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Abstract

Training the generative models with minimal
corpus is one of the critical challenges for
building open-domain dialogue systems. Ex-
isting methods tend to use the meta-learning
framework which pre-trains the parameters on
all non-target tasks then fine-tunes on the tar-
get task. However, fine-tuning distinguishes
tasks from the parameter perspective but ig-
nores the model-structure perspective, result-
ing in similar dialogue models for different
tasks. In this paper, we propose an algorithm
that can customize a unique dialogue model
for each task in the few-shot setting. In our
approach, each dialogue model consists of a
shared module, a gating module, and a pri-
vate module. The first two modules are shared
among all the tasks, while the third one will
differentiate into different network structures
to better capture the characteristics of the cor-
responding task. The extensive experiments
on two datasets show that our method outper-
forms all the baselines in terms of task consis-
tency, response quality, and diversity.

1 Introduction

Generative dialogue models often require a large
amount of dialogues for training, and it is chal-
lenging to build models that can adapt to new
domains or tasks with limited data. With recent
advances in large-scale pre-training [Peters et al.,
2018; Howard and Ruder, 2018; Radford et al.,
2018; Devlin et al., 2018], we can first pre-train
a generative model on large-scale dialogues from
the non-target domains and then fine-tune on the
task-specific data corpus [Wang et al., 2019a; Alt
et al., 2019a; Klein, 2019]. While pre-training is
beneficial, such models still require sufficient task-
specific data for fine-tuning. They cannot achieve
satisfying performance when very few examples
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are given [Bansal et al., 2019]. Unfortunately, this
is often the case in many dialogue generation sce-
narios. For example, in personalized dialogue gen-
eration, we need to quickly adapt to the response
style of a user’s persona by just a few his or her di-
alogues [Madotto et al., 2019; Zhang et al., 2018];
in emotional dialogue generation, we need to gen-
erate a response catering to a new emoji using very
few utterances containing this emoji [Zhou et al.,
18; Zhou and Wang, 2018]. Hence, this is the fo-
cus of our paper - few-shot dialogue generation,
i.e. training a generative model that can be gener-
alized to a new task (domain) within k-shots of its
dialogues.

A few works have been proposed to consider
few-shot dialogue generation as a meta-learning
problem [Madotto et al., 2019; Qian and Yu, 2019;
Mi et al., 2019]. They all rely on the popular model-
agnostic meta-learning (MAML) method [Finn et
al., 2017]. Take building personalized dialogue
models as an example, previous work treats learn-
ing dialogues with different personas as different
tasks [Madotto et al., 2019; Qian and Yu, 2019].
They employ MAML to find an initialization of
model parameters by maximizing the sensitivity of
the loss function when applied to new tasks. For a
target task, its dialogue model is obtained by fine-
tuning the initial parameters from MAML with its
task-specific training samples.

Despite the apparent success in few-shot dia-
logue generation, MAML still has limitations [Zint-
graf et al., 2019]. The goal of generative dialogue
models is to build a function mapping a user query
to its response, where the function is determined by
both the model structure and parameters [Brock et
al., 2018]. By fine-tuning with a fixed model struc-
ture, MAML only searches the optimal parameter
settings in the parameter optimization perspective
but ignores the search of optimal network structures
in the structure optimization perspective. More-
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over, language data are inherently discrete and dia-
logue models are less vulnerable to input changes
than image-related models [Niu and Bansal, 2018],
which means gradients calculated from a few sen-
tences may not be enough to change the output
word from one to another. Thus there is a need to
develop an effective way to adjust MAML for large
model diversity in dialogue generation tasks.

In this paper, we propose the Customized Model
Agnostic Meta-Learning algorithm (CMAML) that
is able to customize dialogue models in both pa-
rameter and model structure perspective under the
MAML framework. The dialogue model of each
task consists of three parts: a shared module to
learn the general language generation ability and
common characteristics among tasks, a private
module to model the unique characteristic of this
task, and a gate to absorb information from both
shared and private modules then generate the final
outputs. The network structure and parameters of
the shared and gating modules are shared among all
tasks, while the private module starts from the same
network but differentiates into different structures
to capture the task-specific characteristics.

In summary, our contributions are as follows:

• We propose the CMAML algorithm that can
customize dialogue models with different network
structures for different tasks in the few-shot setting.
The algorithm is general and well unified to adapt
to various few-shot generation scenarios.
• We propose a pruning algorithm that can adjust
the network structure for better fitting the training
data. We use this strategy to customize unique
dialogue models for different tasks.
• We investigate two crucial impact factors for
meta-learning based methods, i.e., the quantity of
training data and task similarity. We then describe
the situations where the meta-learning can outper-
form other fine-tuning methods.

2 Related Work

Few-shot Dialogue Generation. The past few
years have seen increasing attention on building
dialogue models in few-shot settings, such as per-
sonalized chatbots that can quickly adapt to each
user’s profile or knowledge background [Zhang et
al., 2018; Madotto et al., 2019], or that respond
with a specified emotion [Zhou et al., 18; Zhou
and Wang, 2018]. Early solutions are to use ex-
plicit [Tian et al., 2017; Zhang et al., 2018; Zhou
et al., 18] or implicit [Li et al., 2016b; Zhou and

Wang, 2018; Zhou et al., 18] task descriptions, then
introduce this information into the generative mod-
els. However, these methods require manually cre-
ated task descriptions, which are not available in
many practical cases.

An alternative promising solution to building
few-shot dialogue models is the meta-learning
methods, especially MAML [Finn et al., 2017].
Madotto et al. (2019) propose to regard learning
with the dialogue corpus of each user as a task
and endow the personalized dialogue models by
fine-tuning the initialized parameters on the task-
specific data. Qian and Yu (2019) and Mi et al.
(2019) treat the learning from each domain in multi-
domain task-oriented dialogue generation as a task,
and apply MAML in a similar way. All these meth-
ods do not change the original MAML but directly
apply it to their scenarios due to the model-agnostic
property of MAML. Thus, task differentiation al-
ways counts on fine-tuning, which only searches
the best model for each task at the parameter level
but not the model structure level.

Meta-learning. Meta-learning has achieved
promising results in many NLP problems recently
due to its fast adaptation ability on a new task us-
ing very few training data [Yu et al., 2019; Wang
et al., 2019b; Obamuyide and Vlachos, 2019b;
Alt et al., 2019b]. In general, there are three cat-
egories of meta-learning methods: metric-based
methods [Vinyals et al., 2016; Snell et al., 2017;
Sung et al., 2018; Ye and Ling, 2019] which encode
the samples into an embedding space along with
a learned distance metric and then apply a match-
ing algorithm, model-based methods [Santoro et
al., 2016; Obamuyide and Vlachos, 2019a] which
depend on the model structure design such as an
external memory storage to facilitate the learning
process, and optimization-based methods [Finn et
al., 2017; Andrychowicz et al., 2016; Huang et al.,
2018] which learn a good network initialization
from which fine-tuning can converge to the opti-
mal point for a new task with only a few examples.
Methods belonging to the first two are proposed for
classification, and those in the third category are
model-agnostic. Therefore, it is intuitive to apply
the optimization-based methods, in which MAML
is most popular, for dialogue generation tasks.

However, some researchers found that the orig-
inal MAML has limited ability to model task-
specific characteristics in the image or text clas-
sification scenarios [Jiang et al., 2018; Sun et al.,
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Figure 1: The proposed CMAML algorithm applying on the personalized dialogue systems. Each customized
dialogue model Seq2SPG consists of a shared, a private, and a gating module. The shared and gating module are
the same among users and are trained on all tasks. The private module is unique for each user to describe this user’s
persona, and is trained on the corresponding and similar tasks. The lines in color indicate the data flow directions.

2019; Liu et al., 2020]. Jiang et al. (2018) build
an attention layer over the convolutional layers,
where the convolutional layer is for general fea-
tures and the attention layer is for task-specific
features. Sun et al. (2019) propose to learn a
task-specific shifting and scaling operation on the
general shared feed-forward layers. However, the
involved operations in these two methods such as
shifting and scaling are designed for feed-forward
networks, and can not be applied to the generative
models which generally rely on Seq2seq [Sutskever
et al., 2014] models with recurrent GRU [Cho et
al., 2014] or LSTM [Hochreiter and Schmidhu-
ber, 1997] cells. In this paper, we propose a new
meta-learning algorithm based on MAML that can
enhance task-specific characteristics for generation
models.

3 Dialogue Model

In this section, we firstly describe the network
structure of the proposed dialogue model, and then
briefly introduce its pre-training.

3.1 Model Architecture

We aim to build dialogue models for different gen-
eration tasks in the few-shot setting. Now, we first
describe the dialogue model of each task to be used
in our training algorithm. It involves three network
modules and noted as Seq2SPG (in Figure 1):
Shared Module. It gains the basic ability to gen-
erate a sentence and thus its parameters are shared
among all tasks. We employ a prevailing Seq2seq
dialogue model [Bahdanau et al., 2014]. At each
decoding step t, we feed the word xt and last hid-
den state ht−1 to the decoding cell, and obtain an
output distribution os over the vocabulary.

Private Module. It aims at modeling the unique
characteristics of each task. We design a multi-
layer perception (MLP) in the decoder to fulfill this
goal. Each task has its unique MLP network, which
starts from the same initialization and then evolves
into different structures during training. At each
decoding step t, the MLP takes the word xt and
the output ht−1 of the shared module at step t− 1
as input, then outputs a distribution op over the
vocabulary. In our experiments, we also explore
different inputs for the private module.
Gating Module. We use a gate to fuse information
from the shared and private modules:

gs = tanh(Ws[os, op] + bs)

gp = tanh(Wp[os, op] + bp)

o = gs ◦ os + gp ◦ op
(1)

where Ws, Wp, bs, bp are parameters, ◦ is element-
wise product, and o is the word distribution.

3.2 Training Overview
For the rest of the paper, p(T ) denotes the task dis-
tribution, Ti denotes the i-th task to be trained,
Dtrain
i and Dvalid

i denotes the training and val-
idation corpus of task Ti, and θi denotes all
training parameters of the dialogue model for
Ti, which include parameters θs/θpi /θg in the
shared/private/gating module respectively. we con-
sider a model represented by a parameterized func-
tion f with parameters θ. The model training for
all tasks consists of two steps: pre-training and
customized model training.

In pre-training, CMAML employs the vanilla
MAML to obtain a pre-trained dialogue model as
the initial model θ for all tasks. At the beginning of
the MAML, θ are randomly initialized. Then, two
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main procedures perform iteratively: meta-training
and meta-testing. In meta-training, MAML first
samples a set of tasks Ti∼p(T ). Then, for each
task i, MAML adapts θ to get θ′i with the task-
specific data, which is,

θ′i = θ − α∇θLDtrain
i

(f(θ)) (2)

In the meta-testing, MAML tests tasks Ti∼p(T )
with θ′i to obtain the losses and then updates θ by

θ = θ − β∇θ
∑

Ti∼p(T )

LDvalid
i

(f(θ′i)) (3)

Here, α and β are hyper-parameters.
In standard MAML, each task obtains its param-

eters θi by fine-tuning the pre-trained θ. However,
recall that fine-tuning fails to search the best model
in the network structure perspective. Also, the gen-
erative models are less vulnerable to input changes,
thus a few utterances may not be enough to adapt
θ into diverse θi for different tasks. To address
these issues, we do not perform direct fine-tuning
on each task, but design our second training step
- Customized Model Training, in which the pre-
trained private module can evolve into different
structures to capture the characteristics of each task
and encourage model diversity.

4 Customized Model Training

After obtaining the pre-trained model θ from
MAML, we employ Customized Mode Training
with the following two updating steps:

• Private Network Pruning. This step is applied
for the private module only, which is to differentiate
the MLP structure of each task. Each task has a
different MLP structure by retaining its own subset
of active MLP parameters in order to characterize
the uniqueness of this task.
• Joint Meta-learning. In this step, we re-train
parameters of all three modules of each task using
MAML again, but each private module is with its
pruned MLP structure now. Also, similar tasks with
similar pruned MLP structures are jointly trained
in order to enrich the training data.

In the following, we will describe these two steps
respectively as well as the gradient update of the
whole dialogue model.

4.1 Private Network Pruning
After pre-training, dialogue models of different
tasks remain the same parameters θ, including

θs/θp/θg in the shared/private/gating module. In
this step, the private module with parameters θp

will evolve into different structures with parame-
ters θpi to capture the task’s unique characteristics.

First, we fine-tune the whole dialogue model of
each task from the MAML initialization with its
own training data and add an L-1 regularization
on the parameters of the private module. The goal
of L-1 regularization here is to make the parame-
ters sparse such that only parameters beneficial to
generate task-specific sentences are active.

Second, we apply an up-to-bottom strategy to
prune the private MLP for each task. This is equal
to selecting edges in the fully connected layers in
the MLP. We do not prune the layers connected
to the input and output of the MLP. For the rest
layers, we start the pruning from the one closest
to the output first. For the l-th layer, we consider
layers above it (> l) are closer to the output, and
its lower layers (< l) are closer to the input. When
we process the l-th layer, its upper layers should
already be pruned. We only keep edges of the cur-
rent processed layer whose weight excels a certain
threshold γ. If all edges in the l layer connected to
a node is pruned, all edges connected to this node
in the l − 1 layer will also be pruned. In this way,
the parameters in private module θp differentiates
into |T | parameters θpi , where each θpi is a subset
of θp. The pruning algorithm described above is
illustrated in Algorithm 1.

4.2 Joint Meta-learning

So far, every task has a unique network structure in
its private module. Now we jointly train the whole
dialogue models of all tasks.

We start from the pre-trained MAML initializa-
tion again. For the shared and gating modules,
all tasks share the same parameters, and they are
trained with all training data. The private module,
which is to capture the uniqueness of each task, is
supposed to be trained on task-specific data. How-
ever, we do not have sufficient training data for
each task in the few-shot setting, thus the private
module may not be trained well. Fortunately, all
private modules evolve from the same MLP struc-
ture, and similar tasks naturally share overlapped
network structures, i.e. remaining edges after prun-
ing are overlapped. This inspires us to train each
edge in the private MLP by all training samples of
tasks in which this edge is not pruned.

Concretely, we train the private MLP in this way:
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Algorithm 1: Private Network Pruning
Input: All parameters θp in the private MLP module,

the sparsity threshold γ, the total number of
layers L in the private MLP module.

Output: The pruned parameters θpi in private module for
task Ti.

Finetune θp on the training data of Ti with L-1
regularization to otain θpi .

for j ∈ {1, . . . , L} do
Ej ← All edges (i.e. parameters w.r.t. each edge) in

the j-th layer in θpi
Nj ← All nodes in the j-th layer in θpi

Ekeep ← E|L| ∪ E1;
k ← |L| − 1;Nkeep ← N|L| ∪N1.

while k > 1 do
for each edge e in Ek do

if e > γ and the node connected with e in
Nk+1 is in Nkeep then
Ekeep ← Ekeep ∪ {e}.

for each node n in Nk do
for each edge e in Ek connected with n do

if e in Ekeep then
Nkeep ← Nkeep ∪ {n};
break.

k ← k − 1.
return Ekeep as θpi

for each edge e in the MLP, if it is active in more
than one tasks, its corresponding parameters θpe are
updated on the data of all task j’s, in which the
edge is active, i.e. θpe ∈ θpj :

θ′pe = θpe − α∇θpe
∑

Tj :θ
p
e∈θpj

LDtrain
j

(f(θpj )) (4)

where each θpi /θ′pi only contains the θpe /θ′pe ’s of all
active edges in the i-th task.

During meta-testing, the loss is accumulated by
the tasks that use the corresponding dialogue mod-
els, so θp is updated as,

θp = θp − β
∑

Ti∼p(T )

∇θpi LDvalid
i

(f(θ′pi )) (5)

4.3 Gradient Updates
We summarize the gradient updates of the three
modules in our proposed dialogue model during
customized model training in Algorithm 2. For the
shared and gating module, gradients are updated in
the same way as MAML. The update of the private
module is replaced by the above Eq. 4 and Eq. 5
introduced in joint meta-learning.

The loss function used to calculate the gradients
in our model is the negative log-likelihood of gen-
erating the response r given the input query q as,

L = − log p(r|q, θs, θp, θg) (6)

Algorithm 2: Customized Model Training
Input: The distribution over the task set p(T ), the step

size α and β.
Output: The customized dialogue models θs ∪ θpi ∪ θ

g

for every task Ti.
for each Ti in T do

θpi ← Private Network Pruning(Ti).

while not converge do
Sample a batch of tasks Ti∼p(T ).
for each sampled task Ti do

Adapt θs/θg to θ′si /θ
′g
i with Dtrain

i using
Eq. 2;

Adapt θpi to θ′pi with Dtrain
i using Eq. 4.

Update θs, θg with Dvalid
i using Eq. 3.

Update θpi with Dvalid
i using Eq. 5.

return θs ∪ θpi ∪ θ
g

5 Experiments

5.1 Datasets

We perform experiments in Persona-chat [Madotto
et al., 2019] and MojiTalk [Zhou and Wang, 2018],
which are treated as few-shot dialogue generation
tasks in previous work [Zhang et al., 2018; Madotto
et al., 2019; Zhou and Wang, 2018; Zhou et al.,
18]. Persona-chat has 1137/99/100 users for train-
ing/validation/evaluation, and each user has 121
utterances on average. We follow the previous
work [Madotto et al., 2019] and concatenate all
the contextual utterances including the query as
the input sequence. We regard building a dialogue
model for a user as a task on this dataset. MojiTalk
has 50/6/8 emojis for training/validation/evaluation.
Each training/validation emoji has 1000 training
samples on average, and each evaluation emoji has
155 samples on average. We regard generating
responses with a designated emoji as a task. On
both datasets, the data ratio for meta-training and
meta-testing is 10:1.

5.2 Implementation Details

We implement our shared module based on the
Seq2seq model with pre-trained Glove embed-
ding [Pennington et al., 2014] and LSTM unit, and
use a 4-layer MLP for the private module1. The
dimension of word embedding, hidden state, and
MLP’s output are set to 300. In CMAML, we pre-
train the model for 10 epochs and re-train each
model for 5 steps to prune the private network. The
L-1 weight in the re-training stage is 0.001, and the
threshold γ is 0.05. We follow other hyperparame-
ter settings in Madotto et al. [2019].

1Code is available at https://github.com/zequnl/CMAML
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5.3 Competing Methods
• Pretrain-Only: We pre-train a unified dialogue
generation model with data from all training tasks
then directly test it on the testing tasks. We try three
base generation models: the Seq2seq [Bahdanau et
al., 2014] and the Speaker model [Li et al., 2016b]
and the Seq2SPG proposed in Section3.1. Speaker
incorporates the task (user/emoji) embeddings in
the LSTM cell, and the task embeddings of testing
tasks are random parameters in this setting.
• Finetune: We fine-tune the pre-trained mod-
els on each testing task, denoted as Seq2seq-F,
Speaker-F and Seq2SPG-F.
• MAML [Madotto et al., 2019]: We apply the
MAML algorithm on the base model Seq2seq and
Seq2SPG, and note them as MAML-Seq2seq and
MAML-Seq2SPG. MAML-Seq2SPG uses the same
base model as the proposed CMAML but does not
apply the pruning algorithm, which helps to verify
the effectiveness of the pruning algorithm and joint
meta-learning. Note that We did not apply MAML
on Speaker model as it shows no improvement
comparing with Seq2seq.
• CMAML: We try two variants of our proposed
algorithm. CMAML-Seq2SPG is our full model
(equal to CMAML in previous sections), where the
dialogue Seq2SPG is the base model and pruning
algorithm is applied for customizing unique model
structures for tasks. CMAML-Seq2SP′G uses a dif-
ferent base model noted as Seq2SP′G, where the
private module only takes the output of the shared
module as the input. Pruning algorithm is also ap-
plied in private module for network customization.

5.4 Evaluation Metrics

Automatic Evaluation. We performed automatic
evaluation metrics in three perspectives:

• Response quality/diversity: We use BLEU [Pa-
pineni et al., 2002] to measure the word overlap
between the reference and the generated sentence;
PPL, the negative logarithm of the generated sen-
tence; Dist-1 [Li et al., 2016a; Song et al., 2017,
2018] to evaluate the response diversity, which cal-
culates the ratio of distinct 1-gram in all test gener-
ated responses.
• Task consistency: We use C score [Madotto et
al., 2019] in Persona-chat, which uses a pre-trained
natural language inference model to measure the
response consistency with persona description, and
E-acc [Zhou and Wang, 2018] in MojiTalk, which

uses an emotion classifier to predict the correlation
between a response and the designated emotion.
• Model difference: It is hard to measure the mod-
els ability of customization as we do not have the
ground-truth model. Hence, we define the aver-
age model difference of pairwise tasks as the Diff
Score of each method, and the model difference of
a method before and after fine-tuning as ∆ Score.
The model difference between Ti and Tj is the
Euclidean distance of their parameters normalized
by their parameter count: D(Ti, Tj) =

||θi−θj ||2
M .

Here, θi/θj includes all model parameters of this
task, M is the total parameter number of the model.
A set of models that capture the unique character-
istics of each task should be different from each
other and will have a higher Diff score, indicating
that a large Diff score is a sufficient condition for
a strong customization ability. Similarly, a model
that changes a lot for task specific adaptation during
fine-tuning will achieve a higher ∆ Score, indicat-
ing that ∆ Score is also a sufficient condition for a
good adaptation ability.

Human Evaluation. We invited 3 well-educated
graduated students to annotate the 100 generated
replies for each method. For each dataset, the anno-
tators are requested to grade each response in terms
of “quality” and “task consistency” (i.e. personality
consistency in Persona-Chat and emoji consistency
in MojiTalk) independently in three scales: 2 (for
good), 1 (for fair) and 0 (for bad). “quality” mea-
sures the appropriateness of replies, and we refer
2 for fluent, highly consistent (between query and
reply), and informativeness, 1 for few grammar
mistakes, moderate consistent, and universal re-
ply, and 0 for incomprehensible or unrelated topic.
“task consistency” measures whether a reply is con-
sistent with the characteristics of a certain task, and
we refer 2 for highly consistent, 1 for no conflicted
and 0 for contradicted. Notice that the user descrip-
tion (Persona dataset) and sentences with a certain
emoji (Mojitalk dataset) are provided as the refer-
ences. Volunteers, instead of authors, conduct the
double-blind annotations on shuffled samples to
avoid subjective bias.

5.5 Overall Performance

Quality/Diversity. In the Persona-chat dataset,
Pretrain-Only methods provide the borderlines of
all methods. In Pretrain-Only, Seq2SPG achieves
the best performance in terms of both automatic
and human measurements, indicating the appropri-
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Method Human Evaluation Automatic Metrics Model Difference
Quality Task Consistency PPL BLEU Dist-1 C score/E-acc Diff Score ∆ Score

Persona-Chat
Seq2seq 0.67 0.10 37.91 1.27 0.0019 -0.16 0.00 0.00
Speaker 0.85 0.10 40.17 1.25 0.0037 -0.14 0.00 0.00
Seq2SPG 0.67 0.03 36.46 1.41 0.0023 -0.14 0.00 0.00
Seq2seq-F 0.78 0.11 33.65 1.56 0.0046 -0.05 17.97 9.19
Speaker-F 0.87 0.25 35.61 1.52 0.0059 0.03 285.11 143.90
Seq2SPG-F 0.7 0.07 32.68 1.54 0.0045 -0.05 292.85 156.30
MAML-Seq2seq 0.97 0.37 37.43 1.54 0.0087 0.14 134.01 67.79
MAML-Seq2SPG 0.85 0.36 35.89 1.70 0.0074 0.16 401.28 198.90
CMAML-Seq2SP′G 0.98 0.58 37.32 1.43 0.0089 0.15 479.21 238.64
CMAML-Seq2SPG 1.15 0.69 36.30 1.70 0.0097 0.18 514.44 263.82
MojiTalk
Seq2seq 0.56 0.39 218.95 0.36 0.0342 0.73 0.00 0.00
Speaker 0.38 0.26 418.96 0.19 0.0530 0.70 0.00 0.00
Seq2SPG 0.77 0.46 158.74 0.64 0.0239 0.74 0.00 0.00
Seq2seq-F 0.50 0.35 217.60 0.40 0.0326 0.72 15.96 8.88
Speaker-F 0.39 0.25 403.92 0.21 0.0528 0.72 39.08 29.10
Seq2SPG-F 0.76 0.47 157.92 0.65 0.0228 0.74 72.43 40.94
MAML-Seq2seq 0.66 0.29 179.02 0.54 0.0109 0.70 183.05 117.09
MAML-Seq2SPG 0.71 0.40 181.56 0.73 0.0246 0.74 306.40 176.31
CMAML-Seq2SP′G 0.64 0.32 172.92 0.76 0.0102 0.75 142.90 81.15
CMAML-Seq2SPG 0.78 0.49 185.97 0.85 0.0210 0.77 345.42 190.64

Table 1: Overall performance in Persona-chat (top) and MojiTalk (bottom) dataset in terms of quality (Human,
Perplexity, BLEU), diversity (Dist-1), task consistency (Human, C score, E-acc), structure differences among
tasks (Diff Score (×10−10)), model change after adaptation (∆ score (×10−10)).

Method 100-shot 110-shot Similar Users Dissimilar Users
PPL BLEU C score PPL BLEU C score PPL BLEU C score PPL BLEU C score

Seq2seq 38.13 1.19 -0.11 37.58 1.29 -0.15 76.54 1.49 -0.03 42.87 1.10 -0.10
Speaker 40.95 1.02 -0.25 42.59 1.27 -0.06 162.44 0.65 -0.09 46.86 1.11 -0.13
Seq2SPG 39.75 1.27 -0.10 37.71 1.30 -0.15 73.58 1.32 -0.04 42.21 1.14 -0.22
Seq2seq-F 34.86 1.39 -0.03 34.14 1.52 -0.10 74.53 1.53 -0.07 42.33 1.33 -0.06
Speaker-F 37.11 1.30 -0.16 39.10 1.36 -0.06 103.81 1.04 0.04 40.47 1.40 0.01
Seq2SPG-F 37.19 1.31 0.00 37.00 1.33 -0.15 70.15 1.44 -0.04 36.22 1.35 -0.05
MAML-Seq2seq 36.94 1.47 0.03 37.20 1.53 0.07 83.17 1.52 -0.08 39.67 1.34 0.06
MAML-Seq2SPG 36.50 1.52 0.11 35.98 1.47 0.13 82.37 1.52 -0.06 39.41 1.41 0.12
CMAML-Seq2SP′G 37.18 1.46 0.11 37.08 1.44 0.09 82.56 1.50 0.00 40.50 1.40 0.13
CMAML-Seq2SPG 36.52 1.52 0.14 36.44 1.57 0.15 82.78 1.56 -0.07 39.55 1.43 0.16

Table 2: The performance on the Persona-chat dataset for impact factor analysis. The left figure is about the
few-shot settings and the right is about the task similarity.

ateness of the proposed model structure. Finetune
methods are better than Pretrain-Only methods in
most cases. MAML methods have no better per-
formance on BLEU scores than Finetune methods
but have relatively higher Dist-1 scores. This indi-
cates that MAML helps to boost response diversity.
Enhanced with the proposed pruning algorithm, we
can see great improvement for CMAML methods
against all the competing methods on both quality
and diversity measurements. Particularly, our full
model CMAML-Seq2SPG shows clearly better per-
formance and the reasons can be ascribed to two
aspects: firstly, the proposed Seq2SPG has a bet-
ter model structure for our task and secondly, the
pruning algorithm makes the models more likely
to generate a user-coherent response.

Most of the performance of the competing
methods in the MojiTalk dataset is similar to the
Persona-chat dataset, while one difference is that
Speaker achieves the highest Dist-1 score among
all the methods. By carefully analyzing the gener-

ated cases, we find all non-meta-learning methods
(Pretrain-Only and Finetune) consistently pro-
duce random word sequences, which means they
completely fail in the few-shot setting on this task.
However, meta-learning-based methods survive.

Task Consistency. On both datasets, Finetune
methods make no significant differences on C
score, E-acc and Task Consistency when compared
with Pretrain-Only methods, which means that
simple fine-tuning is useless for improving the
task consistency. All meta-learning methods in-
cluding MAML and CMAML outperforms Fine-
tune. Compared with MAML-Seq2seq and MAML-
Seq2SPG, CMAML-Seq2SPG obtain 22.2%/12.5%
and 11.8%/5.6% improvement on C score and E-
acc. It means that the private modules in CMAML-
Seq2SPG are well pruned to better well describes
the unique characteristics of each task.

We also observe that in MojiTalk, CMAML-
Seq2SPG achieves good improvement compared
with other baselines on the BLEU score but a lim-
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ited improvement on E-acc and task consistency
score when compared with Persona-chat. This tells
that when the training data is limited, the genera-
tive models tend to focus on the correctness of the
response rather than the task consistency.

By jointly analyzing the response quality and
task consistency measurement, we can easily draw
the conclusion that the responses produced by our
algorithm in CMAML-Seq2SPG not only is supe-
rior in response quality but also caters to the char-
acteristics of the corresponding task.
Model Differences. Even though a high differ-
ence score among tasks does not indicate each
model has captured its unique characteristics, a
set of models that can capture the characteristics
of themselves will have a higher different score.
Hence, we present the difference scores of com-
peting methods as a reference index. In Table 1,
we can see that fine-tuning on non-meta-learning
methods (Pretrain-Only and Finetune) does not
boost the model differences between tasks. MAML
helps to increase the model differences but is not as
good as the proposed CMAML methods. CMAML-
Seq2SPG achieves the highest model difference
scores on two datasets as it distinguishes different
tasks in both parameter and model structure level.

A higher ∆ score of a method means its pro-
duced dialogue models are more easy to fine-
tune. All non-meta-learning methods have so much
lower ∆ scores than MAML methods. CMAML-
Seq2SPG has the highest scores on both datasets,
indicating that the active edges in the private mod-
ule are more likely to be fine-tuned to better fit
the corpus of the corresponding tasks. We also ob-
serve that CMAML-Seq2SP′G has relatively low ∆
scores, which indicates its base generation model
Seq2S′G is not as good as Seq2SPG.

5.6 Impact Factors

We further examine two factors that may have a
great impact on the performance: the quantity of
training data and the similarity among tasks.
Few-shot Settings. We only use Persona-chat
dataset for analysis, because MojiTalk has too lit-
tle data to further decrease. In Persona-chat, each
user has 121 training samples on average, and we
evaluate all the methods in a 100 and 110 samples
setting (both in train and test) in Table 2 because
all the methods tend to produce random sequences
when each task contains less than 100 samples.

For non-meta-learning methods including

Persona
I also love vintage cars.
I am a pediatrician.
I love running and reading.

Query Singing karaoke is a talent of mine.
Do you sing too?

Response Not really. I am into running, books and old cars.

Seq2seq I do not have any pets. I do not have any pets.
Speaker No, I do not. I do not have any.
Seq2SPG No , I do not have any pets.
Seq2seq-F I do not have any pets. I do not have any pets.
Speaker-F No, I do not. I do not have any.
Seq2SPG-F No , I do not have any pets.
MAML-Seq2seq Yes I do. I am a nurse.
MAML-Seq2SPG I like to listen to jazz and jazz .
CMAML-Seq2SP′G Yes, I am a doctor. I am a pediatrician.
CMAML-Seq2SPG Yes, I am a pediatrician.

What do you do for a living?

Table 3: A case in Persona-chat dataset.

Pretrain-Only and Finetune, the quality scores
improve as the quantity of training data increases,
while the C scores almost remain the same as
these methods are not sensitive to the differences
among tasks. MAML methods have not changed
too much on BLEU scores along with the data
growth, but its C scores keep increasing. Both the
BLEU score and C score of CMAML-Seq2SPG
keep increasing with the data growth, and it always
achieves the best performance among all the tasks.
This proves that the customized generative models
are suitable for the corresponding tasks and can
always take the full potential of the training data.
Task Similarity. Again, we only use the Persona-
chat dataset because we cannot define similarities
among emojis. We construct two datasets: one
contains 100 similar users and another contains
100 dissimilar users (both in train and test).

The performance of all the methods is close to
each other in the similar-user setting. It means
meta-learning-based methods have no advantage
for similar tasks. In the dissimilar-users setting,
CMAML-Seq2SPG performs best on the C score
and BLEU. We draw a conclusion that user sim-
ilarity influences the performance of our model.
Compared to that in dissimilar-users setting, the
BLEU in the similar-users setting is high, but the C
score is low. The possible reason is that generative
models do not distinguish similar tasks and regard
all tasks as one task in training.

5.7 Case Study

We only present one case in the Persona-chat
dataset due to the limited space in Table 3.
Pretrain-Only and Finetune methods produce
general responses with less information. MAML
methods tend to generate diverse responses as their
initial parameters are easier to be finetuned. Even
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though the user profiles are not used for training,
CMAML-Seq2SPG can quickly learn the persona
information “pediatrician” from its training dia-
logues while other baselines can not. From another
perspective, the pruned private module in CMAML-
Seq2SPG can be regarded as a special memory that
stores the task-specific information without explicit
definition of memory cells.

6 Conclusion

In this paper, we address the problem of the few-
shot dialogue generation. We propose CMAML,
which is able to customize unique dialogue models
for different tasks. CMAML introduces a private
network for each task’s dialogue model, whose
structure will evolve during the training to better fit
the characteristics of this task. The private module
will only be trained on the corpora of the corre-
sponding task and its similar tasks. The experiment
results show that CMAML achieves the best per-
formance in terms of response quality, diversity
and task consistency. We also measure the model
differences among tasks, and the results prove that
CMAML produces diverse dialogue models for
different tasks.
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