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Abstract

In this paper, we present the first compre-
hensive categorization of essential common-
sense knowledge for answering the Winograd
Schema Challenge (WSC). For each of the
questions, we invite annotators to first pro-
vide reasons for making correct decisions and
then categorize them into six major knowl-
edge categories. By doing so, we better un-
derstand the limitation of existing methods
(i.e., what kind of knowledge cannot be ef-
fectively represented or inferred with existing
methods) and shed some light on the com-
monsense knowledge that we need to acquire
in the future for better commonsense reason-
ing. Moreover, to investigate whether cur-
rent WSC models can understand the com-
monsense or they simply solve the WSC ques-
tions based on the statistical bias of the dataset,
we leverage the collected reasons to develop
a new task called WinoWhy, which requires
models to distinguish plausible reasons from
very similar but wrong reasons for all WSC
questions. Experimental results prove that
even though pre-trained language representa-
tion models have achieved promising progress
on the original WSC dataset, they are still
struggling at WinoWhy. Further experiments
show that even though supervised models
can achieve better performance, the perfor-
mance of these models can be sensitive to the
dataset distribution. WinoWhy and all codes
are available at: https://github.com/
HKUST-KnowComp/WinoWhy.

1 Introduction

Commonsense reasoning, as an important prob-
lem of natural language understanding, has at-
tracted much more attention in the NLP com-
munity recently (Levesque et al., 2012; Zhou
et al., 2018; Ostermann et al., 2018; Talmor et al.,

*Equal contribution.

The fish ate the worm. It was hungry.

The fish ate the worm. It was tasty.

Figure 1: A pair of questions in WSC.

2019). Among all developed commonsense rea-
soning tasks, the Winograd Schema Challenge
(WSC) (Levesque et al., 2012), which is a hard
pronoun coreference resolution task, is one of the
most influential ones. All questions in WSC are
grouped into pairs such that paired questions have
minor differences (mostly one-word difference),
but reversed answers. For each question, we de-
note the other question in the same pair as its
reverse question. One pair of the WSC task is
shown in Figure 1. Based on the design guide-
line of WSC, all commonly used features (e.g.,
gender, plurality, and co-occurrence frequency)
do not have any effect. Human beings can solve
these questions because of their shared common-
sense knowledge. For example, ordinary people
can know that the pronoun ‘it’ in the first sentence
refers to ‘fish’ while the one in the second sentence
refers to ‘worm’ because ‘hungry’ is a common
property of something eating things while ‘tasty’
is a common property of something being eaten.
Conventionally, people tried to leverage crowd-
sourced commonsense knowledge bases (Liu
et al.,, 2017) or search engines (Emami et al.,
2018) to solve the WSC task, but performances
of these models are not satisfying. Recently, pre-
trained language representation models (Kocijan
et al., 2019; Radford et al., 2019; Liu et al., 2019)
have demonstrated significant improvements in
both unsupervised and supervised settings. How-
ever, as these approaches treat the concept ‘com-
monsense knowledge’ as a black box, we are not
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The fish ate the worm. It was hungry.
It refers to fish because:

A. Hungry staff tend to eat. (Human) J

B. Worm is the one being eaten. (Human Reverse) x

C. the worm is a common name for a variety of fish. x
(Generation Model)

Figure 2: One example from the WinoWhy dataset.
Plausible and implausible reasons are indicated with
the tick and the crosses respectively. Resources of dif-
ferent reasons are shown in brackets. ‘Human Reverse’
means the human reason for the reverse question.

clear about why they can do better (e.g., can these
models understand commonsense or they just cap-
ture the statistical bias of the dataset) and do
not know how to further improve them. To an-
swer these two questions, in this work, we present
the first deep diagnosis of essential commonsense
knowledge for answering WSC questions. Specif-
ically, we invite annotators to first provide reasons
for why they choose the answers when they an-
swer the questions, and then group all the WSC
questions by different types of used commonsense
knowledge (e.g., the property of entities, tempo-
ral knowledge, or spatial knowledge). By doing
so, we can then analyze what kinds of common-
sense knowledge can be well represented and un-
derstood by current models and more importantly,
we can be clear about what kinds of commonsense
knowledge are still challenging for current mod-
els, which could be an important future research
direction for solving not only the WSC task but
also the general commonsense reasoning problem.

After the diagnosis, based on the collected
reasons, we also create a new task WinoWhy,
which aims at better evaluating models’ abilities
to understand commonsense knowledge. For each
question in the WSC task, we pair it with several
reasons. Models are required to distinguish the
correct reasons from all very similar but wrong
candidates. From examples in Figure 2, we can
see that even though all candidates are highly re-
lated to the original question, only one of them is
the correct reason for resolving the coreference re-
lation. Experimental results show that even though
state-of-the-art models can achieve about 90% ac-
curacy on the original WSC task, they are still
struggling on WinoWhy questions, which shows
that current models are still far away from un-

derstanding the commonsense knowledge. More-
over, by conducting experiments on both WSC and
WinoWhy tasks, we prove that even though su-
pervised models can achieve better performance,
these models can be sensitive to the dataset dis-
tribution, which indicates that the improvement is
probably coming from better capturing the statis-
tical bias of the dataset rather than better under-
standing the required commonsense knowledge.

The rest of the paper is organized as follows.
In Section 2, we present the diagnosis of essen-
tial commonsense knowledge for answering WSC
questions, which includes the reason collection
and categorization. After that, we show how we
create WinoWhy in Section 3. In Sections 4 and 5,
we introduce the detailed experiments and anal-
ysis on both the original WSC and the proposed
WinoWhy tasks. We introduce the related work
about commonsense reasoning in Section 6. In the
end, we conclude this paper with Section 7.

2 Commonsense Knowledge Diagnosis

Commonsense reasoning is often viewed as one of
the most challenging Al tasks and we still do not
have a principled way of solving it. One impor-
tant reason behind this is that, due to the vague
definition of commonsense knowledge, we are not
clear about what the essential knowledge types are
and thus we are unclear about how to represent,
acquire, and use them. As a result, we can only
treat commonsense knowledge as a black box and
try to learn it from limited training data. To ex-
plore a principled way of representing common-
sense knowledge and solving commonsense rea-
soning problems, we take the Winograd Schema
Challenge as the breaking point to conduct a de-
tailed diagnosis of what kinds of knowledge are
essential for answering these questions. To be spe-
cific, we first ask human beings to provide rea-
sons why they make the correct decisions for all
WSC questions. After that, we categorize these
reasons by the involved knowledge types (e.g., the
property of objects, temporal knowledge, or spa-
tial knowledge). By doing so, we are more clear
about how to acquire, represent, and apply such
knowledge. Details are introduced as follows.

2.1 Reason Collection

To collect high-quality reasons for answering all
WSC questions, we employ the Amazon Mechani-
cal Turk (MTurk) platform for our annotations and
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Instructions

Summary Detailed Instructions Examples

Good examples Bad examples

Context Context
Jim yelled at Kevin because he was 5o upset. Jim yelled at Kevin because he was so upset
Co-reference Co-reference

The target pronoun is more likely to refer to Jim rather than The target pronoun is more likely to refer to Jim rather than
Ke &vin because

Response Response

An upset man is more likely to yell 1DONT CARE

Write why the pronoun (blue) refers to the right candidate (green) rather than the other one (red):

Question: 1

Context: Jackson was greatly influenced by Arnold, though he lived two centuries later.

Co-reference: The target pronoun is more likely to refer to Jackson rather than Arnold because:

Please provide your reason(s) here... (5-200 letters)

Figure 3: Reason collection interface on MTurk. Anno-
tators are asked to provide reason(s) for all WSC ques-
tions in natural language.

design a two-phase annotation procedure to collect
the knowledge. In the first phase, we ask anno-
tators to provide reasons for all WSC questions.
Detailed instructions are provided such that anno-
tators can fully understand the task. As each ques-
tion may have multiple plausible reasons, for each
question, we invite five annotators to provide rea-
sons based on their own judgments. A screenshot
of the survey is shown in Figure 3. As a result,
we collect 1,365 reasons. As the quality of some
given reasons might not be satisfying, we intro-
duce the second round annotation to evaluate the
quality of collected reasons. In the second phase,
for each reason, we invite five annotators to verify
whether they think the reason is reasonable or not.
If at least four annotators think the reason is plau-
sible, we will accept that reason. As a result, we
identify 992 valid reasons.

2.2 Knowledge Categorization

After collecting all reasons, we categorize them
into different groups based on the used knowledge
types. We first introduce the selected knowledge
types and then introduce the detailed annotation
procedure.

2.2.1 Knowledge Types

A good categorization standard should have two
properties: (1) Broad Coverage: it should cover
most cases; (2) Exclusive: there should be clear
boundaries between different categories. Follow-
ing these standards, we found following two cate-
gorization methods of commonsense knowledge:

1. Conceptual Semantic Theory: According
to Jackendoff’s original theory (Jackendoff,
1990), the semantics of human language can
be expressed with a finite set of mental prim-
itives and a finite set of principles of mental
combination. As claimed by Jackendoff, even
though the definition of mental primitives may
vary based on different data or languages, some
common primitives (i.e., entity, property, num-
ber, location, state, event, and activity) can be
observed. These common primitives can thus
be used as knowledge types for the common-
sense knowledge categorization.

2. ConceptNet: As one of the most popular com-
monsense knowledge resources, ConceptNet
1.0 (Liu and Singh, 2004) defines 20 com-
monsense relations, which belong to eight cat-
egories (i.e., K-lines, Things, Agents, Events,
Spatial, Causal, Functional, and Affective). In
the latest version of ConceptNet (Speer et al.,
2017), more relations (e.g., ‘RelatedTo’) from
other resources are merged into ConceptNet.
As they are relatively vague, we still follow the
definition in ConceptNet 1.0 for the common-
sense knowledge categorization.

As there exist some overlaps between seman-
tic primitives and categories in ConceptNet (e.g.,
‘Agents’ and ‘Functional’ both describe certain
properties of some objects), we first adopt all
the commonly observed primitives in (Jackendoff,
1990) as the base knowledge types and then mod-
ify them based on the definition of categories from
ConceptNet. For example, three primitives (activ-
ity, state, and event) and Events from ConceptNet
can all be covered by the definition of Eventual-
ity (P. D. Mourelatos, 1978). For the simplicity
of the categorization and the quality of the an-
notation, we merge them. At the current stage,
we remove ‘K-lines’ because it contains relations
like ‘ConceptuallyRelatedTo’, which is relatively
vague and difficult to be distinguished from other
categories. Another exceptional knowledge type
is ‘Causal’ from ConceptNet. During the anno-
tation, we found out that annotators had difficulty
understanding the strict definition of ‘Causal’ in
ConceptNet (i.e., One event contributes to the cre-
ation of another one) and tended to annotate all
reasons as ‘Causal’ because they think all reasons
can somehow ‘cause’ the decision making. To
make sure that all categories are easy for annota-
tors, which are mostly ordinary people, to distin-
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Name | Definition | Example

Property Knowledge  about | ice is cold.
property of objects.

Object Knowledge about ob- | cats have ears.
jects.

Eventuality| Knowledge  about | ‘wake up’ happens
eventualities. before ‘open eyes’.

Spatial Knowledge  about | object at the back
spatial position. can be blocked.

Quantity Knowledge about | 2 is smaller than
numbers. 10.

Others All other knowledge. | NA

Table 1: Names, definitions, and examples of selected
knowledge types. Annotators are asked to select the
most suitable knowledge type of each reason. If they
think none of the first five categories is suitable, they
are encouraged to choose ‘Others’.

guish, we remove ‘Causal’. As we cannot guaran-
tee that selected knowledge types could cover all
kinds of knowledge, an additional type ‘Others’ is
provided. Names, definitions, and examples of se-
lected knowledge types are shown in Table 1.

2.2.2 Annotation

For each collected valid reason, we invite anno-
tators to select the knowledge type that can best
describe the reason. Note that each reason may
contain inference over multiple knowledge types.
Thus, for each reason, we invite five different an-
notators to provide annotations. Each annotators
are provided with detailed instruction of the job,
descriptions of each candidate category, and ex-
amples for the category. As a result, we collect
4,960 annotations. We show the distribution of
annotation results in Figure 4. From the distri-
bution, we can see that all knowledge types are
very important, especially the knowledge about
objects (e.g., ‘cats have ears’) and eventualities
(e.g., ‘people who give help often receive thanks
later’). Besides that, we also notice that only 17%
of all reason annotations (839) are ‘Others’, which
indicates that the selected five categories can ef-
fectively cover 83% of the cases and thus the se-
lected knowledge types fulfill the broad coverage
requirement. We evaluate the annotation qual-
ity by average inner annotator agreement (IAA)
and kappa coefficient (McHugh, 2012). We com-
pute the IAA pair-wisely among all annotators.
For each reason, if two annotators give the same
knowledge type, we label it as agreed, otherwise,
we label it as dis-agreed. The average IAA is
78.72%. We calculate the kappa coefficient based

998
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839
800

700 657
634

Number of Winowhy Reasons

600

500

Object Eventuality Spatial Others  Property  Quantity

Figure 4: Distribution of different knowledge types.

on the five raters and five categories setting and
the result is 0.804. Considering that the annota-
tion task is a multiple-choice task, such an agree-
ment can indicate that the survey is well designed
and annotators can clearly understand the task.
For each WSC question, we select the most pop-
ular knowledge type among all valid reasons as
the question’s major knowledge type. If multiple
knowledge types have the same votes, we assume
that question has multiple knowledge types. As a
result, 222 questions have single knowledge type
and 51 questions have multiple knowledge types.

3 WinoWhy

In this section, we introduce details about the cre-
ation of WinoWhy.

3.1 Task Definition

Each question in WinoWhy is defined as follows.
Given a pronoun coreference resolution question
and its correct answer from the original WSC data,
models are asked to select all plausible reasons for
making the correct prediction. WinoWhy can thus
be viewed as a natural followup of the original
WSC task and can help better understand models’
commonsense reasoning abilities.

3.2 Candidate Selection

For each question, three kinds of candidate rea-
sons are selected for annotators to annotate. The
first reason resource is human annotation, which
effectively represents how human beings solve
these questions. Besides that, to collect some
very similar but wrong reasons as negative exam-
ples, we consider the reasons provided by humans
for the reverse question as a potential challenging
wrong reason resource. Last but not least, besides
reasons provided by human beings, we also lever-
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Figure 5: Distribution of reason plausibility score. The
positive, acceptable, and negative reasons are denoted
with the tick, confusing emoji, and cross respectively.

age a strong generation model (i.e., GPT-2 (Rad-
ford et al., 2019)) to generate reasons. We provide
the same questions that we showed to humans be-
fore (e.g., ‘The fish are the worm. it was hungry.
It refers to fish because’) to the generation model
and ask it to finish the sentences. For each ques-
tion, we leverage the beam search to find the top
five generated reasons. Merging all resources, we
get 4,095 reasons for the next step annotation.

3.3 Annotations

Similar to previous annotations, we invite annota-
tors from Amazon Turk to help annotate whether
the reasons are plausible or not. For each rea-
son, we invite five different annotators and deter-
mine the plausibility score of each reason by vot-
ing. For example, if four out of the five annotators
think one reason is plausible, its plausibility score
is then 0.8. We use the same survey to annotate the
plausibility of different reasons as Section 2.1. As
a result, we collect 20,475 annotations. The aver-
age IAA is 91.49% and the kappa coefficient (five
raters and two categories) is 0.880.

3.4 Dataset Analysis

We show the distribution of annotation results in
Figure 5, from which we can make the follow-
ing observations. First, most of the reasons given
by humans are reasonable, which fits our previ-
ous observation. Second, even though the ma-
jority of reverse reasons are not plausible, which
fits our assumption, some of them do make sense.
One scenario is that when the reason is comparing
some property of both candidates, it can be used
for both questions. For example, for the question
pair “The trophy doesn’t fit into the brown suit-

Reason Plausibility
Score

of the circumstances of his birth.” -C.B. | 0.0/1.0

he’s the one who’s given him the money | 0.2/1.0

to do so.

it was Charlie who started the discus- | 0.0/1.0

sion and who encouraged Charlie to

take up the challenge.

we feel grateful for the help from others | 1.0/1.0

charlie is the one who get help. 0.6/1.0

Table 2: Given the sentence “Bob paid for Charlie’s
college education. He is very grateful. The ‘He’ refers
to Charlie because ”, the reasons generated by GPT-2
and corresponding plausibility scores.

case because it is too small/large”, explanations
like “Only small objects can fit into large objects”
are plausible for both questions. Last but not least,
not surprisingly, most of the reasons generated by
GPT-2 have relatively low quality. To analyze why
the reasons generated by GPT-2 are not satisfying,
we show one example in Table 2. Based on the
five reasons, we can find two limitations of GPT-
2: (1) it could generate some meaningless words
(e.g., *-C.B."), which could influence the overall
quality significantly; (2) some of the answers are
related and complete sentences by themselves, but
they are not a valid reason for the question. For ex-
ample, the second reason is wrong because Char-
lie cannot be the one who has given the money.
These observations show that understanding com-
monsense knowledge is still a challenging task for
current pre-trained language representation mod-
els like GPT-2.

If at least four out of five annotators regard one
reason as plausible, we label it as a positive rea-
son. If only one or zero annotators think it is plau-
sible, we label it as a negative reason. All others
are labeled as acceptable reasons. To ensure the
clear boundary between positive and negative ex-
amples in WinoWhy, only positive and negative
reasons are selected to evaluate models. In total,
WinoWhy contains 1,270 positive and 1,595 neg-
ative examples.

4 WSC Experiments

In this section, we present the performance of cur-
rent models on WSC. By doing so, we can better
understand their strengths and limitations.
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4.1 Evaluated Methods and Implementation

Recently, pre-trained language representation
models have achieved significant improvement on
the WSC task. In this section, we evaluate the fol-
lowing three models:

1. BERT (Devlin et al., 2019): As a powerful con-
textualized word representation model, it has
been proven helpful in many downstream NLP
tasks. As shown in (Kocijan et al., 2019), we
can first convert the original WSC task into a
token prediction task and then leverage BERT
to solve the problem. We denote the base
and large model of BERT as BERT (base) and
BERT (large) respectively.

2. GPT-2 (Radford et al., 2019): GPT-2 is one of
the best pre-trained language models for gener-
ation tasks. As reported in the original paper,
we can first replace the pronouns with different
candidates and leverage the probability of the
full or partial sentences to make the prediction.
Here we evaluate the small (117 M parameters)
and the large (774 M parameters) models and
denote those settings as GPT-2 (small, full),
GPT-2 (small, partial), GPT-2 (large, full), and
GPT-2 (large, partial) respectively.

3. RoBERTa (Liu et al., 2019): RoBERTa is a
recent improved version of BERT with larger
amount of training instances and techniques
such as dynamic masking, which performs con-
sistently better than BERT over many bench-
mark datasets. We denote the base and large
models of RoBERTa as RoBERTa (base) and
RoBERTa (large) respectively.

Besides unsupervised models, as indicated
by (Kocijan et al., 2019), fine-tuning BERT
with a similar pronoun resolution dataset
WSCR (Rahman and Ng, 2012) can help boost
the performance. A later work (Sakaguchi et al.,
2019) has further enhanced the performance by
fine-tuning RoBERTa with a larger and more
balanced dataset WinoGrande.  Statistics of
these datasets are presented in Table 3. In our
experiments, we evaluate the combination of
different pre-trained models and fine-tuning
datasets, and denote them as BERT (base/large)
+ WSCR/Grande and RoBERTa (base/large) +
WSCR/Grande respectively.

Dataset #Problems | Average #Vocab
Length

WSC 273 19.1 919

WSCR 1,886 15.9 4,127

WinoGrande | 43,972 20.6 16,469

Table 3: Statistics of WSC and related datasets.

4.2 Result Analysis

From the result in Table 4, we can make follow-
ing observations: (1) Larger models perform bet-
ter on all knowledge types due to their stronger
semantic representation abilities; (2) The partial
version of GPT-2 significantly outperforms the full
version, which is consistent with the observation
in (Trinh and Le, 2018) and is mainly because the
influence of imbalanced distribution of candidate
words are relieved by only considering the sen-
tence probability after the pronouns. Such ob-
servation also explains why GPT-2 can outper-
form unsupervised BERT on WSC because mod-
els based on BERT, which rely on predicting the
probability of candidate words, cannot get rid of
such noise; (3) For most models, questions that
require spatial knowledge are the most challeng-
ing ones. One possible explanation is that the in-
ference over spatial knowledge is often triggered
by a preposition (e.g., ‘in’ or ‘behind’), which is
challenging for language representation models to
remember without enough training corpus for spa-
tial knowledge specifically; (4) Questions belong-
ing to ‘Others’ involve more complex inference,
even over multiple types of knowledge and thus
most models perform poorly on that. The only
exception is ROBERTa, which leverages its strong
language representation ability to overcome such
a challenge; (5) Fine-tuning over WinoGrande sig-
nificantly boosts the performance.

Besides the above analysis, we are also inter-
ested in how different models perform on ques-
tions that require complex reasoning types. Thus
we divide all WSC questions based on how many
knowledge types are required to solve these ques-
tions and show the result in Table 5. Based on
the result, we can see that relatively small mod-
els (e.g., BERT (base) and RoBERTa (base)) per-
form better on questions that require single knowl-
edge types rather than multiple knowledge types.
However, for large models (e.g., BERT (large)
and RoBERTa (large)), as long as the suitable
fine-tuning dataset is provided, they can achieve
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Model Property Object | Eventuality | Spatial | Quantity Others Overall
(32) (82) (88) (64) (20) (48) (273)
BERT (base) 56.25% | 64.63% 50.00% 57.81% | 50.00% | 45.83% 56.04%
BERT (large) 56.25% | 62.20% 62.50% 67.19% | 45.00% | 52.08% 61.90%
RoBERTa (base) 4375% | 51.22% 56.82% 51.56% | 55.00% | 39.58% 51.65%
RoBERTa (large) 50.00% | 51.22% 52.27% 48.44% | 65.00% | 56.25% 52.75%
GPT-2 (small, full) 56.25% | 51.22% 55.68% 51.56% | 60.00% | 47.92% 52.75%
GPT-2 (small, partial) 43.75% | 60.98% 53.41% 51.56% | 60.00% | 54.17% 53.48%
GPT-2 (large, full) 68.75% | 68.29% 61.36% 53.13% | 55.00% | 45.83% 59.34%
GPT-2 (large, partial) 65.63% | 75.61% 72.73% 62.50% | 65.00% | 60.42% 69.23%
BERT (base) + WSCR 71.88% | 64.63% 55.68% 59.38% | 65.00% | 45.83% 59.71%
BERT (large) + WSCR 81.25% | 75.61% 73.86% 67.19% | 85.00% | 64.58% 71.43%
BERT (base) + Grande 65.63% | 58.54% 60.23% 59.38% | 55.00% | 56.25% 60.34%
BERT (large) + Grande 75.00% | 70.73% 77.27% 79.69% | 75.00% | 68.75% 73.63%
RoBERTa (base) + WSCR 62.50% | 60.98% 57.95% 64.06% | 55.00% | 64.58% 63.00%
RoBERTa (large) + WSCR 84.38% | 84.15% 79.55% 76.56% | 70.00% | 81.25% 80.95%
RoBERTa (base) + Grande 75.00% | 67.07% 72.73% 75.00% | 80.00% | 70.83% 72.16%
RoBERTa (large) + Grande || 90.63% | 84.15% 93.18% 84.38% | 90.00% | 89.58% || 87.55%

Table 4: Performances of different models on WSC questions. Questions are grouped by their major knowledge
types. If one question contains more than one knowledge types, it will be counted in all categories. If one question
contains only ‘Others’ knowledge, it will be grouped into ‘Others’. Numbers of questions are shown in brackets.

Model Single | Multiple
(222) 51)
BERT (base) 56.31% | 54.90%
BERT (large) 63.06% | 56.86%
RoBERTa (base) 53.15% | 45.10%
RoBERTa (large) 54.05% | 47.06%
GPT-2 (small, full) 51.80% | 56.86%
GPT-2 (small, partial) 53.48% | 54.90%
GPT-2 (large, full) 58.56% 62.74%
GPT-2 (large, partial) 70.27% | 64.71%
BERT (base) + WSCR 5991% | 58.82%
BERT (large) + WSCR 70.27% | 76.47%
BERT (base) + Grande 61.26% | 56.86%
BERT (large) + Grande 72.52% | 78.43%
RoBERTa (base) + WSCR 64.86% | 54.90%
RoBERTa (large) + WSCR 81.53% | 78.43%
RoBERTa (base) + Grande 7297% | 68.63%
RoBERTa (large) + Grande || 86.94% | 90.20%

Table 5: Performances of different models on differ-
ent sets of WSC questions. Questions are grouped by
the number of essential knowledge types (i.e., single or
multiple). Numbers of questions are shown in brackets.

similar and even better performance on the com-
plicated questions. In general, this observation
is consistent with our previous observations that
large models are capable of solving complex ques-
tions from the ‘Others’ category with the support
of suitable fine-tuning datasets.

5 WinoWhy Experiments

In this section, we conduct experiments to investi-
gate whether current models can understand how
human beings solve WSC questions.

5.1 Unsupervised Setting

Experiment Details: To evaluate whether pre-
trained language representation models, which
achieve the state-of-the-art performance on the
WSC task, can distinguish the plausible reasons
against the wrong ones, following (Kocijan et al.,
2019; Radford et al., 2019; Sakaguchi et al., 2019),
we first connect the questions and candidate rea-
sons into single sentences, put them into the mod-
els, and take the returned probability as the predic-
tion. Higher probability indicates higher plausibil-
ity prediction. Best thresholds are selected for dif-
ferent models to calculate the final accuracy. Sim-
ilar to Section 4, we evaluate BERT (base), BERT
(large), GPT-2 (small), GPT-2 (large), RoBERTa
(base), and RoBERTa (large) on WinoWhy. For
GPT-2 models, as the partial setting has been
proved more useful, we only report the perfor-
mances based on the partial setting. Besides
these two, we also consider BERT/RoBERTa +
WSCR/Grande combinations as additional unsu-
pervised approaches because they are not directly
optimized towards the WinoWhy task.

Result Analysis: Based on the results shown
in Table 6, we can observe that even though
pre-trained language representation models have
achieved significant improvement over the orig-
inal WSC task, they are still struggling on the
WinoWhy task. Moreover, experimental results
on different knowledge types prove that such a
conclusion is universal rather than for a specific
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Model Property | Object | Eventuality | Spatial | Quantity | Others Overall

(337) (856) (928) (674) (206) (496) (2865)
Majority Voting || 5430% | 5631% | 5647% | 52.67% | 52.43% | 55.24% || 55.67%
BERT (base) 56.97% | 56.54% 56.25% 54.01% | 51.94% | 55.44% || 55.92%
BERT (large) 56.38% | 57.24% 56.14% 5341% | 51.94% | 56.65% | 56.13%
RoBERTa (base) 54.30% | 56.31% 56.90% 52.67% | 5291% | 55.44% || 55.78%
RoBERTa (large) 54.30% | 56.43% 56.47% 52.67% | 52.43% | 55.04% | 55.67%
GPT-2 (small) 56.68% | 54.91% 57.11% 54.45% | 59.71% | 57.66% | 56.37%
GPT-2 (large) 57.57% | 54.44% 54.42% 55.93% | 54.85% | 54.84% || 55.77%
BERT (base) + WSCR 55.49% | 56.31% 56.90% 5297% | 51.94% | 55.04% || 55.71%
BERT (large) + WSCR 56.97% | 56.31% 56.79% 53.12% | 5291% | 55.04% || 55.99%
BERT (base) + Grande 57.27% | 56.43% 57.22% 5341% | 5291% | 55.24% || 55.99%
BERT (large) + Grande 54.90% | 56.07% 56.57% 52.67% | 5291% | 55.44% | 55.71%
RoBERTa (base) + WSCR 52.82% | 55.61% 58.41% 53.26% | 56.31% | 55.04% || 56.19%
RoBERTa (large) + WSCR 54.90% | 58.06% 56.90% 52.08% | 5291% | 56.85% | 56.23%
RoBERTa (base) + Grande 56.08% | 58.88% 58.19% 55.64% | 57.28% | 57.66% | 58.05%
RoBERTa (large) + Grande || 56.08% | 58.06% 59.59% 56.82% | 56.80% | 58.06% || 58.18%

Table 6: Performances of different models on WinoWhy questions. We report performances of different reason
sets based on the required knowledge types. Reasons could belong to multiple categories as the original WSC
questions could contain more than one knowledge types. Numbers of questions are shown in brackets.

kind of knowledge. One possible reason is that
even though the designers of WSC are trying to
avoid any statistical correlation between the an-
swer and the trigger word, such statistical corre-
lation still exists. As a result, pre-trained lan-
guage representation models can learn such cor-
relation from large-scale training corpus and thus
can answer WSC questions without fully under-
standing the reasons behind. Besides that, an-
other interesting finding is that GPT-2 (large), as
the best unsupervised model on WSC, performs
poorly on WinoWhy. One possible explanation is
that a lot of negative examples are generated with
GPT-2 (large), and thus the dataset brings extra
challenges for GPT-2 (large). Last but not least,
we can find that fine-tuning over similar dataset
(i.e., WSCR and WinoGrande) can slightly help
RoBERTx,, but the effect is still quite limited. This
is probably because such a fine-tuning procedure
only teaches pre-trained models to better answer
WSC questions rather than understand the com-
monsense knowledge behind.

5.2 Supervised Setting

Besides the unsupervised setting, we are also in-
terested in whether a model can learn to distin-
guish reasons through supervised learning.

5.2.1 Experiment Details

Here, we randomly divide the annotated dataset
into five groups and conduct five-fold cross-
validation. We tried two different splitting meth-

Setting | Model || Accuracy | std
Glove + LSTM 59.74% 1.04%
BERT (base) 77.48% | 2.06%
BERT (large) 77.39% 1.54%
Five-fold (q) | RoBERTa (base) 75.01% 2.48%
RoBERTa (large) 75.04% 1.97%
GPT-2 (small) 74.48% | 2.43%
GPT-2 (large) 75.89% 1.35%
Glove + LSTM 64.92% 1.76%
BERT (base) 77.77% 1.54%
BERT (large) 77.50% | 2.43%
Five-fold (r) | RoBERTa (base) 74.41% 1.35%
RoBERTa (large) 74.66% 1.75%
GPT-2 (small) 76.19% | 3.69%
GPT-2 (large) 76.13% | 4.30%

Table 7: Accuracy and the standard deviation (std) re-
sults of evaluated supervised models.

ods, one is based on the WSC questions and the
other one is based on the reasons. We denote these
two settings as Five-fold (q) and Five-fold (r) re-
spectively. As WinoWhy can be viewed as a text
classification task, we adopt the traditional encod-
ing+classification framework and leverage a two-
layer feed-forward neural network as the classifi-
cation module. Seven different encoding methods
(Bi-LSTM (Hochreiter and Schmidhuber, 1997),
BERT (base), BERT (large), GPT-2 (small), GPT-
2 (large), RoBERTa (base), and RoBERTa (large))
are evaluated. For LSTM, we choose the number
of layers to be two, the hidden embedding dimen-
sion to be 300, and Glove (Pennington et al., 2014)
to be the word embedding. All models are trained
for ten epochs. Average accuracies over folds and
standard deviations are reported.
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5.2.2 Result Analysis

The results in Table 7 demonstrate that in gen-
eral, WinoWhy is a challenging task as the best
supervised model can only achieve 77.77% ac-
curacy on a two-class classification task. Be-
sides that, we also notice that all models are get-
ting relatively large standard deviations, especially
under the ‘Five-fold (r)’ setting, which may im-
ply that these supervised models are sensitive to
the dataset distribution. Both of these observa-
tions show that training a supervised model on
WinoWhy is not enough to fully understand the
reasons behind WSC decisions and we may need
to include reasoning over more complex knowl-
edge to solve this challenging problem.

5.3 Discussion

Based on the observations that fine-tuning over
WSCR and WinoGrande can only help solve WSC
rather than WinoWhy and the machine-learning
based models over WinoWhy can be sensitive to
the dataset distribution, it is reasonable to suspect
that the improvement achieved by fine-tuning over
a similar or same dataset might come from bet-
ter dataset fitting rather than better commonsense
reasoning. As the original purpose of proposing
both WSC and WinoWhy is to evaluate how good
current Al systems can understand commonsense
knowledge rather than solve these questions by fit-
ting the dataset, the unsupervised setting might be
the more reasonable evaluation setting.

6 Related Work

As an important knowledge resource for many ar-
tificial intelligence systems, commonsense knowl-
edge covers various knowledge categories like
causality (Sap et al., 2019), reasoning (Schu-
bert, 2015), property (Liu and Singh, 2004),
and quantity (Elazar et al., 2019), and has been
proven crucial in many downstream tasks like
question answering (Lin et al., 2019), dialogue
system (Zhou et al., 2018), reading comprehen-
sion (Wang et al., 2018), and pronoun corefer-
ence resolution (Levesque et al., 2012). Among
all these tasks, Winograd Schema Challenge
(WSC) (Levesque et al., 2012) is viewed as one of
the most challenging ones because solving WSC
questions typically requires inference over vari-
ous kinds of commonsense knowledge. Conven-
tionally, people tried to solve WSC questions in
an unsupervised way by leveraging either search

engines (Emami et al., 2018), linguistic knowl-
edge (Zhang et al., 2019, 2020), or language rep-
resentation models (Kocijan et al., 2019). Experi-
mental results showed that these models still can-
not fully solve the problem but we are not clear
about how to further improve them. One impor-
tant reason behind this is that the conventional def-
inition of commonsense knowledge is too vague
and thus we are not clear about what kinds of
knowledge are still challenging for current com-
monsense reasoning models. In this paper, we
use the WSC task as the breaking point to con-
duct a deep diagnosis of essential commonsense
knowledge types, which sheds some light on how
to achieve a better commonsense reasoning system
in the future.

7 Conclusion

In this paper, we presented the first deep diagno-
sis of essential commonsense knowledge for an-
swering Winograd Schema Challenge questions.
By doing so, we better understand the strengths
and limitations of current commonsense reason-
ing models. More importantly, we better know
about what kinds of commonsense knowledge are
required to be acquired for better commonsense
reasoning. On top of the collected reasons, we de-
velop a new task called WinoWhy, which requires
models to select the plausible reasons for answer-
ing WSC questions. Experiments show that even
though current models have gained significant im-
provement over the original WSC task, they still
cannot fully understand the reasons behind.
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