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Abstract

Pre-trained language models like BERT have
proven to be highly performant. However, they
are often computationally expensive in many
practical scenarios, for such heavy models can
hardly be readily implemented with limited re-
sources. To improve their efficiency with an as-
sured model performance, we propose a novel
speed-tunable FastBERT with adaptive infer-
ence time. The speed at inference can be flex-
ibly adjusted under varying demands, while
redundant calculation of samples is avoided.
Moreover, this model adopts a unique self-
distillation mechanism at fine-tuning, further
enabling a greater computational efficacy with
minimal loss in performance. Our model
achieves promising results in twelve English
and Chinese datasets. It is able to speed up by
a wide range from 1 to 12 times than BERT if
given different speedup thresholds to make a
speed-performance tradeoff.

1 Introduction

Last two years have witnessed significant improve-
ments brought by language pre-training, such as
BERT (Devlin et al., 2019), GPT (Radford et al.,
2018), and XLNet (Yang et al., 2019). By pre-
training on unlabeled corpus and fine-tuning on la-
beled ones, BERT-like models achieved huge gains
on many Natural Language Processing tasks.
Despite this gain in accuracy, these models have
greater costs in computation and slower speed at in-
ference, which severely impairs their practicalities.
Actual settings, especially with limited time and
resources in the industry, can hardly enable such
models into operation. For example, in tasks like
sentence matching and text classification, one often
requires to process billions of requests per second.
What’s more, the number of requests varies with
time. In the case of an online shopping site, the

*Corresponding author: Qi Ju (damonju@tencent.com)

number of requests during the holidays is five to
ten times more than that of the workdays. A large
number of servers need to be deployed to enable
BERT in industrial settings, and many spare servers
need to be reserved to cope with the peak period of
requests, demanding huge costs.

To improve their usability, many attempts in
model acceleration have been made, such as quan-
tinization (Gong et al., 2014), weights pruning
(Han et al., 2015), and knowledge distillation (KD)
(Romero et al., 2014). As one of the most popular
methods, KD requires additional smaller student
models that depend entirely on the bigger teacher
model and trade task accuracy for ease in computa-
tion (Hinton et al., 2015). Reducing model sizes to
achieve acceptable speed-accuracy balances, how-
ever, can only solve the problem halfway, for the
model is still set as fixated, rendering them unable
to cope with drastic changes in request amount.

By inspecting many NLP datasets (Wang et al.,
2018), we discerned that the samples have differ-
ent levels of difficulty. Heavy models may over-
calculate the simple inputs, while lighter ones are
prone to fail in complex samples. As recent studies
(Kovaleva et al., 2019) have shown redundancy in
pre-training models, it is useful to design a one-
size-fits-all model that caters to samples with vary-
ing complexity and gains computational efficacy
with the least loss of accuracy.

Based on this appeal, we propose FastBERT,
a pre-trained model with a sample-wise adaptive
mechanism. It can adjust the number of executed
layers dynamically to reduce computational steps.
This model also has a unique self-distillation pro-
cess that requires minimal changes to the structure,
achieving faster yet as accurate outcomes within
a single framework. Our model not only reaches
a comparable speedup (by 2 to 11 times) to the
BERT model, but also attains competitive accuracy
in comparison to heavier pre-training models.
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Experimental results on six Chinese and six En-
glish NLP tasks have demonstrated that FastBERT
achieves a huge retrench in computation with very
little loss in accuracy. The main contributions of
this paper can be summarized as follows:

e This paper proposes a practical speed-tunable
BERT model, namely FastBERT, that bal-
ances the speed and accuracy in the response
of varying request amounts;

e The sample-wise adaptive mechanism and the
self-distillation mechanism are combined to
improve the inference time of NLP model for
the first time. Their efficacy is verified on
twelve NLP datasets;

e The code is publicly available at https://
github.com/autoliuweijie/FastBERT.

2 Related work

BERT (Devlin et al., 2019) can learn universal
knowledge from mass unlabeled data and produce
more performant outcomes. Many works have fol-
lowed: RoBERTa (Liu et al., 2019) that uses larger
corpus and longer training steps. TS (Raffel et al.,
2019) that scales up the model size even more.
UER (Zhao et al., 2019) pre-trains BERT in differ-
ent Chinese corpora. K-BERT (Liu et al., 2020)
injects knowledge graph into BERT model. These
models achieve increased accuracy with heavier
settings and even more data.

However, such unwieldy sizes are often ham-
pered under stringent conditions. To be more spe-
cific, BERT-base contains 110 million parameters
by stacking twelve Transformer blocks (Vaswani
et al., 2017), while BERT-large expands its size to
even 24 layers. ALBERT (Lan et al., 2019) shares
the parameters of each layer to reduce the model
size. Obviously, the inference speed for these mod-
els would be much slower than classic architec-
tures (e.g., CNN (Kim, 2014), RNN (Wang, 2018),
etc). We think a large proportion of computation is
caused by redundant calculation.

Knowledge distillation: Many attempts have
been made to distill heavy models (teachers) into
their lighter counterparts (students). PKD-BERT
(Sun et al., 2019a) adopts an incremental extrac-
tion process that learns generalizations from inter-
mediate layers of the teacher model. TinyBERT
(Jiao et al., 2019) performs a two-stage learning in-
volving both general-domain pre-training and task-
specific fine-tuning. DistilBERT (Sanh et al., 2019)
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Loss(P;, P;)
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Big Model Softmax
(Teacher) Small Model
(Student)

L Input x J

Figure 1: Classic knowledge distillation approach: Dis-
till a small model using a separate big model.

further leveraged the inductive bias within large
models by introducing a triple loss. As shown in
Figure 1, student model often require a separated
structure, whose effect however, depends mainly
on the gains of the teacher. They are as indiscrimi-
nate to individual cases as their teachers, and only
get faster in the cost of degraded performance.

Adaptive inference: Conventional approaches
in adaptive computations are performed token-wise
or patch-wise, who either adds recurrent steps to
individual tokens (Graves, 2016) or dynamically ad-
justs the number of executed layers inside discrete
regions of images (Teerapittayanon et al., 2016;
Figurnov et al., 2017). To the best of our knowl-
edge, there has been no work in applying adaptive
mechanisms to NLP pre-training language models
for efficiency improvements so far.

3 Methodology

Distinct to the above efforts, our approach fusions
the adaptation and distillation into a novel speed-up
approach, shown in Figure 2, achieving competitive
results in both accuracy and efficiency.

3.1 Model architecture

As shown in Figure 2, FastBERT consists of
backbone and branches. The backbone is built
upon 12-layers Transformer encoder with an ad-
ditional teacher-classifier, while the branches in-
clude student-classifiers which are appended to
each Transformer output to enable early outputs.

3.1.1 Backbone

The backbone consists of three parts: the em-
bedding layer, the encoder containing stacks of
Transformer blocks (Vaswani et al., 2017), and the
teacher classifier. The structure of the embedding
layer and the encoder conform with those of BERT
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Figure 2: The inference process of FastBERT, where the number of executed layers with each sample varies based
on its complexity. This illustrates a sample-wise adaptive mechanism. Taking a batch of inputs (batch_size = 4) as
an example, the Transformer0 and Student-classifierO inferred their labels as probability distributions and calculate
the individual uncertainty. Cases with low uncertainty are immediately removed from the batch, while those with
higher uncertainty are sent to the next layer for further inference.

(Devlin et al., 2019). Given the sentence length
n, an input sentence s = [wo, w1, ...wy] will be
transformed by the embedding layers to a sequence
of vector representations e like (1),

e = Embedding(s), (D

where e is the summation of word, position, and
segment embeddings. Next, the transformer blocks
in the encoder performs a layer-by-layer feature
extraction as (2),

)

where h; ¢ = —1,0,1,...,L — 1) is the output
features at the ith layer, and h_; = e. L is the
number of Transformer layers.

Following the final encoding output is a teacher
classifier that extracts in-domain features for down-
stream inferences. It has a fully-connected layer
narrowing the dimension from 768 to 128, a self-
attention joining a fully-connected layer without
changes in vector size, and a fully-connected layer
with a so ftmaax function projecting vectors to an
N-class indicator p; as in (3), where NV is the task-
specific number of classes.

h; = Transformer_i(h;_1),

pt = Teacher_Classifier(hp—1). 3)

3.1.2 Branches

To provide FastBERT with more adaptability, mul-
tiple branches, i.e. the student classifiers, in the

same architecture with the teacher are added to the
output of each Transformer block to enable early
outputs, especially in those simple cases. The stu-
dent classifiers can be described as (4),

ps; = Student_Classifier_i(h;). 4)
The student classifier is designed carefully to bal-
ance model accuracy and inference speed, for sim-
ple networks may impair the performance, while
a heavy attention module severely slows down the
inference speed. Our classifier has proven to be
lighter with ensured competitive accuracy, detailed
verifications are showcased in Section 4.1.

3.2 Model training

FastBERT requires respective training steps for the
backbone and the student classifiers. The parame-
ters in one module is always frozen while the other
module is being trained. The model is trained in
preparation for downstream inference with three
steps: the major backbone pre-training, entire back-
bone fine-tuning, and self-distillation for student
classifiers.

3.2.1 Pre-training

The pre-training of backbone resembles that of
BERT in the same way that our backbone re-
sembles BERT. Any pre-training method used for
BERT-like models (e.g., BERT-WWM (Clui et al.,
2019), RoBERTa (Liu et al., 2019), and ERNIE
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(Sun et al., 2019b)) can be directly applied. Note
that the teacher classifier, as it is only used for
inference, stays unaffected at this time. Also conve-
niently, FastBERT does not even need to perform
pre-training by itself, for it can load high-quality
pre-trained models freely.

3.2.2 Fine-tuning for backbone

For each downstream task, we plug in the task-
specific data into the model, fine-tuning both the
major backbone and the teacher classifier. The
structure of the teacher classifier is as previously
described. At this stage, all student classifiers are
not enabled.

3.2.3 Self-distillation for branch

With the backbone well-trained for knowledge ex-
traction, its output, as a high-quality soft-label con-
taining both the original embedding and the gener-
alized knowledge, is distilled for training student
classifiers. As student are mutually independent,
their predictions ps are compared with the teacher
soft-label p; respectively, with the differences mea-
sured by KL-Divergence in (5),

pt(J)

As there are L — 1 student classifiers in the Fast-
BERT, the sum of their KL-Divergences is used as
the total loss for self-distillation, which is formu-
lated in (6),

N .
Dir(ps;pe) = ps(i) - log () s
=1

L—2
LOSS(pSo’ "'vpsL_27pt) = Z DKL(psiapt)a

i=0
(6)
where p,, refers to the probability distribution of
the output from student-classifier i.

Since this process only requires the teacher*s out-
put, we are free to use an unlimited number of unla-
beled data, instead of being restricted to the labeled
ones. This provides us with sufficient resources
for self-distillation, which means we can always
improve the student performance as long as the
teacher allows. Moreover, our method differs from
the previous distillation method, for the teacher and
student outputs lie within the same model. This
learning process does not require additional pre-
training structures, making the distillation entirely
a learning process by self.

3.3 Adaptive inference

With the above steps, FastBERT is well-prepared
to perform inference in an adaptive manner, which

means we can adjust the number of executed en-
coding layers within the model according to the
sample complexity.

At each Transformer layer, we measure for each
sample on whether the current inference is credible
enough to be terminated.

Given an input sequence, the uncertainty of a
student classifier’s output ps is computed with a
normalized entropy in (7),

Zz’]\il Ds (Z) logps (Z)

Uncertainty = log %

(D

where p; is the distribution of output probability,
and N is the number of labeled classes.

With the definition of the uncertainty, we make
an important hypothesis.

Hypothesis 1. LUHA: the Lower the Uncertainty,
the Higher the Accuracy.

Definition 1. Speed: The threshold to distinguish
high and low uncertainty.

LUHA is verified in Section 4.4. Both Uncer-
tainty and Speed range between 0 and 1. The adap-
tive inference mechanism can be described as: At
each layer of FastBERT, the corresponding student
classifier will predict the label of each sample with
measured Uncertainty. Samples with Uncertainty
below the Speed will be sifted to early outputs,
while samples with Uncertainty above the Speed
will move on to the next layer.

Intuitively, with a higher Speed, fewer samples
will be sent to higher layers, and overall inference
speed will be faster, and vice versa. Therefore,
Speed can be used as a halt value for weighing the
inference accuracy and efficiency.

Table 1: FLOPs of each operation within the FastBERT
(M = Million, N = the number of labels).

Operation  Sub-operation = FLOPs Total

Self-attention
(768 — 768)
Feedforward
(768 — 3072
— T68)

Fully-connect
(768 — 128)
Self-attention
(128 — 128)
Fully-connect
(128 — 128)
Fully-connect
(128 — N)

603.0M

Transformer 1809.9M

1207.9M

25.1M

Classifier 46.1M

16.8M

4.2M
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Table 2: Comparison of accuracy (Acc.) and FLOPs (speedup) between FastBERT and Baselines in six Chinese

datasets and six English datasets.

Dataset/ ChnSentiCorp Book review Shopping review LCQMC Weibo THUCNews
Model N FLOPs | , = FLOPs | , FLOPs | , = FLOPs | FLOPs | FLOPs
ce. (speedup) ce. (speedup) ce. (speedup) ce. (speedup) ce. (speedup) ce. (speedup)
21785M 21785M 21785M 21785M 21785M 21785M
BERT | 9525 G0N | sess  Tihoy | %8+ o | sess et | e RN | et 2TON
DistIBERT 10918M 10918M 10918M 10918M 10918M 10918M
Glayers) | B8 oo | B3 oo | PP coon | 312 coon | T oon | P* oo
DistilBERT 5428M 5428M 5428M 5428M 5428M 5428M
Glagersy | 8733 won | BT won | ¥ wowo | Y Goo | 7% Goo | M 4o
DistilBERT 1858M 1858M 1858M 1858M 1858M 1858M
layery | 8933 aim | 7740 aimo | 9P aimzo |V imo | 0 iz | OMB dimaw
FastBERT 10741M 13613M 4885M 12930M 3691M 3595M
Gpeed=0.1) | B o020 | 308 (Geon | 070 @aso | 390 et | 77D oo | 207N (6.05x)
FastBERT 3191M 5170M 2517M 6352M 3341M 1979M
(specd=05) | 200 (8o | 800 arg | %092 geso | B0 a0 | T2 6510 | % (roow
FastBERT 2315M 3012M 2087M 3310M 1982M 1854M
Gpeed=0.8) | 5273 400 | B gm0 | P dooao | TP 6510 | 7P aooow | M7 (iaaw
Dataset/ Ag.news Amz.F Dbpedia Yahoo Yelp.F Yelp.P
Model N FLOPs | FLOPs | FLOPs | FLOPs | FLOPs | FLOPs
(speedup) ce (speedup) (speedup) (speedup) ce (speedup) (speedup)
21785M 21785M 21785M 21785M 21785M 21785M
BERT | o447 TN Fesso TN oot ATOM L arae TS | 6593 flon | 9604 oo
DistilBERT 10872M 10872M 10872M 10872M 10872M 10872M
Glayers) | 2** oo | %0 oon | P10 oow | 707 oon | B @oon | P31 2000
DistilBERT 5436M 5436M 5436M 5436M 5436M 5436M
Glayery | %8 @oon | B Goon | P9 oo | 7% @oon | B0 @ooo | BB @oon)
DistiIBERT 1816M 1816M 1816M 1816M 1816M 1816M
(layers) | 2288 (2000 | P 2000 | BB q2000 | B 2000 | ¥ a2oon | O (2000
FastBERT 6013M 21005M 2060M 16172M 20659M 6668M
(specd=0.1) | 23 @e0 | 90 oz | OB qosto | 7T ason | 9B doso | 0 Gy
FastBERT 2108M 10047M 1854M 4852M 9827M 3456M
Gpeed=05) | 14 (0330 | % @ien | PP aiman | 79 wasn | P o | PP 6300
FastBERT 1858M 2356M 1853M 1965M 2602M 2460M
(speed=0.8) | 223 1720 | M0 0240 | P09 qi7so | PO droso | 9900 8370 | M3 885y

4 Experimental results

In this section, we will verify the effectiveness of
FastBERT on twelve NLP datasets (six in English
and six in Chinese) with detailed explanations.

4.1 FLOPs analysis

Floating-point operations (FLOPs) is a measure of
the computational complexity of models, which
indicates the number of floating-point operations
that the model performs for a single process. The
FLOPs has nothing to do with the model’s oper-
ating environment (CPU, GPU or TPU) and only
reveals the computational complexity. Generally
speaking, the bigger the model’s FLOPs is, the
longer the inference time will be. With the same ac-
curacy, models with low FLOPs are more efficient
and more suitable for industrial uses.

We list the measured FLOPs of both structures
in Table 1, from which we can infer that, the cal-
culation load (FLOPs) of the Classifier is much
lighter than that of the Transformer. This is the
basis of the speed-up of FastBERT, for although it
adds additional classifiers, it achieves acceleration
by reducing more computation in Transformers.

4.2 Baseline and dataset
4.2.1 Baseline

In this section, we compare FastBERT against two
baselines:

e BERT! The 12-layer BERT-base model was
pre-trained on Wiki corpus and released by
Google (Devlin et al., 2019).

e DistilBERT? The most famous distillation
method of BERT with 6 layers was released by
Huggingface (Sanh et al., 2019). In addition,
we use the same method to distill the Distil-
BERT with 3 and 1 layer(s), respectively.

4.2.2 Dataset

To verify the effectiveness of FastBERT, especially
in industrial scenarios, six Chinese and six En-
glish datasets pressing closer to actual applica-
tions are used. The six Chinese datasets include

"https://github.com/google-research/
bert

https://github.com/huggingface/
transformers/tree/master/examples/
distillation
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Figure 3: The trade-offs of FastBERT on twelve datasets (six in Chinese and six in English): (a) and (d) are Speed-
Accuracy relations, showing changes of Speed (the threshold of Uncertainty) in dependence of the accuracy; (b)
and (e) are Speed-Speedup relations, indicating that the Speed manages the adaptibility of FastBERT; (c) and (f)
are the Speedup-Accuracy relations, i.e. the trade-off between efficiency and accuracy.

the sentence classification tasks (ChnSentiCorp,
Book review(Qiu et al., 2018), Shopping review,
Weibo and THUCNews) and a sentences-matching
task (LCQMC(Liu et al., 2018)). All the Chinese
datasets are available at the FastBERT project. The
six English datasets (Ag.News, Amz.F, DBpedia,
Yahoo, Yelp.F, and Yelp.P) are sentence classifica-
tion tasks and were released in (Zhang et al., 2015).

4.3 Performance comparison

To perform a fair comparison, BERT / DistilBERT
/ FastBERT all adopt the same configuration as
follows. In this paper, L = 12. The number of
self-attention heads, the hidden dimension of em-
bedding vectors, and the max length of the input
sentence are set to 12, 768 and 128 respectively.
Both FastBERT and BERT use pre-trained parame-
ters provided by Google, while DistilBERT is pre-
trained with (Sanh et al., 2019). We fine-tune these
models using the AdamW (Loshchilov and Hut-
ter) algorithm, a 2 x 1075 learning rate, and a 0.1
warmup. Then, we select the model with the best
accuracy in 3 epochs. For the self-distillation of
FastBERT, we increase the learning rate to 2 x 10~%
and distill it for 5 epochs.

We evaluate the text inference capabilities of
these models on the twelve datasets and report their
accuracy (Acc.) and sample-averaged FLOPs under
different Speed values. The result of comparisons
are shown in Table 2, where the Speedup is ob-

tained by using BERT as the benchmark. It can
be observed that with the setting of Speed = 0.1,
FastBERT can speed up 2 to 5 times without los-
ing accuracy for most datasets. If a little loss of
accuracy is tolerated, FastBERT can be 7 to 11
times faster than BERT. Comparing to DistilBERT,
FastBERT trades less accuracy to catch higher ef-
ficiency. Figure 3 illustrates FastBERT’s tradeoff
in accuracy and efficiency. The speedup ratio of
FastBERT are free to be adjusted between 1 and
12, while the loss of accuracy remains small, which
is a very attractive feature in the industry.
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Figure 4: The relation of classifier accuracy and aver-
age case uncertainty: Three classifiers at the bottom, in
the middle, and on top of the FastBERT were analyzed,
and their accuracy within various uncertainty intervals
were calculated with the Book Review dataset.
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4.4 LUHA hypothesis verification

As is described in the Section 3.3, the adaptive in-
ference of FastBERT is based on the LUHA hypoth-
esis, i.e., “the Lower the Uncertainty, the Higher
the Accuracy”. Here, we prove this hypothesis us-
ing the book review dataset. We intercept the clas-
sification results of Student-Classifier0O, Student-
Classifier5, and Teacher-Classifier in FastBERT,
then count their accuracy in each uncertainty inter-
val statistically. As shown in Figure 4, the statisti-
cal indexes confirm that the classifier follows the
LUHA hypothesis, no matter it sits at the bottom,
in the middle or on top of the model.

From Figure 4, it is easy to mistakenly conclude
that Students has better performance than Teacher
due to the fact that the accuracy of Student in each
uncertainty range is higher than that of Teacher.
This conclusion can be denied by analysis with
Figure 6(a) together. For the Teacher, more sam-
ples are located in areas with lower uncertainty,
while the Students’ samples are nearly uniformly
distributed. Therefore the overall accuracy of the
Teacher is still higher than that of Students.

4.5 In-depth study

In this section, we conduct a set of in-depth analysis
of FastBERT from three aspects: the distribution
of exit layer, the distribution of sample uncertainty,
and the convergence during self-distillation.
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Figure 6: The distribution of Uncertainty at different
layers of FastBERT in the Book review dataset: (a)
The speed is set to 0.0, which means that all samples
will pass through all the twelve layers; (b) ~ (d): The
Speed is set to 0.3, 0.5, and 0.8 respectively, iand only
the samples with Uncertainty higher than Speed will be
sent to the next layer.

4.5.1 Layer distribution

In FastBERT, each sample walks through a dif-
ferent number of Transformer layers due to varied
complexity. For a certain condition, fewer executed
layers often requires less computing resources. As
illustrated in Figure 5, we investigate the distri-
bution of exit layers under different constraint of
Speeds (0.3, 0.5 and 0.8) in the book review dataset.
Take Speed = 0.8 as an example, at the first layer
Transformer0, 61% of the samples is able to com-
plete the inference. This significantly eliminates
unnecessary calculations in the next eleven layers.

4.5.2 Uncertainty distribution

The distribution of sample uncertainty predicted by
different student classifiers varies, as is illustrated
in Figure 6. Observing these distributions help us to
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Figure 7: The change in accuracy and FLOPs of Fast-
BERT during fine-tuning and self-distillation with the
Book review dataset. The accuracy firstly increases at
the fine-tuning stage, while the self-distillation reduces
the FLOPs by six times with almost no loss in accuracy.

further understand FastBERT. From Figure 6(a), it
can be concluded that the higher the layer is posited,
the lower the uncertainty with given Speed will be,
indicating that the high-layer classifiers more de-
cisive than the lower ones. It is worth noting that
at higher layers, there are samples with uncertainty
below the threshold of Uncertainty (i.e., the Speed),
for these high-layer classifiers may reverse the pre-
vious judgments made by the low-layer classifiers.

4.5.3 Convergence of self-distillation

Self-distillation is a crucial step to enable Fast-
BERT. This process grants student classifiers with
the abilities to infer, thereby offloading work from
the teacher classifier. Taking the Book Review
dataset as an example, we fine-tune the FastBERT
with three epochs then self-distill it for five more
epochs. Figure 7 illustrates its convergence in
accuracy and FLOPs during fine-tune and self-
distillation. It could be observed that the accuracy
increases with fine-tuning, while the FLOPs de-
crease during the self-distillation stage.

4.6 Ablation study

Adaptation and self-distillation are two crucial
mechanisms in FastBERT. We have preformed ab-
lation studies to investigate the effects brought
by these two mechanisms using the Book Re-
view dataset and the Yelp.P dataset. The results
are presented in Table 3, in which ‘without self-
distillation’ implies that all classifiers, including
both the teacher and the students, are trained in
the fine-tuning; while ‘without adaptive inference’
means that the number of executed layers of each
sample is fixated to two or six.

Table 3: Results of ablation studies on the Book review

and Yelp.P datasets.
Book review Yelp.P

Config. A FLOPs | FLOPs

ce. (speedup) ce. (speedup)
FastBERT
speed=0.2 | 86.98 (927 %gl)\s 95.90 5(31718 23)1(\)4
speed=0.7 | 85.69 ?66 %)111)\3 94.67 (277 5961)\3
FastBERT without self-distillation

9921M 4173M

speed=0.2 | 86.22 (2.19%) 95.55 (5.22%)

4282M 2371M

speed=0.7 | 85.02 (5.08%) 94.54 (9.18x)

FastBERT without adaptive inference

11123M 11123M

layer=6 86.42 (1.95%) 95.18 (1.95x)

3707M 3707

layer=2 82.88 (5.87%) 93.11 (5.87%)

From Table 3, we have observed that: (1) At
almost the same level of speedup, FastBERT with-
out self-distillation or adaption performs poorer;
(2) When the model is accelerated more than five
times, downstream accuracy degrades dramati-
cally without adaption. It is safe to conclude that
both the adaptation and self-distillation play a key
role in FastBERT, which achieves both significant
speedups and favorable low losses of accuracy.

5 Conclusion

In this paper, we propose a fast version of BERT,
namely FastBERT. Specifically, FastBERT adopts
a self-distillation mechanism during the training
phase and an adaptive mechanism in the inference
phase, achieving the goal of gaining more effi-
ciency with less accuracy loss. Self-distillation
and adaptive inference are first introduced to NLP
model in this paper. In addition, FastBERT has a
very practical feature in industrial scenarios, i.e.,
its inference speed is tunable.

Our experiments demonstrate promising results
on twelve NLP datasets. Empirical results have
shown that FastBERT can be 2 to 3 times faster
than BERT without performance degradation. If
we slack the tolerated loss in accuracy, the model is
free to tune its speedup between 1 and 12 times. Be-
sides, FastBERT remains compatible to the parame-
ter settings of other BERT-like models (e.g., BERT-
WWM, ERNIE, and RoBERTa), which means
these public available models can be readily loaded

6042



for FastBERT initialization.

6 Future work

These promising results point to future works in (1)
linearizing the Speed-Speedup curve; (2) extend-
ing this approach to other pre-training architectures
such as XLNet (Yang et al., 2019) and ELMo (Pe-
ters et al., 2018); (3) applying FastBERT on a wider
range of NLP tasks, such as named entity recogni-
tion and machine translation.
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