-
guishing examples. Better methods are needed
to solve this dataset; we show that such methods
might generalize well to real-world settings.

Acknowledgments

This work was partially supported by NSF Grant
IIS-1814522, NSF Grant SHF-1762299, a gift
from Arm, and an equipment grant from NVIDIA.
The authors acknowledge the Texas Advanced
Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources used
to conduct this research. Thanks as well to the
anonymous reviewers for their helpful comments.

References
Rajeev Alur, Rastislav Bodik, Garvit Juniwal,

Milo MK Martin, Mukund Raghothaman, Sanjit A

6090

Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided Synthesis. In 2013 Formal Methods in
Computer-Aided Design (FMCAD).

Jacob Andreas, Dan Klein, and Sergey Levine. 2018.
Learning with Latent Language. In Proceedings of
the Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL).

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic Parsing on Freebase from
Question-Answer Pairs. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,
Rishabh Singh, Abdel-rahman Mohamed, and Push-
meet Kohli. 2017. Robustfill: Neural Program
Learning under Noisy I/O. In Proceedings of
the International Conference on Machine Learning
(ICML).

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dil-
lig. 2018. Program Synthesis Using Conflict-driven
Learning. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI).

Jeffrey EF Friedl. 2006. Mastering Regular Expres-
sions. ” O’Reilly Media, Inc.”.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are We Modeling the Task or the Annotator? An In-
vestigation of Annotator Bias in Natural Language
Understanding Datasets. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing and the International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP).

Sumit Gulwani. 2011. Automating String Processing
in Spreadsheets Using Input-output Examples. In
Proceedings of the ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages
(POPL).

Sumit Gulwani and Prateek Jain. 2017. Programming
by Examples: PL Meets ML. In Proceedings of the
Asian Symposium on Programming Languages and
Systems (APLAS).

Jonathan Herzig and Jonathan Berant. 2019. Don’t
paraphrase, detect! Rapid and Effective Data Col-
lection for Semantic Parsing. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing and the International Joint Con-
ference on Natural Language Processing (EMNLP-
IJCNLP).

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. 2017. Clevr: A Diagnostic Dataset for
Compositional Language and Elementary Visual

Reasoning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Adaptor Grammars: A Framework for
Specifying Compositional Nonparametric Bayesian
Models. In Proceedings of the Conference on Ad-
vances in Neural Information Processing Systems
(NeurIPS).

Nate Kushman and Regina Barzilay. 2013. Using Se-
mantic Unification to Generate Regular Expressions
from Natural Language. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NACCL).

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Syn-
thesizing Regular Expressions from Examples for
Introductory Automata Assignments. In Proceed-
ings of the ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experi-
ences (GPCE).

Nicholas Locascio, Karthik Narasimhan, Eduardo
DeLeon, Nate Kushman, and Regina Barzilay. 2016.
Neural Generation of Regular Expressions from
Natural Language with Minimal Domain Knowl-
edge. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler Context-Dependent Logical Forms
via Model Projections. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Anders Møller. 2017. dk.brics.automaton – finite-
state automata and regular expressions for Java.
http://www.brics.dk/automaton/.

Jekaterina Novikova, Oliver Lemon, and Verena
Rieser. 2016. Crowd-sourcing NLG Data: Pictures
Elicit Better Data. In Proceedings of the Inter-
national Natural Language Generation conference
(INLG).

Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and
Armando Solar-Lezama. 2019. Learning to Infer
Program Sketches. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML).

Aarne Ranta. 1998. A Multilingual Natural-Language
Interface to Regular Expressions. In Finite State
Methods in Natural Language Processing.

6091

Abhilasha Ravichander, Thomas Manzini, Matthias
Grabmair, Graham Neubig, Jonathan Francis, and
Eric Nyberg. 2017. How Would You Say It? Elicit-
ing Lexically Diverse Dialogue for Supervised Se-
mantic Parsing. In Proceedings of the Annual
SIGdial Meeting on Discourse and Dialogue (SIG-
DIAL).

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi.
2017. A Corpus of Natural Language for Visual
Reasoning. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A Corpus for
Reasoning about Natural Language Grounded in
Photographs. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Xinyu Wang, Sumit Gulwani, and Rishabh Singh.
2016. FIDEX: Filtering Spreadsheet Data Using Ex-
amples. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA).

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a Semantic Parser Overnight. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. SQLizer: Query Syn-
thesis from Natural Language. In Proceedings
of the ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA).

Xi Ye, Qiaochu Chen, Xinyu Wang, Isil Dillig, and
Greg Durrett. 2019. Sketch-Driven Regular Expres-
sion Generation from Natural Language and Exam-
ples. In arXiv preprint arXiv:1908.05848.

Zexuan Zhong, Jiaqi Guo, Wei Yang, Tao Xie, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2018.
Generating regular expressions from natural lan-
guage specifications: Are we there yet? In the
Statistical Modeling of Natural Software Corpora
Workshop at the AAAI Conference on Artificial In-
telligence (AAAI Workshop).

6092

A Regex DSL

Nonterminals r :=
startwith(r) r.*
| endwith(r) .*r
| contain(r) .*r.*
| not(r) ∼r
| optional(r) r?
| star(r) r*
| concat(r1, r2) r1r2

| and(r1, r2) r1&r2

| or(r1, r2) r1|r2

| rep(r,k) r{k}
| repatleast(r,k) r{k, }
| reprange(r,k1,k2) r{k1, k2}

Terminals t :=
<let> [A-Za-z]
| <cap> [A-Z]
| <low> [a-z]
| <num> [0-9]
| <any> .
| <spec> [-,;.+:!@# $%&*=ˆ]
| <null> ∅

Table 7: Our regex DSL and the corresponding con-
structions in standard regular language. Our regex DSL
is as expressive as and can be easily translated to stan-
dard regex syntax.

B Details of Structured Grammar

B.1 Grammar Rules

See Figure 7.

B.2 Implementation Details

Intersection While building INTERSECTION

regexes, we impose context-dependent constraints
mainly to avoid combinations of regexes that
are redundant or in conflict. Conflicts often
occur between a ComposedBy constraint and
the other constraints. A ComposedBy con-
straint indicates the allowed characters; e.g.,
repeatatleast(or(<let>,<spec>),1) means
there can only be letters and special characters in
the matched string. Therefore, when we already
have such a constraint in the tree, we only allow
the terminals to be selected from the valid subset
of <let> and <spec> while expanding the other
subtrees.

This greatly reduce the chances of yielding
empty regexes as well as redundant regexes (e.g.,
in and(repeatatleast(or(<let>,<spec>),

1),not(contain(<num>))), the second con-
straint is actually redundant).

Concatenation CONCATENATION regexes are a
sequence of simple components. As stated above,

our grammar encourages the phenomenon of rep-
etition that commonly occurs in real regexes by
copying existing sub-trees.

Separation SEPARATION regexes have several
subfields, which can be specified by either INTER-
SECTION regexes or CONCATENATION regexes,
and which are delimited by a constant. The fields
of real regexes are often related, i.e., they share
common components. For instance, the format of
U.S. phone numbers is “xxx-xxx-xxxx” where “x”
is a digit. Here the three fields are all digits but
differ in length. Similar to the CONCATENATION

template, we alter the distribution so as to copy the
already generated subtrees.

We also allow a class of SEPARATION with an
arbitrary number of identical fields separated by
a constant (e.g., a list of comma-separated num-
bers).

Complexity Control We aim to create a col-
lection of complicated regexes, but we do not
wish to make them needlessly complex along
unrealistic axes. We assess the complexity of
generated regexes using a measure we call se-
mantic complexity, which roughly measures how
many factors would need to be specified by a
user. Generally, each constraint or components
counts for one degree of semantic complexity, e.g.,
not(contain(x)) and repeat(x,4) are of com-
plexity level one. High-level macro constraints are
of complexity level two since they need more ver-
bal explanation. We limit the complexity degrees
all of our generated regexes to be strictly no more
than six. More details about the number of nodes
and depth of our regexes can be found in Section 4.

C HIT Example

See Figure 8.

6093

Intersection Template
IntTemp→ Cons | and(Cons,IntTemp)
Cons→ BasicCons | LengthCons | MacroCons
BasicCons→ not(BasicCons)
BasicCons→ startwith(ConsExpr)|endwith(ConsExpr)| contain(ConsExpr)
LengthCons→ rep(<any>,k)| repatleast(<any>,k) |reprange(<any>,k,k)
MacroCons→ ConsistOfCons|AdvStartwithCons| AdvEndwithCons | CondContainCons
ConsistOfCons→ repatleast(LiteralSet,1)
AdvStartwithCons→ and(startwith(Literal),not(startwith(Literal)))
AdvEndwithCons→ and(endwith(Literal),not(endwith(Literal)))
CondContainCons→ not(contain(concat(Literal,notcc(Literal))))
CondContainCons→ not(contain(concat(notcc(Literal),Literal)))
ConsExpr→ LiteralSet|MinConsExpr|concat(MinConsExpr,MinConsExpr)
MinConsExpr→ Literal|rep(Literal,k)

Concatenation Template
CatTemp→ Comp, concat(Comp, CatTemp)
Comp→ optional(Comp)
Comp→ BasicComp| MacroComp
BasicComp→ CompExpr|rep(CompExpr,k)| repatleast(CompExpr,k) |reprange(CompExpr,k,k)
MacroComp→ or(rep(<Literal>,k),rep(<Literal>,k))
MacroComp→ or(repatleast(<Literal>,k),repatleast(<Literal>,k))
MacroComp→ or(reprange(<Literal>,k,k),reprange(<Literal>,k,k))
CompExpr→ Literal|LiteralSet

Separation Template
SepTemp→ concat(Seg,Delimiter,Seg,Delimiter,Seg)
SepTemp→ concat(Seg,star(concat(Delimiter,Seg))
Seg→ IntTemp|CatTemp
Delimiter→ CONST

Literals etc.
Literal→ CC | CONST | STR # CONST can be any const character, STR can be any string values.
CC→ <num>|<let>|<low>|<cap>|<spec>
LiteralSet→ Literal|or(Literal,LiteralSet)

Figure 7: Grammar rules for generating regexes in our dataset. Our grammar contains much more rules than a
standard regex grammar, and is highly structured in that we have high-level templates and macros.

6094

Instructions:
In this task, you will be writing down descriptions of the patterns you see in a group of strings. For
each HIT, you’ll be given a figure visually specifying a pattern and a few examples of strings following
or not following the pattern to help you to understand it. Please write a description (generally 1-4
sentences) that describes the pattern. In addition, please write one additional string that follows the
pattern.
Things to keep in mind:
• Please describe the pattern underlying the string examples, not the sequence of strings itself. Do not
write things like “the first line ..., the second line”
• Try to be precise about describing the pattern, but also concise. Don’t describe the same property of
the strings in multiple ways.
• You are not required to use the keywords in the figure. If you can think of another way to express
the intent, that’s okay.
• Please try to write natural and fluent sentences.
• Additional string example must be different.

Example strings that follow the pattern:
a51,B457
a74,B23
a09,849
Example strings that do not follow the pattern:
b55,B193
a7,B23
a09,1

Figure 8: HIT prompt for the description writing task. We particularly emphasize in the instructions that Turkers
should use precise and original language.

