
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 567–582
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

567

Efficient Dialogue State Tracking by Selectively Overwriting Memory

Sungdong Kim Sohee Yang Gyuwan Kim Sang-Woo Lee
Clova AI, NAVER Corp.

{sungdong.kim, sh.yang, gyuwan.kim, sang.woo.lee}@navercorp.com

Abstract

Recent works in dialogue state tracking (DST)
focus on an open vocabulary-based setting to
resolve scalability and generalization issues
of the predefined ontology-based approaches.
However, they are inefficient in that they pre-
dict the dialogue state at every turn from
scratch. Here, we consider dialogue state as
an explicit fixed-sized memory and propose
a selectively overwriting mechanism for more
efficient DST. This mechanism consists of
two steps: (1) predicting state operation on
each of the memory slots, and (2) overwrit-
ing the memory with new values, of which
only a few are generated according to the
predicted state operations. Our method de-
composes DST into two sub-tasks and guides
the decoder to focus only on one of the
tasks, thus reducing the burden of the decoder.
This enhances the effectiveness of training
and DST performance. Our SOM-DST (Se-
lectively Overwriting Memory for Dialogue
State Tracking) model achieves state-of-the-
art joint goal accuracy with 51.72% in Mul-
tiWOZ 2.0 and 53.01% in MultiWOZ 2.1 in
an open vocabulary-based DST setting. In ad-
dition, we analyze the accuracy gaps between
the current and the ground truth-given situa-
tions and suggest that it is a promising direc-
tion to improve state operation prediction to
boost the DST performance.1

1 Introduction

Building robust task-oriented dialogue systems has
gained increasing popularity in both the research
and industry communities (Chen et al., 2017). Di-
alogue state tracking (DST), one of the essential
tasks in task-oriented dialogue systems (Zhong
et al., 2018), is keeping track of user goals or in-
tentions throughout a dialogue in the form of a set
of slot-value pairs, i.e., dialogue state. Because the

1The code is available at github.com/clovaai/som-dst.

Figure 1: An example of how SOM-DST performs dia-
logue state tracking at a specific dialogue turn (in this
case, fifth). The shaded part is the input to the model,
and “Dialogue State at turn 5” at the right-bottom part
is the output of the model. Here, UPDATE operation
needs to be performed on the 10th and 11th slot. DST at
this turn is challenging since the model requires reason-
ing over the long-past conversation. However, SOM-
DST can still robustly perform DST because the pre-
vious dialogue state is directly utilized like a memory.

next dialogue system action is selected based on
the current dialogue state, an accurate prediction of
the dialogue state has significant importance.

Traditional neural DST approaches assume that
all candidate slot-value pairs are given in advance,
i.e., they perform predefined ontology-based DST
(Mrkšić et al., 2017; Zhong et al., 2018; Nouri and
Hosseini-Asl, 2018; Lee et al., 2019). Most previ-
ous works that take this approach perform DST by
scoring all possible slot-value pairs in the ontology
and selecting the value with the highest score as
the predicted value of a slot. Such an approach has
been widely applied to datasets like DSTC2 and
WOZ2.0, which have a relatively small ontology
size. (Henderson et al., 2014; Wen et al., 2017)

https://github.com/clovaai/som-dst

568

Although this approach simplifies the task, it has
inherent limitations: (1) it is often difficult to obtain
the ontology in advance, especially in a real sce-
nario (Xu and Hu, 2018), (2) predefined ontology-
based DST cannot handle previously unseen slot
values, and (3) the approach does not scale large
since it has to go over all slot-value candidates at
every turn to predict the current dialogue state. In-
deed, recent DST datasets often have a large size of
ontology; e.g., the total number of slot-value candi-
dates in MultiWOZ 2.1 is 4510, while the numbers
are much smaller in DSTC2 and WOZ2.0 as 212
and 99, respectively (Budzianowski et al., 2018).

To address these issues, recent methods employ
an approach that either directly generates or ex-
tracts a value from the dialogue context for every
slot, allowing open vocabulary-based DST (Lei
et al., 2018; Gao et al., 2019; Wu et al., 2019; Ren
et al., 2019). While this formulation is relatively
more scalable and robust to handling unseen slot
values, many of the previous works do not effi-
ciently perform DST since they predict the dialogue
state from scratch at every dialogue turn.

In this work, we focus on an open vocabulary-
based setting and propose SOM-DST (Selectively
Overwriting Memory for Dialogue State Tracking).
Regarding dialogue state as a memory that can
be selectively overwritten (Figure 1), SOM-DST
decomposes DST into two sub-tasks: (1) state op-
eration prediction, which decides the types of the
operations to be performed on each of the memory
slots, and (2) slot value generation, which gener-
ates the values to be newly written on a subset of
the memory slots (Figure 2). This decomposition
allows our model to efficiently generate the values
of only a minimal subset of the slots, while many
of the previous works generate or extract the values
of all slots at every dialogue turn. Moreover, this
decomposition reduces the difficulty of DST in an
open-vocabulary based setting by clearly separat-
ing the roles of the encoder and the decoder. Our
encoder, i.e., state operation predictor, can focus on
selecting the slots to pass to the decoder so that the
decoder, i.e., slot value generator, can focus only
on generating the values of those selected slots. To
the best of our knowledge, our work is the first to
propose such a selectively overwritable memory-
like perspective and a discrete two-step approach
on DST.

Our proposed SOM-DST achieves state-of-the-
art joint goal accuracy in an open vocabulary-based

DST setting on two of the most actively studied
datasets: MultiWOZ 2.0 and MultiWOZ 2.1. Er-
ror analysis (Section 6.2) further reveals that im-
proving state operation prediction can significantly
boost the final DST accuracy.

In summary, the contributions of our work built
on top of a perspective that considers dialogue state
tracking as selectively overwriting memory are as
follows:

• Enabling efficient DST, generating the values
of a minimal subset of the slots by utilizing
the previous dialogue state at each turn.

• Achieving state-of-the-art performance on
MultiWOZ 2.0 and MultiWOZ 2.1 in an open
vocabulary-based DST setting.

• Highlighting the potential of improving the
state operating prediction accuracy in our pro-
posed framework.

2 Previous Open Vocabulary-based DST

Many works on recent task-oriented dialogue
datasets with a large scale ontology, such as Mul-
tiWOZ 2.0 and MultiWOZ 2.1, solve DST in an
open vocabulary-based setting (Gao et al., 2019;
Wu et al., 2019; Ren et al., 2019; Le et al., 2020a,b).

Wu et al. (2019) show the potential of apply-
ing the encoder-decoder framework (Cho et al.,
2014a) to open vocabulary-based DST. However,
their method is not computationally efficient be-
cause it performs autoregressive generation of the
values for all slots at every dialogue turn.

Ren et al. (2019) tackle the drawback of the
model of Wu et al. (2019), that their model gener-
ates the values of all slots at every dialogue turn, by
using a hierarchical decoder. In addition, they come
up with a new notion dubbed Inference Time Com-
plexity (ITC) to compare the efficiency of different
DST models. ITC is calculated using the number
of slots J and the number of corresponding slot
values M .2 Following their work, we also calculate
ITC in Appendix B for comparison.

Le et al. (2020b) introduce another work that
tackles the efficiency issue. To maximize the com-
putational efficiency, they use a non-autoregressive
decoder to generate the slot values of the current
dialogue state at once. They encode the slot type
information together with the dialogue context and

2The notations used in the work of Ren et al. (2019) are n
and m, respectively.

569

Figure 2: The overview of the proposed SOM-DST. SOM-DST takes the previous turn dialogue utterances Dt−1,
current turn dialogue utterances Dt, and the previous dialogue state Bt−1 as the input and outputs the current
dialogue state Bt. This is performed by two sub-components: state operation predictor and slot value generator.
State operation predictor takes Dt−1, Dt, and Bt−1 as the input and predicts the operations to perform on each
of the slots. Domain classification is jointly performed as an auxiliary task. Slot value generator generates the
values for the slots that take UPDATE as the predicted operation. The value generation for a slot is done in an
autoregressive manner.

the delexicalized dialogue context. They do not use
the previous turn dialogue state as the input.

Le et al. (2020a) process the dialogue context in
both domain-level and slot-level. They make the
final representation to generate the values using
a late fusion approach. They show that there is a
performance gain when the model is jointly trained
with response generation. However, they still gen-
erate the values of every slot at each turn, like Wu
et al. (2019).

Gao et al. (2019) formulate DST as a reading
comprehension task and propose a model named
DST Reader that extracts the values of the slots
from the input. They introduce and show the impor-
tance of the concept of a slot carryover module, i.e.,
a component that makes a binary decision whether
to carry the value of a slot from the previous turn di-
alogue state over to the current turn dialogue state.
The definition and use of discrete operations in our
work is inspired by their work.

Zhang et al. (2019) target the issue of ill-
formatted strings that generative models suffer
from. In order to avoid this issue, they take a hybrid
approach. For the slots they categorize as picklist-
based slots, they use a predefined ontology-based
approach as in the work of Lee et al. (2019); for the
slots they categorize as span-based slots, they use
a span extraction-based method like DST-Reader
(Gao et al., 2019). However, their hybrid model
shows lower performance than when they use only
the picklist-based approach. Although their solely
picklist-based model achieves state-of-the-art joint
accuracy in MultiWOZ 2.1, it is done in a prede-

fined ontology-based setting, and thus cannot avoid
the scalability and generalization issues of prede-
fined ontology-based DST.

3 Selectively Overwriting Memory for
Dialogue State Tracking

Figure 2 illustrates the overview of SOM-DST. To
describe the proposed SOM-DST, we formally de-
fine the problem setting in our work.

Dialogue State We define the dialogue state at turn
t, Bt = {(Sj , V j

t) | 1 ≤ j ≤ J}, as a fixed-sized
memory whose keys are slots Sj and values are the
corresponding slot value V j

t , where J is the total
number of such slots. Following the convention
of MultiWOZ 2.0 and MultiWOZ 2.1, we use the
term “slot” to refer to the concatenation of a domain
name and a slot name.

Special Value There are two special values NULL
and DONTCARE. NULL means that no information
is given about the slot up to the turn. For instance,
the dialogue state before the beginning of any di-
alogue B0 has only NULL as the value of all slots.
DONTCARE means that the slot neither needs to be
tracked nor considered important in the dialogue at
that time.3

Operation At every turn t, an operation rjt ∈ O =
{CARRYOVER, DELETE, DONTCARE, UPDATE}
is chosen by the state operation predictor (Section

3Such notions of “none value” and “dontcare value” appear
in the previous works as well (Wu et al., 2019; Gao et al., 2019;
Le et al., 2020b; Zhang et al., 2019).

570

3.1) and performed on each slot Sj to set its
current turn corresponding value V j

t . When an
operation is performed, it either keeps the slot
value unchanged (CARRYOVER) or changes it
to some value different from the previous one
(DELETE, DONTCARE, and UPDATE) as the
following.

V j
t =


V j
t−1 if rjt = CARRYOVER

NULL if rjt = DELETE

DONTCARE if rjt = DONTCARE

v if rjt = UPDATE

The operations that set the value of a slot to
a special value (DELETE to NULL and DONT-
CARE to DONTCARE, respectively) are chosen
only when the previous slot value V j

t−1 is not
the corresponding special value. UPDATE opera-
tion requires the generation of a new value v /∈
{V j

t−1,NULL,DONTCARE} by slot value genera-
tor (Section 3.2).

State operation predictor performs state oper-
ation prediction as a classification task, and slot
value generator performs slot value generation
to find out the values of the slots on which UP-
DATE should be performed. The two components
of SOM-DST are jointly trained to predict the cur-
rent turn dialogue state.

3.1 State Operation Predictor

Input Representation We denote the representa-
tion of the dialogue utterances at turn t as Dt =
At ⊕ ;⊕ Ut ⊕ [SEP], where At is the system re-
sponse and Ut is the user utterance. ; is a special to-
ken used to mark the boundary between At and Ut,
and [SEP] is a special token used to mark the end
of a dialogue turn. We denote the representation of
the dialogue state at turn t as Bt = B1

t ⊕ . . .⊕BJ
t ,

where Bj
t = [SLOT]j ⊕ Sj ⊕ -⊕ V j

t is the rep-
resentation of the j-th slot-value pair. - is a special
token used to mark the boundary between a slot and
a value. [SLOT]j is a special token used to aggre-
gate the information of the j-th slot-value pair into
a single vector, like the use case of [CLS] token
in BERT (Devlin et al., 2019). In this work, we use
the same special token [SLOT] for all [SLOT]j .
Our state operation predictor employs a pretrained
BERT encoder. The input tokens to the state opera-
tion predictor are the concatenation of the previous
turn dialog utterances, the current turn dialog utter-

ances, and the previous turn dialog state:4

Xt = [CLS]⊕Dt−1 ⊕Dt ⊕Bt−1,

where [CLS] is a special token added in front of
every turn input. Using the previous dialogue state
as the input serves as an explicit, compact, and
informative representation of the dialogue history
for the model.

When the value of the j-th slot at time t− 1, i.e.,
V j
t−1, is NULL, we use a special token [NULL]

as the input. When the value is DONTCARE, we
use the string “dont care” to take advantage of the
semantics of the phrase “don’t care” that the pre-
trained BERT encoder would have already learned.

The input to BERT is the sum of the embeddings
of the input tokens Xt, segment id embeddings,
and position embeddings. For the segment id, we
use 0 for the tokens that belong to Dt−1 and 1 for
the tokens that belong to Dt or Bt−1. The position
embeddings follow the standard choice of BERT.

Encoder Output The output representation of the
encoder is Ht ∈ R|Xt|×d, and h[CLS]t , h[SLOT]

j

t ∈
Rd are the outputs that correspond to [CLS] and
[SLOT]j , respectively. hXt , the aggregated se-
quence representation of the entire input Xt, is
obtained by a feed-forward layer with a learnable
parameter Wpool ∈ Rd×d as:

hXt = tanh(Wpool h
[CLS]
t).

State Operation Prediction State operation pre-
diction is a four-way classification performed on
top of the encoder output for each slot representa-
tion h[SLOT]

j

t :

P j
opr,t = softmax(Wopr h

[SLOT]j
t),

where Wopr ∈ R|O|×d is a learnable parameter and
P j
opr,t ∈ R|O| is the probability distribution over

operations for the j-th slot at turn t. In our for-
mulation, |O| = 4, because O = {CARRYOVER,
DELETE, DONTCARE, UPDATE}.

Then, the operation is determined by rjt =
argmax(P j

opr,t) and the slot value generation is
performed on only the slots whose operation is
UPDATE. We define the set of the slot indices which
require the value generation as Ut = {j | rjt =
UPDATE}, and its size as J ′t = |Ut|.

4We use only the previous turn dialogue utterances Dt−1

as the dialogue history, i.e., the size of the dialogue history
is 1. This is because our model assumes Markov property in
dialogues as a part of the input, the previous turn dialogue
state Bt−1, can serve as a compact representation of the whole
dialogue history.

571

3.2 Slot Value Generator
For each j-th slot such that j ∈ Ut, the slot value
generator generates a value. Our slot value gen-
erator differs from the generators of many of the
previous works because it generates the values for
only J ′t number of slots, not J . In most cases,
J ′t � J , so this setup enables an efficient com-
putation where only a small number of slot values
are newly generated.

We use Gated Recurrent Unit (GRU) (Cho et al.,
2014b) decoder like Wu et al. (2019). GRU is ini-
tialized with gj,0t = hXt and ej,0t = h[SLOT]

j

t , and
recurrently updates the hidden state gj,kt ∈ Rd by
taking a word embedding ej,kt as the input until
[EOS] token is generated:

gj,kt = GRU(gj,k−1t , ej,kt).

The decoder hidden state is transformed to the
probability distribution over the vocabulary at the
k-th decoding step, whereE ∈ Rdvcb×d is the word
embedding matrix shared across the encoder and
the decoder, such that dvcb is the vocabulary size.

P j,k
vcb,t = softmax(E gj,kt) ∈ Rdvcb .

As the work of Wu et al. (2019), we use the soft-
gated copy mechanism (See et al., 2017) to get the
final output distribution P j,k

val,t over the candidate
value tokens:

P j,k
ctx,t = softmax(Ht g

j,k
t) ∈ R|Xt|,

P j,k
val,t = αP j,k

vcb,t + (1− α)P j,k
ctx,t,

such that α is a scalar value computed as:

α = sigmoid(W1 [gj,kt ; ej,kt ; cj,kt]),

where W1 ∈ R1×(3d) is a learnable parameter and
cj,kt = P j,k

ctx,t Ht ∈ Rd is a context vector.

3.3 Objective Function
During training, we jointly optimize both state op-
eration predictor and slot value generator.

State Operation Predictor In addition to the state
operation classification, we use domain classifi-
cation as an auxiliary task to force the model to
learn the correlation of slot operations and domain
transitions in between dialogue turns. Domain clas-
sification is done with a softmax layer on top of
hXt :

Pdom,t = softmax(Wdom hXt),

where Wdom ∈ Rddom×d is a learnable parameter
and Pdom,t ∈ Rddom is the probability distribution
over domains at turn t. ddom is the number of do-
mains defined in the dataset.

The loss for each of state operation classifica-
tion and domain classification is the average of the
negative log-likelihood, as follows:

Lopr,t = − 1

J

J∑
j=1

(Y j
opr,t)

ᵀ logP j
opr,t,

Ldom,t = −(Ydom,t)
ᵀ logPdom,t,

where Ydom,t ∈ Rddom is the one-hot vector for
the ground truth domain and Y j

opr,t ∈ R|O| is the
one-hot vector for the ground truth operation for
the j-th slot.

Slot Value Generator The objective function to
train slot value generator is also the average of the
negative log-likelihood:

Lsvg,t = − 1

|Ut|
∑
j∈Ut

1

Kj
t

Kj
t∑

k=1

(Y j,k
val,t)

ᵀ logP j,k
val,t,

where Kj
t is the number of tokens of the ground

truth value that needs to be generated for the j-th
slot. Y j,k

val,t ∈ Rdvcb is the one-hot vector for the
ground truth token that needs to be generated for
the j-th slot at the k-th decoding step.

Therefore, the final joint loss Ljoint,t to be min-
imized at dialogue turn t is the sum of the losses
mentioned above:

Ljoint,t = Lopr,t + Ldom,t + Lsvg,t.

4 Experimental Setup

4.1 Datasets

We use MultiWOZ 2.0 (Budzianowski et al., 2018)
and MultiWOZ 2.1 (Eric et al., 2019) as the
datasets in our experiments. These datasets are two
of the largest publicly available multi-domain task-
oriented dialogue datasets, including about 10,000
dialogues within seven domains. MultiWOZ 2.1 is
a refined version of MultiWOZ 2.0 in which the
annotation errors are corrected.5

Following Wu et al. (2019), we use only five
domains (restaurant, train, hotel, taxi, attraction)

5See Table 8 in Appendix A for more details of MultiWOZ
2.1.

572

excluding hospital and police.6 Therefore, the num-
ber of domains ddom is 5 and the number of slots J
is 30 in our experiments. We use the script provided
by Wu et al. (2019) to preprocess the datasets.7

4.2 Training

We employ the pretrained BERT-base-uncased
model8 for state operation predictor and one GRU
(Cho et al., 2014b) for slot value generator. The
hidden size of the decoder is the same as that of
the encoder, d, which is 768. The token embedding
matrix of slot value generator is shared with that of
state operation predictor. We use BertAdam as our
optimizer (Kingma and Ba, 2015). We use greedy
decoding for slot value generator.

The encoder of state operation predictor makes
use of a pretrained model, whereas the decoder
of slot value generator needs to be trained from
scratch. Therefore, we use different learning rate
schemes for the encoder and the decoder. We set
the peak learning rate and warmup proportion to
4e-5 and 0.1 for the encoder and 1e-4 and 0.1 for
the decoder, respectively. We use a batch size of 32
and set the dropout (Srivastava et al., 2014) rate to
0.1. We also utilize word dropout (Bowman et al.,
2016) by randomly replacing the input tokens with
the special [UNK] token with the probability of
0.1. The max sequence length for all inputs is fixed
to 256.

We train state operation predictor and slot value
generator jointly for 30 epochs and choose the
model that reports the best performance on the vali-
dation set. During training, we use the ground truth
state operations and the ground truth previous turn
dialogue state instead of the predicted ones. When
the dialogue state is fed to the model, we randomly
shuffle the slot order with a rate of 0.5. This is to
make state operation predictor exploit the seman-
tics of the slot names and not rely on the position
of the slot tokens or a specific slot order. During
inference or when the slot order is not shuffled,
the slots are sorted alphabetically. We use teacher
forcing 50% of the time to train the decoder.

All experiments are performed on NAVER Smart
Machine Learning (NSML) platform (Sung et al.,
2017; Kim et al., 2018). All the reported results of
SOM-DST are averages over ten runs.

6The excluded domains take up only a small portion of the
dataset and do not even appear in the test set.

7github.com/jasonwu0731/trade-dst
8github.com/huggingface/transformers

4.3 Baseline Models

We compare the performance of SOM-DST with
both predefined ontology-based models and open
vocabulary-based models.

FJST uses a bidirectional LSTM to encode the
dialogue history and uses a feed-forward network
to predict the value of each slot (Eric et al., 2019).

HJST is proposed together with FJST; it encodes
the dialogue history using an LSTM like FJST but
uses a hierarchical network (Eric et al., 2019).

SUMBT exploits BERT-base as the encoder for
the dialogue context and slot-value pairs. After en-
coding them, it scores every candidate slot-value
pair in a non-parametric manner using a distance
measure (Lee et al., 2019).

HyST employs a hierarchical RNN encoder and
takes a hybrid approach that incorporates both
a predefined ontology-based setting and an open
vocabulary-based setting (Goel et al., 2019).

DST Reader formulates the problem of DST as an
extractive QA task; it uses BERT-base to make the
contextual word embeddings and extracts the value
of the slots from the input as a span (Gao et al.,
2019).

TRADE encodes the whole dialogue context with a
bidirectional GRU and decodes the value for every
slot using a copy-augmented GRU decoder (Wu
et al., 2019).

COMER uses BERT-large as a feature extractor
and a hierarchical LSTM decoder to generate the
current turn dialogue state itself as the target se-
quence (Ren et al., 2019).

NADST uses a Transformer-based non-
autoregressive decoder to generate the current turn
dialogue state (Le et al., 2020b).

ML-BST uses a Transformer-based architecture to
encode the dialogue context with the domain and
slot information and combines the outputs in a late
fusion approach. Then, it generates the slot values
and the system response jointly (Le et al., 2020a).

DS-DST uses two BERT-base encoders and takes
a hybrid approach of predefined ontology-based
DST and open vocabulary-based DST. It defines
picklist-based slots for classification similarly to
SUMBT and span-based slots for span extraction
like DST Reader (Zhang et al., 2019).

https://github.com/jasonwu0731/trade-dst
https://github.com/huggingface/transformers

573

Table 1: Joint goal accuracy on the test set of Multi-
WOZ 2.0 and 2.1. * indicates a result borrowed from
Eric et al. (2019). HyST and DS-DST use a hybrid ap-
proach, partially taking advantage of the predefined on-
tology. † indicates the case where BERT-large is used
for our model.

MultiWOZ
2.0

MultiWOZ
2.1

Predefined Ontology

HJST∗ (Eric et al., 2019) 38.40 35.55
FJST∗ (Eric et al., 2019) 40.20 38.00
SUMBT (Lee et al., 2019) 42.40 -
HyST∗ (Goel et al., 2019) 42.33 38.10
DS-DST (Zhang et al., 2019) - 51.21
DST-picklist (Zhang et al., 2019) - 53.30

Open Vocabulary

DST Reader∗ (Gao et al., 2019) 39.41 36.40
TRADE∗ (Wu et al., 2019) 48.60 45.60
COMER (Ren et al., 2019) 48.79 -
NADST (Le et al., 2020b) 50.52 49.04
ML-BST (Le et al., 2020a) - 50.91
SOM-DST (ours) 51.72 53.01

SOM-DST† (ours) 52.32 53.68

DST-picklist is proposed together with DS-DST
and uses a similar architecture, but it performs
only predefined ontology-based DST considering
all slots as picklist-based slots (Zhang et al., 2019).

5 Experimental Results

5.1 Joint Goal Accuracy

Table 1 shows the joint goal accuracy of SOM-DST
and other models on the test set of MultiWOZ 2.0
and MultiWOZ 2.1. Joint goal accuracy is an accu-
racy which checks whether all slot values predicted
at a turn exactly match the ground truth values.

As shown in the table, SOM-DST achieves
state-of-the-art performance in an open vocabulary-
based setting. Interestingly, on the contrary to the
previous works, our model achieves higher per-
formance on MultiWOZ 2.1 than on MultiWOZ
2.0. This is presumably because our model, which
explicitly uses the dialogue state labels as input,
benefits more from the error correction on the state
annotations done in MultiWOZ 2.1.9

9Eric et al. (2019) report that the correction of the annota-
tions done in MultiWOZ 2.1 changes about 32% of the state
annotations of MultiWOZ 2.0, which indicates that MultiWOZ
2.0 consists of many annotation errors.

Table 2: Domain-specific results on the test set of Multi-
WOZ 2.1. Our model outperforms other models in taxi
and train domains.

Domain Model Joint
Accuracy

Slot
Accuracy

Attraction NADST 66.83 98.79
ML-BST 70.78 99.06
SOM-DST (ours) 69.83 98.86

Hotel NADST 48.76 97.70
ML-BST 49.52 97.50
SOM-DST (ours) 49.53 97.35

Restaurant NADST 65.37 98.78
ML-BST 66.50 98.76
SOM-DST (ours) 65.72 98.56

Taxi NADST 33.80 96.69
ML-BST 23.05 96.42
SOM-DST (ours) 59.96 98.01

Train NADST 62.36 98.36
ML-BST 65.12 90.22
SOM-DST (ours) 70.36 98.67

5.2 Domain-Specific Accuracy

Table 2 shows the domain-specific results of our
model and the concurrent works which report such
results (Le et al., 2020a,b). Domain-specific accu-
racy is the accuracy measured on a subset of the
predicted dialogue state, where the subset consists
of the slots specific to a domain.

While the performance is similar to or a little
lower than that of other models in other domains,
SOM-DST outperforms other models in taxi and
train domains. This implies that the state-of-the-art
joint goal accuracy of our model on the test set
comes mainly from these two domains.

A characteristic of the data from these domains is
that they consist of challenging conversations; the
slots of these domains are filled with more diverse
values than other domains,10 and there are more
than one domain changes, i.e., the user changes
the conversation topic during a dialogue more than
once. For a specific example, among the dialogues
where the domain switches more than once, the
number of conversations that end in taxi domain is
ten times more than in other cases. A more detailed
statistics are given in Table 10 in Appendix A.

Therefore, we assume our model performs rela-
tively more robust DST in such challenging conver-
sations. We conjecture that this strength attributes
to the effective utilization of the previous turn dia-
logue state in its explicit form, like using a memory;

10The statistics of the slot value vocabulary size are shown
in Table 9 in Appendix A.

574

Table 3: Joint goal accuracy on the MultiWOZ 2.1
test set when the four-way state operation prediction
changes to two-way, three-way, or six-way.

State Operations Joint
Accuracy

4 CARRYOVER, DELETE, 53.01
DONTCARE, UPDATE

2 CARRYOVER, NON-CARRYOVER 52.06
3 CARRYOVER, DONTCARE, UPDATE 52.63
3 CARRYOVER, DELETE, UPDATE 52.64

6 CARRYOVER, DELETE, 52.97
DONTCARE, UPDATE, YES, NO

the model can explicitly keep even the information
mentioned near the beginning of the conversation
and directly copy the values from this memory
whenever necessary. Figure 1 shows an example
of a complicated conversation in MultiWOZ 2.1,
where our model accurately predicts the dialogue
state. More sample outputs of SOM-DST are pro-
vided in Appendix C.

6 Analysis

6.1 Choice of State Operations

Table 3 shows the joint goal accuracy where the
four-way state operation prediction changes to two-
way, three-way, or six-way.

The joint goal accuracy drops when we use two-
way state operation prediction, which is a binary
classification of whether to (1) carry over the previ-
ous slot value to the current turn or (2) generate a
new value, like Gao et al. (2019). We assume the
reason is that it is better to separately model op-
erations DELETE, DONTCARE, and UPDATE that
correspond to the latter class of the binary classi-
fication, since the values of DELETE and DONT-
CARE tend to appear implicitly while the values
for UPDATE are often explicitly expressed in the
dialogue.

We also investigate the performance when only
three operations are used or two more state opera-
tions, YES and NO, are used. YES and NO represent
the cases where yes or no should be filled as the
slot value, respectively. The performance drops in
all of the cases.

6.2 Error Analysis

Table 4 shows the joint goal accuracy of the com-
binations of the cases where the ground truth is
used or not for each of the previous turn dialogue
state, state operations at the current turn, and slot

Table 4: Joint goal accuracy of the current and the
ground truth-given situations. Relative error rate is the
proportion of the error when 100% is set as the error
where no ground truth is used for SOP and SVG. (GT:
Ground Truth, SOP: State Operation Prediction, SVG:
Slot Value Generation, Pred: Predicted)

GT GT Joint Relative
SOP SVG Accuracy Error Rate

Pred Bt−1

(w/ Error
Propagation)

53.01 100.0
X 56.37 92.85

X 89.85 21.60
X X 100.0 0.00

GT Bt−1

(w/o Error
Propagation)

81.00 100.0
X 82.80 90.53

X 96.27 19.63
X X 100.0 0.00

values for UPDATE at the current turn. From this re-
sult, we analyze which of state operation predictor
and slot value generator is more responsible for the
error in the joint goal prediction, under the cases
where error propagation occurs or not.

Among the absolute error of 46.99% made un-
der the situation that error propagation occurs, i.e.,
the dialogue state predicted at the previous turn is
fed to the model, it could be argued that 92.85%
comes from state operation predictor, 21.6% comes
from slot value generator, and 14.45% comes from
both of the components. This indicates that at least
78.4% to 92.85% of the error comes from state op-
eration predictor, and at least 7.15% to 21.6% of
the error comes from slot value generator. 11

Among the absolute error of 19% made under the
error propagation-free situation, i.e., ground truth
previous turn dialogue state is fed to the model,
it could be argued that 90.53% comes from state
operation predictor, 19.63% comes from slot value
generator, and 10.16% comes from both of the
components. This indicates that at least 80.37% to
90.53% of the error comes from state operation
predictor, and at least 9.47% to 19.63% of the error
comes from slot value generator.

.
Error propagation that comes from using the dia-

logue state predicted at the previous turn increases
the error 2.47 (=100−53.01

100−81.00) times. Both with and
without error propagation, a relatively large amount

11The calculation of the numbers in the paragraph is done
as follows. (The figures in the paragraph immediately below
are calculated in the same way.)

100 − 53.01 = 46.99 92.85 + 21.6 − 100 = 14.45
(100 − 56.37)/46.99 = 92.85 92.85 − 14.45 = 78.4
(100 − 89.85)/46.99 = 21.6 21.6 − 14.45 = 7.15

575

Table 5: Statistics of the number of state operations
and the corresponding F1 scores of our model in Multi-
WOZ 2.1.

Operations F1 score

Operation Type Train Valid Test Test

CARRYOVER 1,584,757 212,608 212,297 98.66
UPDATE 61,628 8,287 8,399 80.10
DONTCARE 1,911 155 235 32.51
DELETE 1,224 80 109 2.86

Table 6: The minimum, average, and maximum number
of slots whose values are generated at a turn, calculated
on the test set of MultiWOZ 2.1.

Model Min # Avg # Max #

TRADE 30 30 30
ML-BST 30 30 30
COMER 0 5.72 18
SOM-DST (ours) 0 1.14 9

Table 7: Average inference time per dialogue turn of
MultiWOZ 2.1 test set, measured on Tesla V100 with a
batch size of 1. † indicates the case where BERT-large
is used for our model.

Model Joint Accuracy Latency

TRADE 45.60 340 ms
NADST 49.04 26 ms
SOM-DST (ours) 53.01 27 ms
SOM-DST† (ours) 53.68 40 ms

of error comes from state operation predictor, im-
plying that a large room for improvement currently
exists in this component. Improving the state op-
eration prediction accuracy, e.g., by tackling the
class imbalance shown in Table 5, may have the
potential to increase the overall DST performance
by a large margin.

6.3 Efficiency Analysis

In Table 6, we compare the number of slot values
generated at a turn among various open vocabulary-
based DST models that use an autoregressive de-
coder.

The maximum number of slots whose values are
generated by our model at a turn, i.e., the number
of slots on which UPDATE should be performed, is
9 at maximum and only 1.14 on average in the test
set of MultiWOZ 2.1.

On the other hand, TRADE and ML-BST gener-
ate the values of all the 30 slots at every turn of a
dialogue. COMER generates only a subset of the
slot values like our model, but it generates the val-

ues of all the slots that have a non-NULL value at a
turn, which is 18 at maximum and 5.72 on average.

Table 7 shows the latency of SOM-DST and sev-
eral other models. We measure the inference time
for a dialogue turn of MultiWOZ 2.1 on Tesla V100
with a batch size of 1. The models used for compar-
ison are those with official public implementations.

It is notable that the inference time of SOM-
DST is about 12.5 times faster than TRADE, which
consists of only two GRUs. Moreover, the latency
of SOM-DST is compatible with that of NADST,
which explicitly uses non-autoregressive decoding,
while SOM-DST achieves much higher joint goal
accuracy. This shows the efficiency of the proposed
selectively overwriting mechanism of SOM-DST,
which generates only the minimal slot values at a
turn.

In Appendix B, we also investigate Inference
Time Complexity (ITC) proposed in the work of
Ren et al. (2019), which defines the efficiency of a
DST model using J , the number of slots, and M ,
the number of values of a slot.

7 Conclusion

We propose SOM-DST, an open vocabulary-based
dialogue state tracker that regards dialogue state as
an explicit memory that can be selectively overwrit-
ten. SOM-DST decomposes dialogue state tracking
into state operation prediction and slot value gen-
eration. This setup makes the generation process
efficient because the values of only a minimal sub-
set of the slots are generated at each dialogue turn.
SOM-DST achieves state-of-the-art joint goal ac-
curacy on both MultiWOZ 2.0 and MultiWOZ 2.1
datasets in an open vocabulary-based setting. SOM-
DST effectively makes use of the explicit dialogue
state and discrete operations to perform relatively
robust DST even in complicated conversations. Fur-
ther analysis shows that improving state operation
prediction has the potential to increase the overall
DST performance dramatically. From this result,
we propose that tackling DST with our proposed
problem definition is a promising future research
direction.

Acknowledgments

The authors would like to thank the members of
Clova AI for proofreading this manuscript.

576

References
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-

drew Dai, Rafal Jozefowicz, and Samy Bengio. 2016.
Generating sentences from a continuous space. In
Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, pages
10–21, Berlin, Germany. Association for Computa-
tional Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In EMNLP.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Recent
advances and new frontiers. ACM SIGKDD Explo-
rations Newsletter, 19(2):25–35.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014a. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014b. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-
Tur. 2019. Multiwoz 2.1: Multi-domain dialogue
state corrections and state tracking baselines. arXiv
preprint arXiv:1907.01669.

Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagy-
oung Chung, and Dilek Hakkani-Tur. 2019. Dialog
state tracking: A neural reading comprehension ap-
proach. In SIGDIAL.

Rahul Goel, Shachi Paul, and Dilek Hakkani-Tür. 2019.
Hyst: A hybrid approach for flexible and accurate
dialogue state tracking. In Interspeech.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In SIGDIAL.

Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong
Kim, Heungseok Park, Soeun Park, Hyunwoo Jo,
KyungHyun Kim, Youngil Yang, Youngkwan Kim,
et al. 2018. Nsml: Meet the mlaas platform
with a real-world case study. arXiv preprint
arXiv:1810.09957.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Hung Le, Doyen Sahoo, Chenghao Liu, Nancy F. Chen,
and Steven C.H. Hoi. 2020a. End-to-end multi-
domain task-oriented dialogue systems with multi-
level neural belief tracker. In Submitted to ICLR
2020.

Hung Le, Richard Socher, and Steven C.H. Hoi. 2020b.
Non-autoregressive dialog state tracking. In ICLR.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
Sumbt: Slot-utterance matching for universal and
scalable belief tracking. In ACL.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1437–1447, Melbourne, Australia. As-
sociation for Computational Linguistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. In ACL.

Elnaz Nouri and Ehsan Hosseini-Asl. 2018. Toward
scalable neural dialogue state tracking model. In
2nd Conversational AI workshop on NeurIPS 2018.

Liliang Ren, Jianmo Ni, and Julian McAuley. 2019.
Scalable and accurate dialogue state tracking via
hierarchical sequence generation. In EMNLP-
IJCNLP.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. JMLR, 15(1):1929–1958.

Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang,
Jingwoong Kim, Leonard Lausen, Youngkwan Kim,
Gayoung Lee, Donghyun Kwak, Jung-Woo Ha, et al.
2017. Nsml: A machine learning platform that en-
ables you to focus on your models. arXiv preprint
arXiv:1712.05902.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gasic, Lina M Rojas Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In EACL.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gen-
erator for task-oriented dialogue systems. In ACL.

Puyang Xu and Qi Hu. 2018. An end-to-end approach
for handling unknown slot values in dialogue state
tracking. In ACL.

https://doi.org/10.18653/v1/K16-1002
https://openreview.net/forum?id=rylK-kBYwr
https://openreview.net/forum?id=rylK-kBYwr
https://openreview.net/forum?id=rylK-kBYwr
https://openreview.net/forum?id=H1e_cC4twS
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133

577

Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng
Wu, Philip S. Yu, Richard Socher, and Caiming
Xiong. 2019. Find or classify? dual strategy for slot-
value predictions on multi-domain dialog state track-
ing. arXiv preprint arXiv:1910.03544.

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Global-locally self-attentive encoder for di-
alogue state tracking. In ACL.

578

A Data Statistics

Table 8: Data Statistics of MultiWOZ 2.1.

of Dialogues # of Turns

Domain Slots Train Valid Test Train Valid Test

Attraction area, name, type 2,717 401 395 8,073 1,220 1,256

Hotel price range, type, parking, book stay, book day,
book people, area, stars, internet, name

3,381 416 394 14,793 1,781 1,756

Restaurant food, price range, area, name, book time, book
day, book people

3,813 438 437 15,367 1,708 1,726

Taxi leave at, destination, departure, arrive by 1,654 207 195 4,618 690 654

Train destination, day, departure, arrive by, book people,
leave at

3,103 484 494 12,133 1,972 1,976

Table 9: Statistics of the slot value vocabulary size in MultiWOZ 2.1.

Slot Value Vocabulary Size

Slot Name Train Valid Test

taxi-destination 373 213 213
taxi-departure 357 214 203
restaurant-name 202 162 162
attraction-name 186 145 149
train-leaveat 146 69 117
train-arriveby 112 64 101
restaurant-food 111 81 70
taxi-leaveat 105 68 65
hotel-name 93 65 58
restaurant-book time 64 50 51
taxi-arriveby 95 49 46
train-destination 27 25 24
train-departure 34 23 23
attraction-type 31 17 17
train-book people 11 9 9
hotel-book people 8 8 8
restaurant-book people 9 8 8
hotel-book day 13 7 7
hotel-stars 9 7 7
restaurant-book day 10 7 7
train-day 8 7 7
attraction-area 7 6 6
hotel-area 7 6 6
restaurant-area 7 6 6
hotel-book stay 10 5 5
hotel-parking 4 4 4
hotel-pricerange 7 5 4
hotel-type 5 5 4
restaurant-pricerange 5 4 4
hotel-internet 3 3 3

579

Table 10: Statistics of domain transition in the test set of MultiWOZ 2.1. There are 140 dialogues with more than
one domain transition that end with taxi domain. The cases where domain switches more than once and ends in
taxi are shown in bold. The total number of dialogues with more than one domain transition is 175. We can view
these as complicated dialogues.

Domain Transition

First Second Third Fourth Count

restaurant train - - 87
attraction train - - 80
hotel - - - 71
train attraction - - 71
train hotel - - 70
restaurant - - - 64
train restaurant - - 62
hotel train - - 57
taxi - - - 51
attraction restaurant - - 38
restaurant attraction taxi - 35
restaurant attraction - - 31
train - - - 31
hotel attraction - - 27
restaurant hotel - - 27
restaurant hotel taxi - 26
attraction hotel taxi - 24
attraction restaurant taxi - 23
hotel restaurant - - 22
attraction hotel - - 20
hotel attraction taxi - 16
hotel restaurant taxi - 13
attraction - - - 12
attraction restaurant train - 3
restaurant hotel train - 3
hotel train restaurant - 3
restaurant train hotel - 3
restaurant taxi hotel - 3
attraction train restaurant - 2
train attraction restaurant - 2
attraction restaurant hotel - 2
hotel train attraction - 2
attraction taxi hotel - 1
hotel taxi - - 1
train hotel restaurant - 1
restaurant taxi - - 1
restaurant train taxi - 1
hotel restaurant train - 1
hotel taxi train - 1
taxi attraction - - 1
restaurant train attraction - 1
attraction train hotel - 1
attraction train taxi - 1
restaurant attraction train - 1
hotel taxi attraction - 1
train hotel attraction - 1
restaurant taxi attraction - 1
hotel attraction restaurant taxi 1
attraction hotel train - 1
taxi restaurant train - 1

580

B Inference Time Complexity (ITC)

Table 11: Inference Time Complexity (ITC) of each
model. We report the ITC in both the best case and the
worst case for more precise comparison. J indicates the
number of slots, and M indicates the number of values
of a slot.

Inference Time Complexity

Model Best Worst

SUMBT Ω(JM) O(JM)
DS-DST Ω(J) O(JM)
DST-picklist Ω(JM) O(JM)
DST Reader Ω(1) O(J)
TRADE Ω(J) O(J)
COMER Ω(1) O(J)
NADST Ω(1) O(1)
ML-BST Ω(J) O(J)
SOM-DST(ours) Ω(1) O(J)

Inference Time Complexity (ITC) proposed by
Ren et al. (2019) defines the efficiency of a DST
model using J , the number of slots, and M , the
number of values of a slot. Going a step further
from their work, we report ITC of the models in
the best case and the worst case for relatively more
precise comparison.

Table 11 shows ITC of several models in their
best and worst cases. Since our model generates
values for only the slots on which UPDATE opera-
tion has to be performed, the best case complexity
of our model is Ω(1), when there is no slot whose
operation is UPDATE.

581

C Sample Outputs

Figure 3: The output of SOM-DST in a dialogue (dialogue idx MUL2499) in the test set of MultiWOZ 2.1.
Parts changed from the previous dialogue state are shown in blue. To save space, we omit the slots with value
NULL from the figure.

582

Figure 4: The output of SOM-DST in a dialogue (dialogue idx PMUL3748) in the test set of MultiWOZ 2.1.
Parts changed from the previous dialogue state are shown in blue. To save space, we omit the slots with value
NULL from the figure.

