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Abstract

We study the problem of multilingual masked
language modeling, i.e. the training of a sin-
gle model on concatenated text from multi-
ple languages, and present a detailed study of
several factors that influence why these mod-
els are so effective for cross-lingual transfer.
We show, contrary to what was previously hy-
pothesized, that transfer is possible even when
there is no shared vocabulary across the mono-
lingual corpora and also when the text comes
from very different domains. The only require-
ment is that there are some shared parameters
in the top layers of the multi-lingual encoder.
To better understand this result, we also show
that representations from monolingual BERT
models in different languages can be aligned
post-hoc quite effectively, strongly suggesting
that, much like for non-contextual word em-
beddings, there are universal latent symme-
tries in the learned embedding spaces. For
multilingual masked language modeling, these
symmetries are automatically discovered and
aligned during the joint training process.

1 Introduction

Multilingual language models such as mBERT (De-
vlin et al., 2019) and XLM (Lample and Conneau,
2019) enable effective cross-lingual transfer — it
is possible to learn a model from supervised data
in one language and apply it to another with no
additional training. Recent work has shown that
transfer is effective for a wide range of tasks (Wu
and Dredze, 2019; Pires et al., 2019). These work
speculates why multilingual pretraining works (e.g.
shared vocabulary), but only experiment with a
single reference mBERT and is unable to systemat-
ically measure these effects.

In this paper, we present the first detailed em-
pirical study of the effects of different masked lan-
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guage modeling (MLM) pretraining regimes on
cross-lingual transfer. Our first set of experiments
is a detailed ablation study on a range of zero-shot
cross-lingual transfer tasks. Much to our surprise,
we discover that language universal representations
emerge in pretrained models without the require-
ment of any shared vocabulary or domain similarity,
and even when only a subset of the parameters in
the joint encoder are shared. In particular, by sys-
tematically varying the amount of shared vocabu-
lary between two languages during pretraining, we
show that the amount of overlap only accounts for
a few points of performance in transfer tasks, much
less than might be expected. By sharing parameters
alone, pretraining learns to map similar words and
sentences to similar hidden representations.

To better understand these effects, we also ana-
lyze multiple monolingual BERT models trained
independently. We find that monolingual models
trained in different languages learn representations
that align with each other surprisingly well, even
though they have no shared parameters. This result
closely mirrors the widely observed fact that word
embeddings can be effectively aligned across lan-
guages (Mikolov et al., 2013). Similar dynamics
are at play in MLM pretraining, and at least in part
explain why they aligned so well with relatively
little parameter tying in our earlier experiments.

This type of emergent language universality has
interesting theoretical and practical implications.
We gain insight into why the models transfer so
well and open up new lines of inquiry into what
properties emerge in common in these represen-
tations. They also suggest it should be possible
to adapt pretrained models to new languages with
little additional training and it may be possible to
better align independently trained representations
without having to jointly train on all of the (very
large) unlabeled data that could be gathered. For
example, concurrent work has shown that a pre-
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trained MLM model can be rapidly fine-tuned to
another language (Artetxe et al., 2019).
This paper offers the following contributions:

* We provide a detailed ablation study on cross-
lingual representation of bilingual BERT. We
show parameter sharing plays the most impor-
tant role in learning cross-lingual representa-
tion, while shared BPE, shared softmax and
domain similarity play a minor role.

* We demonstrate even without any shared sub-
words (anchor points) across languages, cross-
lingual representation can still be learned.
With bilingual dictionary, we propose a sim-
ple technique to create more anchor points by
creating synthetic code-switched corpus, ben-
efiting especially distantly-related languages.

* We show monolingual BERTsS of different lan-
guage are similar with each other. Similar
to word embeddings (Mikolov et al., 2013),
we show monolingual BERT can be easily
aligned with linear mapping to produce cross-
lingual representation space at each level.

2 Background

Language Model Pretraining Our work fol-
lows in the recent line of language model pretrain-
ing. ELMo (Peters et al., 2018) first popularized
representation learning from a language model.
The representations are used in a transfer learning
setup to improve performance on a variety of down-
stream NLP tasks. Follow-up work by Howard
and Ruder (2018); Radford et al. (2018) further
improves on this idea by fine-tuning the entire lan-
guage model. BERT (Devlin et al., 2019) signifi-
cantly outperforms these methods by introducing
a masked-language model and next-sentence pre-
diction objectives combined with a bi-directional
transformer model.

The multilingual version of BERT (dubbed
mBERT) trained on Wikipedia data of over 100
languages obtains strong performance on zero-
shot cross-lingual transfer without using any par-
allel data during training (Wu and Dredze, 2019;
Pires et al., 2019). This shows that multilingual
representations can emerge from a shared Trans-
former with a shared subword vocabulary. Cross-
lingual language model (XLM) pretraining (Lam-
ple and Conneau, 2019) was introduced concur-
rently to mBERT. On top of multilingual masked

language models, they investigate an objective
based on parallel sentences as an explicit cross-
lingual signal. XLM shows that cross-lingual lan-
guage model pretraining leads to a new state of the
art on XNLI (Conneau et al., 2018), supervised and
unsupervised machine translation (Lample et al.,
2018). Other work has shown that mBERT out-
performs word embeddings on token-level NLP
tasks (Wu and Dredze, 2019), and that adding
character-level information (Mulcaire et al., 2019)
and using multi-task learning (Huang et al., 2019)
can improve cross-lingual performance.

Alignment of Word Embeddings Researchers
working on word embeddings noticed early that em-
bedding spaces tend to be shaped similarly across
different languages (Mikolov et al., 2013). This
inspired work in aligning monolingual embeddings.
The alignment was done by using a bilingual dictio-
nary to project words that have the same meaning
close to each other (Mikolov et al., 2013). This pro-
jection aligns the words outside of the dictionary as
well due to the similar shapes of the word embed-
ding spaces. Follow-up efforts only required a very
small seed dictionary (e.g., only numbers (Artetxe
et al., 2017)) or even no dictionary at all (Conneau
et al., 2017; Zhang et al., 2017). Other work has
pointed out that word embeddings may not be as
isomorphic as thought (S¢gaard et al., 2018) es-
pecially for distantly related language pairs (Patra
et al., 2019). Ormazabal et al. (2019) show joint
training can lead to more isomorphic word embed-
dings space.

Schuster et al. (2019) showed that ELMo em-
beddings can be aligned by a linear projection as
well. They demonstrate a strong zero-shot cross-
lingual transfer performance on dependency pars-
ing. Wang et al. (2019) align mBERT representa-
tions and evaluate on dependency parsing as well.

Neural Network Activation Similarity We hy-
pothesize that similar to word embedding spaces,
language-universal structures emerge in pretrained
language models. While computing word embed-
ding similarity is relatively straightforward, the
same cannot be said for the deep contextualized
BERT models that we study. Recent work intro-
duces ways to measure the similarity of neural
network activation between different layers and
different models (Laakso and Cottrell, 2000; Li
et al., 2016; Raghu et al., 2017; Morcos et al.,
2018; Wang et al., 2018). For example, Raghu et al.
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(2017) use canonical correlation analysis (CCA)
and a new method, singular vector canonical cor-
relation analysis (SVCCA), to show that early lay-
ers converge faster than upper layers in convolu-
tional neural networks. Kudugunta et al. (2019) use
SVCCA to investigate the multilingual representa-
tions obtained by the encoder of a massively mul-
tilingual neural machine translation system (Aha-
roni et al., 2019). Kornblith et al. (2019) argues
that CCA fails to measure meaningful similarities
between representations that have a higher dimen-
sion than the number of data points and introduce
the centered kernel alignment (CKA) to solve this
problem. They successfully use CKA to identify
correspondences between activations in networks
trained from different initializations.

3 Cross-lingual Pretraining

We study a standard multilingual masked language
modeling formulation and evaluate performance
on several different cross-lingual transfer tasks, as
described in this section.

3.1 Multilingual Masked Language Modeling

Our multilingual masked language models follow
the setup used by both mBERT and XLM. We use
the implementation of Lample and Conneau (2019).
Specifically, we consider continuous streams of 256
tokens and mask 15% of the input tokens which
we replace 80% of the time by a mask token, 10%
of the time with the original word, and 10% of the
time with a random word. Note the random words
could be foreign words. The model is trained to
recover the masked tokens from its context (Taylor,
1953). The subword vocabulary and model param-
eters are shared across languages. Note the model
has a softmax prediction layer shared across lan-
guages. We use Wikipedia for training data, prepro-
cessed by Moses (Koehn et al., 2007) and Stanford
word segmenter (for Chinese only) and BPE (Sen-
nrich et al., 2016) to learn subword vocabulary.
During training, we sample a batch of continuous
streams of text from one language proportionally
to the fraction of sentences in each training corpus,
exponentiated to the power 0.7.

Pretraining details Each model is a Transformer
(Vaswani et al., 2017) with 8 layers, 12 heads and
GELU activiation functions (Hendrycks and Gim-
pel, 2016). The output softmax layer is tied with
input embeddings (Press and Wolf, 2017). The em-
beddings dimension is 768, the hidden dimension

of the feed-forward layer is 3072, and dropout is
0.1. We train our models with the Adam optimizer
(Kingma and Ba, 2014) and the inverse square root
learning rate scheduler of Vaswani et al. (2017)
with 10~ learning rate and 30k linear warmup
steps. For each model, we train it with 8 NVIDIA
V100 GPUs with 32GB of memory and mixed pre-
cision. It takes around 3 days to train one model.
We use batch size 96 for each GPU and each epoch
contains 200k batches. We stop training at epoch
200 and select the best model based on English dev
perplexity for evaluation.

3.2 Cross-lingual Evaluation

We consider three NLP tasks to evaluate perfor-
mance: natural language inference (NLI), named
entity recognition (NER) and dependency parsing
(Parsing). We adopt the zero-shot cross-lingual
transfer setting, where we (1) fine-tune the pre-
trained model on English and (2) directly transfer
the model to target languages. We select the model
and tune hyperparameters with the English dev set.
We report the result on average of best two set of
hyperparameters.

Fine-tuning details We fine-tune the model for
10 epochs for NER and Parsing and 200 epochs
for NLI. We search the following hyperparam-
eter for NER and Parsing: batch size {16, 32};
learning rate {2e-5,3e-5,5e-5}. For XNLI, we
search: batch size {4,8}; encoder learning rate
{1.25e-6,2.5¢-6,5¢-6}; classifier learning rate
{5e-6,2.5e-5,1.25e-4}. We use Adam with fixed
learning rate for XNLI and warmup the learning
rate for the first 10% batch then decrease linearly to
0 for NER and Parsing. We save checkpoint after
each epoch.

NLI We use the cross-lingual natural language
inference (XNLI) dataset (Conneau et al., 2018).
The task-specific layer is a linear mapping to a
softmax classifier, which takes the representation
of the first token as input.

NER We use WikiAnn (Pan et al., 2017), a silver
NER dataset built automatically from Wikipedia,
for English-Russian and English-French. For
English-Chinese, we use CoNLL 2003 English
(Tjong Kim Sang and De Meulder, 2003) and a Chi-
nese NER dataset (Levow, 2006), with realigned
Chinese NER labels based on the Stanford word
segmenter. We model NER as BIO tagging. The
task-specific layer is a linear mapping to a softmax
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Figure 1: On the impact of anchor points and param-
eter sharing on the emergence of multilingual represen-
tations. We train bilingual masked language models and
remove parameter sharing for the embedding layers and first
few Transformers layers to probe the impact of anchor points
and shared structure on cross-lingual transfer.

classifier, which takes the representation of the first
subword of each word as input. We report span-
level F1. We adopt a simple post-processing heuris-
tic to obtain a valid span, rewriting standalone
I-XintoB-XandB-X I-Y I-ZintoB-Z I-Z
I-7, following the final entity type. We report the
span-level F1.

Parsing Finally, we use the Universal Dependen-
cies (UD v2.3) (Nivre, 2018) for dependency pars-
ing. We consider the following four treebanks:
English-EWT, French-GSD, Russian-GSD, and
Chinese-GSD. The task-specific layer is a graph-
based parser (Dozat and Manning, 2016), using
representations of the first subword of each word
as inputs. We measure performance with the la-
beled attachment score (LAS).

4 Dissecting mBERT/XLM models

We hypothesize that the following factors play im-
portant roles in what makes multilingual BERT
multilingual: domain similarity, shared vocabu-
lary (or anchor points), shared parameters, and lan-
guage similarity. Without loss of generality, we
focus on bilingual MLM. We consider three pairs
of languages: English-French, English-Russian,
and English-Chinese.

4.1 Domain Similarity

Multilingual BERT and XL.M are trained on the
Wikipedia comparable corpora. Domain similar-
ity has been shown to affect the quality of cross-
lingual word embeddings (Conneau et al., 2017),
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Figure 2: Probing the layer similarity of monolingual
BERT models. We investigate the similarity of separate
monolingual BERT models at different levels. We use an
orthogonal mapping between the pooled representations of
each model. We also quantify the similarity using the cen-
tered kernel alignment (CKA) similarity index.

but this effect is not well established for masked
language models. We consider domain difference
by training on Wikipedia for English and a random
subset of Common Crawl] of the same size for the
other languages (Wiki-CC). We also consider a
model trained with Wikipedia only (Default) for
comparison.

The first group in Tab. 1 shows domain mismatch
has a relatively modest effect on performance.
XNLI and parsing performance drop around 2
points while NER drops over 6 points for all lan-
guages on average. One possible reason is that
the labeled WikiAnn data for NER consists of
Wikipedia text; domain differences between source
and target language during pretraining hurt per-
formance more. Indeed for English and Chinese
NER, where neither side comes from Wikipedia,
performance only drops around 2 points.

4.2 Anchor points

Anchor points are identical strings that appear in
both languages in the training corpus. Translingual
words like DNA or Paris appear in the Wikipedia
of many languages with the same meaning. In
mBERT, anchor points are naturally preserved due
to joint BPE and shared vocabulary across lan-
guages. Anchor point existence has been suggested
as a key ingredient for effective cross-lingual trans-
fer since they allow the shared encoder to have at
least some direct tying of meaning across different
languages (Lample and Conneau, 2019; Pires et al.,
2019; Wu and Dredze, 2019). However, this effect
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Figure 3: Cross-lingual transfer of bilingual MLM on three tasks and language pairs under different settings.
Others tasks and languages pairs follows similar trend. See Tab. 1 for full results.

. XNLI (Acc) NER (F1) Parsing (LAS)
Model Domain  BPE Merges  Anchors Pts Share Param. Softmax ru h A fr . /h A fr u /h A
Default ‘ Wiki-Wiki 80k all all shared ‘ 73.6 68.7 683 0.0 ‘ 79.8 609 63.6 0.0 ‘ 732 56.6 288 0.0

Domain Similarity (§4.1)

Wiki-CC | Wiki-CC

| 742 658 665 -14 740 496 619 -62 |713 548 252 25

Anchor Points (§4.2)

No anchors 40k/40k 0 721 675 677 -1.1 | 740 579 650 -24 |723 562 274 -09
Default anchors 40k/40k - 740 68.1 689 +0.1 |76.8 563 612 -33 |73.0 57.0 283 -0.1
Extra anchors - extra 740 69.8 72.1 +1.8 | 76.1 59.7 66.8 -0.5 | 733 569 292 +0.3
Parameter Sharing (§4.3)
Sep Emb 40k/40k 0% Sep Emb lang-specific | 727 63.6 608 -45 |755 575 59.0 -41 |71.7 540 275 -1.8
Sep L1-3 40k/40k - Sep L1-3 - 724 650 63.1 -34 | 740 533 608 -53 |69.7 541 264 -28
Sep L1-6 40k/40k - Sep L1-6 - 619 436 374 -226|612 237 3.1 -387|61.7 316 120 -17.8
Sep Emb + L1-3 40k/40k 0* Sep Emb + L1-3 lang-specific | 69.2 61.7 564 -7.8 | 73.8 46.8 535 -100| 682 53.6 239 -43
Sep Emb + L1-6 40k/40k 0* Sep Emb + L1-6 lang-specific | 51.6 358 344 -29.6 | 565 54 1.0 -47.1 509 64 1.5 -333

Table 1: Dissecting bilingual MLM based on zero-shot cross-lingual transfer performance. - denote the same as
the first row (Default). A denote the difference of average task performance between a model and Default.

has not been carefully measured.

We present a controlled study of the impact of an-
chor points on cross-lingual transfer performance
by varying the amount of shared subword vocab-
ulary across languages. Instead of using a sin-
gle joint BPE with 80k merges, we use language-
specific BPE with 40k merges for each language.
We then build vocabulary by taking the union of
the vocabulary of two languages and train a bilin-
gual MLM (Default anchors). To remove anchor
points, we add a language prefix to each word in
the vocabulary before taking the union. Bilingual
MLM (No anchors) trained with such data has no
shared vocabulary across languages. However, it
still has a single softmax prediction layer shared
across languages and tied with input embeddings.

As Wu and Dredze (2019) suggest there may
also be correlation between cross-lingual perfor-
mance and anchor points, we additionally increase
anchor points by using a bilingual dictionary to
create code switch data for training bilingual MLM
(Extra anchors). For two languages, /1 and /o,

with bilingual dictionary entries dy, ,, we add an-
chors to the training data as follows. For each
training word wy, in the bilingual dictionary, we
either leave it as is (70% of the time) or randomly
replace it with one of the possible translations from
the dictionary (30% of the time). We change at
most 15% of the words in a batch and sample word
translations from PanLex (Kamholz et al., 2014)
bilingual dictionaries, weighted according to their
translation quality .

The second group of Tab. 1 shows cross-lingual
transfer performance under the three anchor point
conditions. Anchor points have a clear effect on
performance and more anchor points help, espe-
cially in the less closely related language pairs (e.g.
English-Chinese has a larger effect than English-
French with over 3 points improvement on NER
and XNLI). However, surprisingly, effective trans-
fer is still possible with no anchor points. Com-

! Although we only consider pairs of languages, this pro-
cedure naturally scales to multiple languages, which could
produce larger gains in future work.
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paring no anchors and default anchors, the perfor-
mance of XNLI and parsing drops only around 1
point while NER even improve 1 points averaging
over three languages. Overall, these results show
that we have previously overestimated the contribu-
tion of anchor points during multilingual pretrain-
ing. Concurrently, Karthikeyan et al. (2020) simi-
larly find anchor points play minor role in learning
cross-lingual representation.

4.3 Parameter sharing

Given that anchor points are not required for trans-
fer, a natural next question is the extent to which we
need to tie the parameters of the transformer layers.
Sharing the parameters of the top layer is neces-
sary to provide shared inputs to the task-specific
layer. However, as seen in Figure 1, we can pro-
gressively separate the bottom layers 1:3 and 1:6
of the Transformers and/or the embedding layers
(including positional embeddings) (Sep Emb; Sep
L1-3; Sep L1-6; Sep Emb + L1-3; Sep Emb +
L1-6). Since the prediction layer is tied with the
embeddings layer, separating the embeddings layer
also introduces a language-specific softmax pre-
diction layer for the cloze task. Additionally, we
only sample random words within one language
during the MLM pretraining. During fine-tuning
on the English training set, we freeze the language-
specific layers and only fine-tune the shared layers.

The third group in Tab. 1 shows cross-lingual
transfer performance under different parameter
sharing conditions with “Sep” denote which layers
is not shared across languages. Sep Emb (eftec-
tively no anchor point) drops more than No anchors
with 3 points on XNLI and around 1 point on NER
and parsing, suggesting have a cross-language soft-
max layer also helps to learn cross-lingual repre-
sentations. Performance degrades as fewer layers
are shared for all pairs, and again the less closely
related language pairs lose the most. Most notably,
the cross-lingual transfer performance drops to ran-
dom when separating embeddings and bottom 6
layers of the transformer. However, reasonably
strong levels of transfer are still possible without
tying the bottom three layers. These trends suggest
that parameter sharing is the key ingredient that
enables the learning of an effective cross-lingual
representation space, and having language-specific
capacity does not help learn a language-specific
encoder for cross-lingual representation. Our hy-
pothesis is that the representations that the models

learn for different languages are similarly shaped
and models can reduce their capacity budget by
aligning representations for text that has similar
meaning across languages.

4.4 Language Similarity

Finally, in contrast to many of the experiments
above, language similarity seems to be quite im-
portant for effective transfer. Looking at Tab. 1
column by column in each task, we observe per-
formance drops as language pairs become more
distantly related. Using extra anchor points helps
to close the gap. However, the more complex tasks
seem to have larger performance gaps and having
language-specific capacity does not seem to be the
solution. Future work could consider scaling the
model with more data and cross-lingual signal to
close the performance gap.

4.5 Conclusion

Summarised by Figure 3, parameter sharing is the
most important factor. More anchor points help
but anchor points and shared softmax projection
parameters are not necessary for effective cross-
lingual transfer. Joint BPE and domain similarity
contribute a little in learning cross-lingual repre-
sentation.

5 Similarity of BERT Models

To better understand the robust transfer effects of
the last section, we show that independently trained
monolingual BERT models learn representations
that are similar across languages, much like the
widely observed similarities in word embedding
spaces. In this section, we show that independent
monolingual BERT models produce highly similar
representations when evaluated at the word level
(85.1.1), contextual word-level (§5.1.2), and sen-
tence level (§5.1.3) . We also plot the cross-lingual
similarity of neural network activation with center
kernel alignment (§5.2) at each layer. We consider
five languages: English, French, German, Russian,
and Chinese.

5.1 Aligning Monolingual BERTSs

To measure similarity, we learn an orthogonal map-
ping using the Procrustes (Smith et al., 2017) ap-
proach:

W* = argmin [WX —Y|p=UVT
WeOd(R)
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with USVT = SVD(Y X7), where X and Y are
representation of two monolingual BERT models,
sampled at different granularities as described be-
low. We apply iterative normalization on X and Y
before learning the mapping (Zhang et al., 2019).

5.1.1 Word-level alignment

In this section, we align both the non-contextual
word representations from the embedding layers,
and the contextual word representations from the
hidden states of the Transformer at each layer.

For non-contextualized word embeddings, we
define X and Y as the word embedding layers of
monolingual BERT, which contain a single embed-
ding per word (type). Note that in this case we only
keep words containing only one subword. For con-
textualized word representations, we first encode
500k sentences in each language. At each layer,
and for each word, we collect all contextualized
representations of a word in the 500k sentences
and average them to get a single embedding. Since
BERT operates at the subword level, for one word
we consider the average of all its subword embed-
dings. Eventually, we get one word embedding
per layer. We use the MUSE benchmark (Con-
neau et al., 2017), a bilingual dictionary induction
dataset for alignment supervision and evaluate the
alignment on word translation retrieval. As a base-
line, we use the first 200k embeddings of fastText
(Bojanowski et al., 2017) and learn the mapping
using the same procedure as §5.1. Note we use a
subset of 200k vocabulary of fastText, the same as
BERT, to get a comparable number. We retrieve
word translation using CSLS (Conneau et al., 2017)
with K=10.

In Figure 4, we report the alignment results un-
der these two settings. Figure 4a shows that the
subword embeddings matrix of BERT, where each
subword is a standalone word, can easily be aligned
with an orthogonal mapping and obtain slightly
better performance than the same subset of fast-
Text. Figure 4b shows embeddings matrix with
the average of all contextual embeddings of each
word can also be aligned to obtain a decent qual-
ity bilingual dictionary, although underperforming
fastText. We notice that using contextual repre-
sentations from higher layers obtain better results
compared to lower layers.

5.1.2 Contextual word-level alignment

In addition to aligning word representations, we
also align representations of two monolingual

BERT models in contextual setting, and evaluate
performance on cross-lingual transfer for NER and
parsing. We take the Transformer layers of each
monolingual model up to layer ¢, and learn a map-
ping W from layer ¢ of the target model to layer ¢ of
the source model. To create that mapping, we use
the same Procrustes approach but use a dictionary
of parallel contextual words, obtained by running
the fastAlign (Dyer et al., 2013) model on the 10k
XNLI parallel sentences.

For each downstream task, we learn task-specific
layers on top of ¢-th English layer: four Trans-
former layers and a task-specific layer. We learn
these on the training set, but keep the first ¢ pre-
trained layers freezed. After training these task-
specific parameters, we encode (say) a Chinese
sentence with the first 7 layers of the target Chinese
BERT model, project the contextualized represen-
tations back to the English space using the W we
learned, and then use the task-specific layers for
NER and parsing.

In Figure 5, we vary ¢ from the embedding layer
(layer 0) to the last layer (layer 8) and present
the results of our approach on parsing and NER.
We also report results using the first ¢ layers of a
bilingual MLM (biMLM). > We show that aligning
monolingual models (MLM align) obtain relatively
good performance even though they perform worse
than bilingual MLM, except for parsing on English-
French. The results of monolingual alignment gen-
erally shows that we can align contextual represen-
tations of monolingual BERT models with a simple
linear mapping and use this approach for cross-
lingual transfer. We also observe that the model
obtains the highest transfer performance with the
middle layer representation alignment, and not the
last layers. The performance gap between monolin-
gual MLM alignment and bilingual MLM is higher
in NER compared to parsing, suggesting the syntac-
tic information needed for parsing might be easier
to align with a simple mapping while entity infor-
mation requires more explicit entity alignment.

5.1.3 Sentence-level alignment

In this case, X and Y are obtained by average
pooling subword representation (excluding spe-
cial token) of sentences at each layer of mono-
lingual BERT. We use multi-way parallel sentences
from XNLI for alignment supervision and Tatoeba
(Schwenk et al., 2019) for evaluation.

In Appendix A, we also present the same alignment step
with biMLM but only observed improvement in parsing.

6028



s BERT

80 mm fastText
70

-

4
60
) II
40

en-fr en-de en-ru en-zh

(a) Non-contextual word embeddings alignment

__________

pair
e e, — en-fr
70 ° —— en-de
—— en-ru
660 - — ~———— — enzh
o L]
50 2
S, el elaie ettty et =g | model
¢ - i —e— BERT
40 >
/./ -+#-- fastText
o
30
0 2 4 6 8
Layer

(b) Contextual word embedding alignment

Figure 4: Alignment of word-level representations from monolingual BERT models on subset of MUSE bench-
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Figure 5: Contextual representation alignment of different layers for zero-shot cross-lingual transfer.

Figure 6 shows the sentence similarity search
results with nearest neighbor search and cosine
similarity, evaluated by precision at 1, with four
language pairs. Here the best result is obtained
at lower layers. The performance is surprisingly
good given we only use 10k parallel sentences to
learn the alignment without fine-tuning at all. As a
reference, the state-of-the-art performance is over
95%, obtained by LASER (Artetxe and Schwenk,
2019) trained with millions of parallel sentences.

100 .
pair
%0 — en-fr
e — . —— en-de
> * ™~ — en-ru
9 I~
g 80  — - —— en-zh
H ./‘7°\%
8 .%' \-§' ]
< 70 '\’\'\ / model
"o,
S —e— BERT
60 > . - LASER
.- :7
0 2 4 6 8
Layer

Figure 6: Parallel sentence retrieval accuracy after Pro-
crustes alignment of monolingual BERT models.

5.1.4 Conclusion

These findings demonstrate that both word-level,
contextual word-level, and sentence-level BERT
representations can be aligned with a simple orthog-
onal mapping. Similar to the alignment of word
embeddings (Mikolov et al., 2013), this shows that
BERT models are similar across languages. This
result gives more intuition on why mere parameter
sharing is sufficient for multilingual representations
to emerge in multilingual masked language models.

5.2 Neural network similarity

Based on the work of Kornblith et al. (2019), we
examine the centered kernel alignment (CKA), a
neural network similarity index that improves upon
canonical correlation analysis (CCA), and use it
to measure the similarity across both monolingual
and bilingual masked language models. The linear
CKA is both invariant to orthogonal transforma-
tion and isotropic scaling, but are not invertible to
any linear transform. The linear CKA similarity
measure is defined as follows:

Y TX|
(XX el Y TY]|R)”

CKA(X,Y) =

6029



en-en' en-fr en-de en-ru en-zh

Lo- 0.76 0.75 0.52 0.61 0.65 0.46 0.66 0.64 0.46 0.56 0.56 0.42 0.56 0.6 0.44
L1- 0.75 0.6 0.74 0.71 055 0.76 0.7 054 0.67 065 0.5 0.65 0.67 0.51
L2- 0.74 0.74 0.58 071 0.7 052 0.72 0.69 0.52 0.64 0.63 0.47 0.61 0.65 0.49
L3- 0.75 0.71 0.58 0.73 0.7 0.53 0.73 0.69 0.54 0.65 0.64 0.48 0.59 0.64 0.5
L4- 0.73 0.66 0.6 0.73 0.64 0.55 0.73 0.63 0.56 0.65 0.61 0.5 0.58 0.6 0.52
L5- 0.69 0.58 0.52 0.72 059 0.48 0.74 0.6 0.49 0.64 0.56 0.44 0.59 0.56 0.46
L6- 0.64 0.48 0.44 071 05 041 0.7 052 042 063 0.5 0.37 0.57 0.51 0.39
L7- 0.48  0.24 0.32 0.67 0.34 031 0.6 0.39 0.31 0.6 034 0.29 0.5 037 03
L8- 055 04 03 0.62 0.4 028 0.64 0.43 0.28 0.5 0.39 0.26 051 04 027
AVER - 0.68 0.59 0.5 0.69 0.58 0.46 0.7 0.59 0.46 0.62 0.54 041 0.57 0.56 0.43
I\Ia\l«\ Ia\la\l«\ Ia\la\l«\ Ia\la\l«\ Ia\la\l«\
?5“\(&\):\000“@)@(\60 6‘\.\&0@0‘\0\\(@“‘?@(\60 ?5&\“@“@000‘\“‘;\)%"(\60 9\\.\09\)@000\\(@“‘?@(\60 ‘?5“\(\@\)@000“(\@“%’0(\60

Figure 7: CKA similarity of mean-pooled multi-way parallel sentence representation at each layers. Note en’
corresponds to paraphrases of en obtained from back-translation (en-fr-en’). Random encoder is only used by
non-Engligh sentences. LO is the embeddings layers while L1 to L8 are the corresponding transformer layers. The
average row is the average of 9 (L0-L8) similarity measurements.

where X and Y correspond respectively to the ma-
trix of the d-dimensional mean-pooled (excluding
special token) subword representations at layer [ of
the n parallel source and target sentences.

In Figure 7, we show the CKA similarity of
monolingual models, compared with bilingual mod-
els and random encoders, of multi-way paral-
lel sentences (Conneau et al., 2018) for five lan-
guages pair: English to English’ (obtained by back-
translation from French), French, German, Russian,
and Chinese. The monolingual en’ is trained on the
same data as en but with different random seed
and the bilingual en-en’ is trained on English data
but with separate embeddings matrix as in §4.3.
The rest of the bilingual MLM is trained with the
Default setting. We only use random encoder for
non-English sentences.

Figure 7 shows bilingual models have slightly
higher similarity compared to monolingual models
with random encoders serving as a lower bound.
Despite the slightly lower similarity between mono-
lingual models, it still explains the alignment per-
formance in §5.1. Because the measurement is also
invariant to orthogonal mapping, the CKA simi-
larity is highly correlated with the sentence-level
alignment performance in Figure 6 with over 0.9
Pearson correlation for all four languages pairs. For
monolingual and bilingual models, the first few lay-
ers have the highest similarity, which explains why
Wu and Dredze (2019) finds freezing bottom layers
of mBERT helps cross-lingual transfer. The similar-
ity gap between monolingual model and bilingual

model decrease as the languages pair become more
distant. In other words, when languages are simi-
lar, using the same model increase representation
similarity. On the other hand, when languages are
dissimilar, using the same model does not help rep-
resentation similarity much. Future work could
consider how to best train multilingual models cov-
ering distantly related languages.

6 Discussion

In this paper, we show that multilingual representa-
tions can emerge from unsupervised multilingual
masked language models with only parameter shar-
ing of some Transformer layers. Even without any
anchor points, the model can still learn to map rep-
resentations coming from different languages in
a single shared embedding space. We also show
that isomorphic embedding spaces emerge from
monolingual masked language models in differ-
ent languages, similar to word2vec embedding
spaces (Mikolov et al., 2013). By using a linear
mapping, we are able to align the embedding layers
and the contextual representations of Transform-
ers trained in different languages. We also use the
CKA neural network similarity index to probe the
similarity between BERT Models and show that
the early layers of the Transformers are more sim-
ilar across languages than the last layers. All of
these effects were stronger for more closely related
languages, suggesting there is room for significant
improvements on more distant language pairs.
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A Contextual word-level alignment of
bilingual MLM representation
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Figure 8: Contextual representation alignment of differ-
ent layers for zero-shot cross-lingual transfer.
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