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Abstract

We present the first human-annotated dialogue-
based relation extraction (RE) dataset Dialo-
gRE, aiming to support the prediction of re-
lation(s) between two arguments that appear
in a dialogue. We further offer DialogRE as
a platform for studying cross-sentence RE as
most facts span multiple sentences. We ar-
gue that speaker-related information plays a
critical role in the proposed task, based on
an analysis of similarities and differences be-
tween dialogue-based and traditional RE tasks.
Considering the timeliness of communication
in a dialogue, we design a new metric to
evaluate the performance of RE methods in a
conversational setting and investigate the per-
formance of several representative RE meth-
ods on DialogRE. Experimental results demon-
strate that a speaker-aware extension on the
best-performing model leads to gains in both
the standard and conversational evaluation set-
tings. DialogRE is available at https://

dataset.org/dialogre/.

1 Introduction

Cross-sentence relation extraction, which aims to
identify relations between two arguments that are
not mentioned in the same sentence or relations
that cannot be supported by any single sentence,
is an essential step in building knowledge bases
from large-scale corpora automatically (Ji et al.,
2010; Swampillai and Stevenson, 2010; Surdeanu,
2013). It has yet to receive extensive study in nat-
ural language processing, however. In particular,
although dialogues readily exhibit cross-sentence
relations, most existing relation extraction tasks fo-
cus on texts from formal genres such as profession-
ally written and edited news reports or well-edited
websites (Elsahar et al., 2018; Yao et al., 2019;

† Equal contribution.

S1: Hey Pheebs.
S2: Hey!
S1: Any sign of your brother?
S2: No, but he’s always late.
S1: I thought you only met him once?
S2: Yeah, I did. I think it sounds y’know big sistery,

y’know, ‘Frank’s always late.’
S1: Well relax, he’ll be here.

Argument pair Trigger Relation type
R1 (Frank, S2) brother per:siblings
R2 (S2, Frank) brother per:siblings
R3 (S2, Pheebs) none per:alternate names
R4 (S1, Pheebs) none unanswerable

Table 1: A dialogue and its associated instances in Di-
alogRE. S1, S2: anoymized speaker of each utterance.

Mesquita et al., 2019; Grishman, 2019), while dia-
logues have been under-studied.

In this paper, we take an initial step towards
studying relation extraction in dialogues by con-
structing the first human-annotated dialogue-based
relation extraction dataset, DialogRE. Specifically,
we annotate all occurrences of 36 possible relation
types that exist between pairs of arguments in the
1,788 dialogues originating from the complete tran-
scripts of Friends, a corpus that has been widely
employed in dialogue research in recent years (Cati-
zone et al., 2010; Chen and Choi, 2016; Chen et al.,
2017; Zhou and Choi, 2018; Rashid and Blanco,
2018; Yang and Choi, 2019). Altogether, we an-
notate 10,168 relational triples. For each (subject,
relation type, object) triple, we also annotate the
minimal contiguous text span that most clearly ex-
presses the relation; this may enable researchers
to explore relation extraction methods that provide
fine-grained explanations along with evidence sen-
tences. For example, the bolded text span “brother”
in Table 1 indicates the PER:SIBLINGS relation (R1
and R2) between speaker 2 (S2) and “Frank”.

Our analysis of DialogRE indicates that the sup-
porting text for most (approximately 96.0%) an-

https://dataset.org/dialogre/
https://dataset.org/dialogre/
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notated relational triples includes content from
multiple sentences, making the dataset ideal for
studying cross-sentence relation extraction. This
is perhaps because of the higher person pronoun
frequency (Biber, 1991) and lower information
density (Wang and Liu, 2011) in conversational
texts than those in formal written texts. In addi-
tion, 65.9% of relational triples involve arguments
that never appear in the same turn, suggesting that
multi-turn information may play an important role
in dialogue-based relation extraction. For example,
to justify that “Pheebs” is an alternate name of S2
in Table 1, the response of S2 in the second turn is
required as well as the first turn.

We next conduct a thorough investigation of
the similarities and differences between dialogue-
based and traditional relation extraction tasks
by comparing DialogRE and the Slot Filling
dataset (McNamee and Dang, 2009; Ji et al., 2010,
2011; Surdeanu, 2013; Surdeanu and Ji, 2014), and
we argue that a relation extraction system should
be aware of speakers in dialogues. In particular,
most relational triples in DialogRE (89.9%) signify
either an attribute of a speaker or a relation between
two speakers. The same phenomenon occurs in an
existing knowledge base constructed by encyclope-
dia collaborators, relevant to the same dialogue cor-
pus we use for annotation (Section 3.2). Unfortu-
nately, most previous work directly applies existing
relation extraction systems to dialogues without ex-
plicitly considering the speakers involved (Yoshino
et al., 2011; Wang and Cardie, 2012).

Moreover, traditional relation extraction meth-
ods typically output a set of relations only after
they have read the entire document and are free
to rely on the existence of multiple mentions of a
relation throughout the text to confirm its existence.
However, these methods may be insufficient for
powering a number of practical real-time dialogue-
based applications such as chatbots, which would
likely require recognition of a relation at its first
mention in an interactive conversation. To encour-
age automated methods to identify the relationship
between two arguments in a dialogue as early as
possible, we further design a new performance eval-
uation metric for the conversational setting, which
can be used as a supplement to the standard F1
measure (Section 4.1).

In addition to dataset creation and metric de-
sign, we adapt a number of strong, representative
learning-based relation extraction methods (Zeng

et al., 2014; Cai et al., 2016; Yao et al., 2019;
Devlin et al., 2019) and evaluate them on Dialo-
gRE to establish baseline results on the dataset
going forward. We also extend the best-performing
method (Devlin et al., 2019) among them by letting
the model be aware of the existence of arguments
that are dialogue participants (Section 4.2). Exper-
iments on DialogRE demonstrate that this simple
extension nevertheless yields substantial gains on
both standard and conversational RE evaluation
metrics, supporting our assumption regarding the
critical role of tracking speakers in dialogue-based
relation extraction (Section 5).

The primary contributions of this work are as
follows: (i) we construct the first human-annotated
dialogue-based relation extraction dataset and thor-
oughly investigate the similarities and differences
between dialogue-based and traditional relation ex-
traction tasks, (ii) we design a new conversational
evaluation metric that features the timeliness aspect
of interactive communications in dialogue, and (iii)
we establish a set of baseline relation extraction
results on DialogRE using standard learning-based
techniques and further demonstrate the importance
of explicit recognition of speaker arguments in
dialogue-based relation extraction.

2 Data Construction

We use the transcripts of all ten seasons (263
episodes in total) of an American television sit-
uation comedy Friends, covering a range of topics.
We remove all content (usually in parentheses or
square brackets) that describes non-verbal informa-
tion such as behaviors and scene information.

2.1 Relation Schema

We follow the slot descriptions1 of the Slot Filling
(SF) task in the Text Analysis Conference Knowl-
edge Base Population (TAC-KBP) (McNamee and
Dang, 2009; Ji et al., 2010, 2011; Surdeanu, 2013;
Surdeanu and Ji, 2014), which primarily focuses
on biographical attributes of person (PER) enti-
ties and important attributes of organization (ORG)
entities. As the range of topics in Friends is rel-
atively restricted compared to large-scale news
corpora such as Gigaword (Parker et al., 2011),
some relation types (e.g., PER:CHARGES, and
ORG:SUBSIDIARIES) seldom appear in the texts.
Additionally, we consider new relation types such
as PER:GIRL/BOYFRIEND and PER:NEIGHBOR that

1http://surdeanu.info/kbp2014/def.php.
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ID Subject Relation Type Object Inverse Relation TR (%)

1 PER per:positive impression NAME 70.4
2 PER per:negative impression NAME 60.9
3 PER per:acquaintance NAME per:acquaintance 22.2
4 PER per:alumni NAME per:alumni 72.5
5 PER per:boss NAME per:subordinate 58.1
6 PER per:subordinate NAME per:boss 58.1
7 PER per:client NAME 50.0
8 PER per:dates NAME per:dates 72.5
9 PER per:friends NAME per:friends 94.7
10 PER per:girl/boyfriend NAME per:girl/boyfriend 86.1
11 PER per:neighbor NAME per:neighbor 71.2
12 PER per:roommate NAME per:roommate 89.9
13 PER per:children? NAME per:parents 85.4
14 PER per:other family? NAME per:other family 52.0
15 PER per:parents? NAME per:children 85.4
16 PER per:siblings? NAME per:siblings 80.5
17 PER per:spouse? NAME per:spouse 86.7
18 PER per:place of residence?? NAME gpe:residents of place 42.9
19 PER per:place of birth?? NAME gpe:births in place 100.0
20 PER per:visited place NAME gpe:visitors of place 43.0
21 PER per:origin? NAME 3.8
22 PER per:employee or member of? NAME org:employees or members 47.2
23 PER per:schools attended? NAME org:students 37.5
24 PER per:works NAME 27.0
25 PER per:age? VALUE 0.0
26 PER per:date of birth? VALUE 66.7
27 PER per:major STRING 50.0
28 PER per:place of work STRING 45.1
29 PER per:title? STRING 0.5
30 PER per:alternate names? NAME/STRING 0.7
31 PER per:pet NAME/STRING 0.3
32 GPE gpe:residents of place?? NAME per:place of residence 42.9
33 GPE gpe:births in place?? NAME per:place of birth 100.0
34 GPE gpe:visitors of place NAME per:visited place 43.0
35 ORG org:employees or members NAME per:employee or member of 47.2
36 ORG org:students? NAME per:schools attended 37.5
37 NAME unanswerable NAME/STRING/VALUE —

Table 2: Relation Types in DialogRE. Relation types with ? represent the existing relation types defined in the
TAC-KBP SF task, and we combine three SF fine-grained relation types about cities, states, and countries in a
single relation type with ??. TR: Trigger ratio, representing the percentage of relational triples of a certain relation
type that are accompanied by triggers.

frequently appear in Friends. We list all 36 relation
types that have at least one relational instance in the
transcripts in Table 2 and provide definitions and
examples of new relation types in Appendix A.1.

2.2 Annotation

We focus on the annotation of relational triples
(i.e., (subject, relation type, object)) in which at
least one of the arguments is a named entity. We
regard an uninterrupted stream of speech from one
speaker and the name of this speaker as a turn.

As we follow the TAC-KBP guideline to an-
notate relation types and design new types, we
use internal annotators (two authors of this paper)
who are familiar with this task. For a pilot anno-
tation, annotator A annotates relational triples in
each scene in all transcripts and form a dialogue

by extracting the shortest snippet of contiguous
turns that covers all annotated relational triples and
sufficient supportive contexts in this scene. The
guidelines are adjusted during the annotation.2 We
prefer to use speaker name (i.e., the first word or
phrase of a turn, followed by a colon) as one argu-
ment of a speaker-related triple if the correspond-
ing full names or alternate names of the speaker
name also appear in the same dialogue, except for
relation PER:ALTERNATE NAMES in which both
mentions should be regarded as arguments. For
an argument pair (i.e., (subject, object)), there
may exist multiple relations between them, and
we annotate all instances of all of them. For each

2As the pilot annotation only involves one annotator, we
admit there may exist a certain degree of bias in defining new
relation types and labeling argument pairs.
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triple, we also annotate its trigger: the smallest
extent (i.e., span) of contiguous text in the dia-
logue that most clearly indicates the existence of
the relation between two arguments. If there exist
multiple spans that can serve as triggers, we only
keep one for each triple. For relation types such
as PER:TITLE and PER:ALTERNATE NAMES, it is
difficult to identify such supportive contexts, and
therefore we leave their triggers empty. For each
relational triple, we annotate its inverse triple if its
corresponding inverse relation type exists in the
schema (e.g., PER:CHILDREN and PER:PARENTS)
while the trigger remains unchanged.

In the second process, annotator B annotates
the possible relations between candidate pairs an-
notated by annotator A (previous relation labels
are hidden). Cohen’s kappa among annotators is
around 0.87. We remove the cases when annotators
cannot reach a consensus. On average, each dia-
logue in DialogRE contains 4.5 relational triples
and 12.9 turns, as shown in Table 3. See Table 1
for relational triple examples (R1, R2, and R3).

DialogRE

Average dialogue length (in tokens) 225.8
Average # of turns 12.9
Average # of speakers 3.3
Average # of sentences 21.8
Average # of relational instances 4.5
Average # of no-relation instances 1.2

Table 3: Statistics per dialogue of DialogRE.

2.3 Negative Instance Generation, Data Split,
and Speaker Name Anonymization

After our first round of annotation, we use any
two annotated arguments associated with each di-
alogue to generate candidate relational triples, in
which the relation between two arguments is unan-
swerable based on the given dialogue or beyond
our relation schema. We manually filter out can-
didate triples for which there is “obviously” no
relation between an argument pair in consideration
of aspects such as argument type constraints (e.g.,
relation PER:SCHOOLS ATTENDED can only exist
between a PER name and an ORG name). After
filtering, we keep 2,100 triples in total, whose two
arguments are in “no relation”, and we finally have
10,168 triples for 1,788 dialogues. We randomly
split them at the dialogue level, with 60% for train-
ing, 20% for development, and 20% for testing.

The focus of the proposed task is to identify

relations between argument pairs based on a di-
alogue, rather than exploiting information in Di-
alogRE beyond the given dialogue or leveraging
external knowledge to predict the relations between
arguments (e.g., characters) specific to a particu-
lar television show. Therefore, we anonymize all
speaker names (Section 2.2) in each dialogue and
annotated triples and rename them in chronological
order within the given dialogue. For example, S1
and S2 in Table 1 represent the original speaker
names “Rachel” and “Phoebe”, respectively.

3 Data Comparisons and Discussions

3.1 Comparison Between DialogRE and SF

As a pilot study, we examine the similarities and
differences between dialogue-based and traditional
relation extraction datasets that are manually
annotated. We compare DialogRE with the
official SF (2013-2014) dataset (Surdeanu, 2013;
Surdeanu and Ji, 2014) as 47.2% of relation types
in DialogRE originate from the SF relation types
(Section 2.1), and 92.2% of the source documents
in it that contain ground truth relational triples
are formally written newswire reports (72.8%) or
well-edited web documents (19.4%) compared to
the remaining documents from discussion fora.
We show the relation distributions in DialogRE
and SF in Figure 1 and Figure 2 (Appendix A.2),
respectively. Half of the top ten relation types in Di-
alogRE are newly defined (PER:GIRL/BOYFRIEND,
PER:POSITIVE(NEGATIVE) IMPRESSION,
PER:FRIENDS, and PER:ROOMMATE), partially
justifying the need for new relation types.

Argument Type: Based on the predefined SF and
DialogRE relation types, a subject is expected to be
an entity of type PER, ORG, or geo-political entity
(GPE). Notably, subjects of most relational triples
(96.8% vs. 69.7% in the SF dataset) in DialogRE
are person names. The coarse-grained object type
is entity, string, or value (i.e., a numerical value or
a date). As shown in Table 4, we observe that a
higher proportion (80.1%) of objects are entities in
DialogRE compared to that in SF (65.3%).

DialogRE SF

Entity 80.1 (6,460) 65.3 (2,167)
String 18.9 (1,524) 25.4 (843)
Value 1.0 (84) 9.2 (306)

Table 4: Coarse-grained object type distributions (%)
of DialogRE and SF with frequencies in brackets.
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In particular, the subjects of 77.3% of relational
triples are speaker names, and more than 90.0%
of relational triples contain at least one speaker ar-
gument. The high percentage of “speaker-centric”
relational triples and the low percentage of ORG
and GPE arguments in DialogRE is perhaps be-
cause the transcripts for annotation are from a sin-
gle situation comedy that involves a small group of
characters in a very limited number of scenes (see
more discussions in Section 5.3).

Distance Between Argument Pairs: It has been
shown that there is a longer distance between
two arguments in the SF dataset (Surdeanu, 2013;
Huang et al., 2017) compared to that in many
widely used human-annotated relation extraction
datasets such as ACE (Doddington et al., 2004)
and SemEval (Hendrickx et al., 2010). However,
it is not trivial to compute an accurate distance
between two arguments in a dialogue, especially
for cases containing arguments that are speaker
names. We instead consider different types of dis-
tances (e.g., average and minimum) between two
argument mentions in a dialogue. We argue that
DialogRE exhibits a similar level of difficulty as SF
from the perspective of the distance between two
arguments. 41.3% of arguments are separated by at
least seven words even considering the minimum
distance, and the percentage can reach as high as
96.5% considering the average distance, contrast
with 46.0% in SF (Huang et al., 2017) and 59.8%
in a recently released cross-sentence relation extrac-
tion dataset DocRED, in which Wikipedia articles
serve as documents (Yao et al., 2019). Note that the
provenance/evidence sentences in SF and DocRED
are provided by automated systems or annotators.
Also, 95.6% of relational triples from an annotated
subset of DialogRE (Section 5.2) require reasoning
over multiple sentences in a dialogue, compared
with 40.7% in DocRED (Table 7). See Figure 3 in
Appendix A.3 for more details.

3.2 Comparison Between DialogRE and
Existing Relational Triples

We also collect 2,341 relational triples related to
Friends, which are summarized by a community of
contributors, from a collaborative encyclopedia.3

We remove triples of content-independent relation
types such as DIRECTED BY, GUEST STARS, and
NUMBER OF EPISODES.

3https://friends.fandom.com/wiki/Friends.

We find that 93.8% of all 224 relation types
in these triples can be mapped to one of the 36
relation types in our relation schema (e.g., HUS-
BAND, EX-HUSBAND, and WIFE can be mapped to
PER:SPOUSE) except for the remaining relatively
rare or implicit relation types such as PROM DATE

and GENDER, and KISSED, demonstrating the rela-
tion schema we use for annotation is capable of cov-
ering most of the important relation types labeled
by the encyclopedia community of contributors.

On the other hand, the relatively small number
of the existing triples and the moderate size of our
annotated triples in DialogRE may suggest the low
information density (Wang and Liu, 2011) in con-
versational speech in terms of relation extraction.
For example, the average annotated triple per sen-
tence in DialogRE is merely 0.21, compared to
other exhaustively annotated datasets ACE (0.73)
and KnowledgeNet (Mesquita et al., 2019) (1.44),
in which corpora are formal written news reports
and Wikipedia articles, respectively.

3.3 Discussions on Triggers
As annotated triggers are rarely available in ex-
isting relation extraction datasets (Aguilar et al.,
2014), the connections between different relation
types and trigger existence are under-investigated.

Relation Type: In DialogRE, 49.6% of all
relational triples are annotated with triggers.
We find that argument pairs are frequently
accompanied by triggers when (1) arguments
have the same type such as PER:FRIENDS,
(2) strong emotions are involved (e.g.,
PER:POSITIVE(NEGATIVE) IMPRESSION),
or (3) the relation type is related to death or birth
(e.g., GPE:BIRTHS IN PLACE). In comparison,
a relation between two arguments of different
types (e.g., PER:ORIGIN and PER:AGE) is more
likely to be implicitly expressed instead of relying
on triggers. This is perhaps because there exist
fewer possible relations between such an argument
pair compared to arguments of the same type,
and a relatively short distance between such an
argument pair might be sufficient to help the
listeners understand the message correctly. For
each relation type, we report the percentage of
relational triples with triggers in Table 2.

Argument Distance: We assume the existence of
triggers may allow a longer distance between ar-
gument pairs in a text as they help to decrease
ambiguity. This assumption may be empirically
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validated by the longer average distance (68.3 to-
kens) between argument pairs with triggers in a
dialogue, compared to the distance (61.2 tokens)
between argument pairs without any triggers.

4 Task Formulations and Methods

4.1 Dialogue-Based Relation Extraction
Given a dialogue D = s1 : t1, s2 : t2, . . . , sm : tm
and an argument pair (a1, a2), where si and ti de-
note the speaker ID and text of the ith turn, re-
spectively, and m is the total number of turns, we
evaluate the performance of approaches in extract-
ing relations between a1 and a2 that appear in D
in the following two settings.

Standard Setting: As the standard setting of re-
lation extraction tasks, we regard dialogue D as
document d. The input is a1, a2, and d, and the ex-
pected output is the relation type(s) between a1 and
a2 based on d. We adopt F1, which is the harmonic
mean of precision (P) and recall (R), for evaluation.

Conversational Setting: Instead of only consid-
ering the entire dialogue, here we can regard the
first i ≤ m turns of the dialogue as d. Accordingly,
we propose a new metric F1c, the harmonic mean
of conversational precision (Pc) and recall (Rc),
as a supplement to the standard F1. We start by
introducing some notation that will be used in the
definition of F1c. LetOi denote the set of predicted
relation types when the input is a1, a2, and the first
i turns (i.e., d = s1 : t1, s2 : t2, . . . , si : ti). For an
argument pair (a1, a2), let L denote its correspond-
ing set of relation types that are manually annotated
based on the full dialogue. R represents the set of
36 relation types. By definition, Oi, L ⊆ R. We
define that auxiliary function (x) returns m if x
does not appear in D. Otherwise, it returns the
index of the turn where x first appears.

We define auxiliary function ı(r) as: (i) For each
relation type r ∈ L, if there exists an annotated
trigger for r, ı(r) = (λr) where λr denotes the
trigger. Otherwise, ı(r) = m. (ii) For each r ∈
R\L, ı(r) = 1. We define the set of relation types
that are evaluable based on the first i turns by Ei:

Ei = {r | i ≥ max{(a1), (a2), ı(r)}} (1)

The interpretation of Equation 1 is that given d
containing the first i turns in a dialogue, relation
type r associated with a1 and a2 is evaluable if a1,
a2, and the trigger for r have all been mentioned
in d. The definition is based on our assumption

that we can roughly estimate how many turns we
require to predict the relations between two argu-
ments based on the positions of the arguments and
triggers, which most clearly express relations. See
Section 5.2 for more discussions.

The conversational precision and recall for an
input instance D, a1, and a2 are defined as:

Pc(D, a1, a2) =

∑m
i=1 |Oi ∩ L ∩ Ei|∑m

i=1 |Oi ∩ Ei|
(2)

Rc(D, a1, a2) =

∑m
i=1 |Oi ∩ L ∩ Ei|∑m

i=1 |L ∩ Ei|
(3)

We average the conversational precision/recall
scores of all instances to obtain the final conversa-
tional precision/recall.

Pc =

∑
D′,a′1,a

′
2

Pc(D
′, a′1, a

′
2)∑

D′,a′1,a
′
2
1

(4)

Rc =

∑
D′,a′1,a

′
2

Rc(D
′, a′1, a

′
2)∑

D′,a′1,a
′
2
1

(5)

and F1c = 2 · Pc · Rc/(Pc + Rc).

4.2 Baselines

Majority: If a given argument pair does not appear
in the training set, output the majority relation type
in the training set as the prediction. Otherwise,
output the most frequent relation type associated
with the two arguments in the training set.

CNN, LSTM, and BiLSTM: Following previous
work (Yao et al., 2019), we adapt three base-
lines (Zeng et al., 2014; Cai et al., 2016) that use dif-
ferent document encoders. We refer readers to Yao
et al. (2019) for more details.

BERT: We follow the framework of fine-tuning
a pre-trained language model on a downstream
task (Radford et al., 2018) and use BERT (De-
vlin et al., 2019) as the pre-trained model.
We concatenate the given d and (a1, a2) with
classification token [CLS] and separator to-
ken [SEP] in BERT as the input sequence
[CLS]d[SEP]a1[SEP]a2[SEP]. We denote
the final hidden vector corresponding to [CLS] as
C ∈ RH , whereH is the hidden size. For each rela-
tion type i, we introduce a vectorWi ∈ RH and ob-
tain the probability Pi of the existence of i between
a1 and a2 based on d by Pi = sigmoid(CW T

i ).
The cross-entropy loss is used.
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Method Dev Test
F1 (σ) F1c (σ) F1 (σ) F1c (σ)

Majority 38.9 (0.0) 38.7 (0.0) 35.8 (0.0) 35.8 (0.0)
CNN 46.1 (0.7) 43.7 (0.5) 48.0 (1.5) 45.0 (1.4)
LSTM 46.7 (1.1) 44.2 (0.8) 47.4 (0.6) 44.9 (0.7)
BiLSTM 48.1 (1.0) 44.3 (1.3) 48.6 (1.0) 45.0 (1.3)
BERT 60.6 (1.2) 55.4 (0.9) 58.5 (2.0) 53.2 (1.6)
BERTS 63.0 (1.5) 57.3 (1.2) 61.2 (0.9) 55.4 (0.9)

Table 5: Performance of relation extraction methods on DialogRE in both the standard and conversational settings.

BERTS: We propose a modification to the input
sequence of the above BERT baseline with two
motivations: (1) help a model locate the start posi-
tions of relevant turns based on the arguments that
are speaker names, and (2) prevent a model from
overfitting to the training data. Formally, given an
argument pair (a1, a2) and its associated document
d = s1 : t1, s2 : t2, . . . , sn : tn, we construct
d̂ = ŝ1 : t1, ŝ2 : t2, . . . , ŝn : tn, where ŝi is:

ŝi =


[S1] if si = a1

[S2] if si = a2

si otherwise

(6)

where [S1] and [S2] are two newly-introduced
special tokens. In addition, we define âk (k ∈
{1, 2}) to be [Sk] if ∃i(si = ak), and ak
otherwise. The modified input sequence to
BERT is [CLS]d̂[SEP]â1[SEP]â2[SEP]. In
Appendix A.4, we investigate in three alternative
input sequences. It is worth mentioning that a mod-
ification that does not disambiguate speaker argu-
ments from other arguments performs substantially
worse than the above speaker-aware modification.

5 Experiment

5.1 Implementation Details
CNN, LSTM, and BiLSTM Baselines: The
CNN/LSTM/BiLSTM encoder takes as features
GloVe word embeddings (Pennington et al., 2014),
mention embeddings, and type embeddings. We
assign the same mention embedding to mentions of
the same argument and obtain the type embeddings
based on named entity types of the two arguments.
We use spaCy4 for entity typing.

Language Model Fine-Tuning: We use the un-
cased base model of BERT released by Devlin et al.
(2019). We truncate a document when the input se-
quence length exceeds 512 and fine-tune BERT us-
ing a batch size of 24 and a learning rate of 3×10−5

4https://spacy.io/.

for 20 epochs. Other parameters remain unchanged.
The embeddings of newly-introduced special to-
kens (e.g., [S1]) are initialized randomly.

5.2 Results and Discussions

We report the performance of all baselines in both
the standard and conversational settings in Table 5.
We run each experiment five times and report the
average F1 and F1c along with standard deviation
(σ). The fine-tuned BERT method already outper-
form other baselines (e.g., BiLSTM that achieves
51.1% in F1 on DocRED (Yao et al., 2019)), and
our speaker-aware extension to the BERT baseline
further leads to 2.7% and 2.2% improvements in F1
and F1c, respectively, on the test set of DialogRE,
demonstrating the importance of tracking speakers
in dialogue-based relation extraction.

Conversational Metric: We randomly select 269
and 256 instances, which are associated with 50
dialogues from each of the dev and test sets, respec-
tively. For each of relational instances (188 in total)
that are previously labeled with triggers in the sub-
sets, annotator A labels the smallest turn i∗ such
that the first i∗ turns contain sufficient information
to justify a relation. The average distance between
i∗ and our estimation max{(a1), (a2), ı(r)} in
Equation (1) (Section 4.1) is only 0.9 turn, support-
ing our hypothesis that the positions of arguments
and triggers may be good indicators for estimating
the minimum turns for humans to make predictions.

For convenience, we use BERT for the following
discussions and comparisons.

Ground Truth Argument Types: Methods in Ta-
ble 5 are not provided with ground truth argument
types considering the unavailability of this kind of
annotation in practical use. To study the impacts of
argument types on DialogRE, we report the perfor-
mance of four methods, each of which additionally
takes as input the ground truth argument types as
previous work (Zhang et al., 2017; Yao et al., 2019).
We adopt the same baseline for a direct comparison
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except that the input sequence is changed.

In Method 1, we simply extend the orig-
inal input sequence of BERT (Section 4.2)
with newly-introduced special tokens that rep-
resent argument types. The input sequence is
[CLS]d[SEP]τ1a1[SEP]τ2a2[SEP], where τi
is a special token representing the argument type
of ai (i ∈ {1, 2}). For example, given a1 of type
PER and a2 of type STRING, τ1 is [PER] and
τ2 is [STRING]. In Method 2, we extend the in-
put sequence of BERTS with τi defined in Method
1 (i.e., [CLS]d̂[SEP]τ1â1[SEP]τ1â2[SEP]).
We also follow the input sequence of previous
single-sentence relation extraction methods (Shi
and Lin, 2019; Joshi et al., 2020) and refer them as
Method 3 and 4, respectively. We provide the im-
plementation details in Appendix A.5. As shown in
Table 6, the best performance achieved by Method
2 is not superior to that of BERTS, which does not
leverage ground truth argument types. Therefore,
we guess that ground truth argument types may
only provide a limited, if at all positive, contribu-
tion to the performance on DialogRE.

Method 1 Method 2 Method 3 Method 4

Dev 60.6 (0.4) 62.9 (1.2) 55.6 (2.4) 61.9 (1.4)
Test 59.1 (0.7) 60.5 (1.9) 52.3 (3.2) 59.7 (0.6)

Table 6: Performance (F1 (σ)) comparison of methods
with considering the ground truth argument types.

Ground Truth Triggers: We investigate what per-
formance would be ideally attainable if the model
could identify all triggers correctly. We append
the ground truth triggers to the input sequence on
the baseline, and the F1 of this model is 74.9%,
a 16.4% absolute improvement compared to the
BERT baseline. In particular, through the introduc-
tion of triggers, we observe a 22.9% absolute im-
provement in F1 on relation types whose inverse re-
lation types are themselves (e.g., PER:ROOMMATE

and PER:SPOUSE). These experimental results
show the critical role of triggers in dialogue-based
relation extraction. However, trigger identification
is perhaps as difficult as relation extraction, and it
is labor-intensive to annotate large-scale datasets
with triggers. Future research may explore how
to identify triggers based on a small amount of
human-annotated triggers as seeds (Bronstein et al.,
2015; Yu and Ji, 2016).

5.3 Error Analysis and Limitations

We analyze the outputs on the dev set and find that
BERT tends to make more mistakes when there
exists an asymmetric inverse relation of the rela-
tion to be predicted compared to those that have
symmetric inverse relations. For example, the base-
line mistakenly predicts S2 as the subordinate of
S1 based on the following dialogue: “. . . S2: Oh.
Well, I wish I could say no, but you can’t stay my
assistant forever. Neither can you Sophie, but for
different reasons. S1: God, I am so glad you don’t
have a problem with this, because if you did, I
wouldn’t even consider applying. . . ”. Introducing
triggers into the input sequence leads to a relatively
small gain (11.0% in F1 on all types with an asym-
metric inverse relation) perhaps because inverse
relation types share the same triggers (e.g., “my
assistant” serves as the trigger for both PER:BOSS

and PER:SUBORDINATE). One possible solution
may be the use of directed syntactic graphs con-
structed from the given dialogue, though the perfor-
mance of coreference resolution and dependency
parsing in dialogues may be relatively unsatisfying.

A major limitation in DialogRE is that all tran-
scripts for annotation are from Friends, which may
limit the diversity of scenarios and generality of the
relation distributions. It may be useful to leverage
existing triples in knowledge bases (e.g., Fandom)
for thousands of movies or TV shows using dis-
tant supervision (Mintz et al., 2009), considering
the time-consuming manual annotation process. In
addition, dialogues in Friends presents less varia-
tion based on linguistic features (Biber, 1991) than
natural conversations; nonetheless, compared to
other registers such as personal letters and prepared
speeches, there are noticeable linguistic similari-
ties between natural conversations and television
dialogues in Friends (Quaglio, 2009).

6 Related Work

Cross-Sentence Relation Extraction Datasets
Different from the sentence-level relation extrac-
tion (RE) datasets (Roth and Yih, 2004; Hendrickx
et al., 2010; Riedel et al., 2010; Zhang and Wang,
2015; Zhang et al., 2017; Han et al., 2018), in
which relations are between two arguments in the
same sentence, we focus on cross-sentence RE
tasks (Ji et al., 2011; Surdeanu, 2013; Surdeanu and
Ji, 2014) and present the first dialogue-based RE
dataset, in which dialogues serve as input contexts
instead of formally written sentences or documents.
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Task style/source of doc # rel cross rate◦ # doc # triples•

—– distant supervision —–

Peng et al. (2017) written/PubMed 4 75.2 960,000 140,661
DocRED (Yao et al., 2019) written/Wikipedia 96 n/a 101,873 881,298
T-REx (Elsahar et al., 2018) written/Wikipedia 353 n/a 3 million 11 million

—– human annotation —–

BC5CDR (Li et al., 2016) written/PubMed 1 n/a 1,500 2,434
DocRED (Yao et al., 2019) written/Wikipedia 96 40.7 5,053 56,354
KnowledgeNet (Mesquita et al., 2019) written/Wikipedia and others 15 n/a 4,991 13,425
DialogRE (this work) conversational/Friends 36 95.6 1,788 8,068

Table 7: Statistics of publicly available cross-sentence relation extraction datasets (◦: the percentage (%) of rela-
tional triples involving multiple sentences; •: not include no-relation argument pairs).

We compare DialogRE and existing cross-sentence
RE datasets (Li et al., 2016; Quirk and Poon, 2017;
Yao et al., 2019; Mesquita et al., 2019) in Table 7.
In this paper, we do not consider relations that take
relations or events as arguments and are also likely
to span multiple sentences (Pustejovsky and Verha-
gen, 2009; Do et al., 2012; Moschitti et al., 2013).

Relation Extraction Approaches Over the past
few years, neural models have achieved remarkable
success in RE (Nguyen and Grishman, 2015b,a;
Adel et al., 2016; Yin et al., 2017; Levy et al., 2017;
Su et al., 2018; Song et al., 2018; Luo et al., 2019),
in which the input representation usually comes
from shallow neural networks over pre-trained
word and character embeddings (Xu et al., 2015;
Zeng et al., 2015; Lin et al., 2016). Deep contextu-
alized word representations such as the ELMo (Pe-
ters et al., 2018) are also applied as additional in-
put features to boost the performance (Luan et al.,
2018). A recent thread is to fine-tune pre-trained
deep language models on downstream tasks (Rad-
ford et al., 2018; Devlin et al., 2019), leading to
further performance gains on many RE tasks (Alt
et al., 2019; Shi and Lin, 2019; Baldini Soares et al.,
2019; Peters et al., 2019; Wadden et al., 2019). We
propose an improved method that explicitly consid-
ers speaker arguments, which are seldom investi-
gated in previous RE methods.

Dialogue-Based Natural Language Under-
standing To advance progress in spoken language
understanding, researchers have studied dialogue-
based tasks such as argument extraction (Swanson
et al., 2015), named entity recognition (Chen and
Choi, 2016; Choi and Chen, 2018; Bowden et al.,
2018), coreference resolution (Chen et al., 2017;
Zhou and Choi, 2018), emotion detection (Zahiri
and Choi, 2018), and machine reading comprehen-

sion (Ma et al., 2018; Sun et al., 2019; Yang and
Choi, 2019). Besides, some pioneer studies focus
on participating in dialogues (Yoshino et al., 2011;
Hixon et al., 2015) by asking users relation-related
questions or using outputs of existing RE methods
as inputs of other tasks (Klüwer et al., 2010; Wang
and Cardie, 2012). In comparison, we focus on
extracting relation triples from human-human
dialogues, which is still under investigation.

7 Conclusions

We present the first human-annotated dialogue-
based RE dataset DialogRE. We also design a new
metric to evaluate the performance of RE methods
in a conversational setting and argue that track-
ing speakers play a critical role in this task. We
investigate the performance of several RE meth-
ods, and experimental results demonstrate that a
speaker-aware extension on the best-performing
model leads to substantial gains in both the stan-
dard and conversational settings.

In the future, we are interested in investigat-
ing the generality of our defined schema for other
comedies and different conversational registers,
identifying the temporal intervals when relations
are valid (Surdeanu, 2013) in a dialogue, and joint
dialogue-based information extraction as well as
its potential combinations with multimodal signals
from images, speech, and videos.
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A Appendices

A.1 Definitions of New Relation Types

We follow the original guideline to annotate rela-
tion types in the TAC-KBP SF task (marked with
?) unless stated otherwise and define new rela-
tion types as follows except for self-explainable
ones (e.g., PER:MAJOR, PER:FRIENDS, and
PER:CLIENT). In this section, we keep the original
speaker names in examples for better readability.
◦ per:alternate names?: Names used to refer a
person that are distinct from speaker names or the
first name mention in the given dialogue. It is possi-
ble to provide correct objects for this relation type
without any contextual information such as trig-
gers. Alternate names may include nicknames, first
name, aliases, stage names, alternate translitera-
tions, abbreviations, alternate spellings, full names,
and birth names. However, if the full name men-
tion appears first, we do not regard a first/last name
alone as a valid value. An alternate name can also
be a single word or a noun phrase.
◦ per:positive impression: Have a positive im-
pression (psychological) towards an object (e.g., a
person, a book, a team, a song, a shop, or location).
A named entity is expected here.
◦ per:negative impression: Have a negative im-
pression (psychological) towards an object. A
named entity is expected here.
◦ per:acquaintance: A person one knows slightly
(e.g., name), but who is not a close friend.
◦ per:alumni: Two persons studied in the same
school, college, or university, not necessarily dur-
ing the same period. Two persons can be in differ-
ent majors. Classmates or batchmates also belong
to this relation type.
◦ per:boss: In most cases, we annotate B as the
boss of A when A directly reports to B and is man-
aged by B at work. In the meantime, A is the sub-
ordinate of B. For example, we label (“Rachel”,
per:boss, “Joanna”) and its corresponding trigger

“assistant” based on dialogue D1.

D1
Rachel: Oh, uh, Joanna I was wondering if I could

ask you something. There’s an opening for an
assistant buyer in Junior Miss...

Joanna: Okay, but that would actually be a big step
down for me.

Rachel: Well, actually, I meant for me. The hiring
committee is meeting people all day and...

Joanna: Oh. Well, I wish I could say no, but you cant
stay my assistant forever. Neither can you So-
phie, but for different reasons.

◦ per:girl/boyfriend: A relatively
long-standing relationship compared to
PER:POSITIVE IMPRESSION and PER:DATES,
including but not limited to ex-relationships,
partners, and engagement. The fact that two people
dated for one or several times alone cannot guar-
antee that there exists a PER:GIRL/BOYFRIEND

relation between them; we label PER:DATES for
such an argument pair, instead.
◦ per:neighbor: A neighbor could be a person
who lives in your apartment building whether they
are next door to you, or not. A neighbor could also
be in the broader sense of a person who lives in
your neighborhood.
◦ per:roommate: We regard that two persons are
roommates if they share a living facility (e.g., an
apartment or dormitory), and they are not fam-
ily or romantically involved (e.g., per:spouse and
per:girl/boyfriend).
◦ per:visited place: A person visits a
place in a relatively short term of period
(vs. PER:PLACE OF RESIDENCE). For example,
we annotate (“Mike”, per:visited place, “Barba-
dos”) in dialogue D2 and its corresponding trigger

“coming to”.

D2
Phoebe: Okay, not a fan of the tough love.
Precious: I just can’t believe that Mike didn’t give me

any warning.
Phoebe: But he didn’t really know, you know. He

wasn’t planning on coming to Barbados and
proposing to me...

Precious: He proposed to you? This is the worst birthday
ever.

◦ per:works: The argument can be a piece of art,
a song, a movie, a book, or a TV series.
◦ per:place of work: A location in the form of a
string or a general noun phrase, where a person
works such as “shop”.
◦ per:pet: We prefer to use named entities as argu-
ments. If there is no name associated with a pet, we
keep its species (e.g., dog) mentioned in a dialogue.

A.2 Relation Type Distribution

A.3 Distance Between Argument Pairs

A.4 Other Input Sequences

We also experiment with the following
three alternative input sequences on the
BERT baseline: (1) [CLS]d#[SEP], (2)
[CLS]d#[SEP]a1[SEP]a2[SEP], and (3)
[CLS]d′′[SEP], where d# is obtained by
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Figure 1: Relation type distribution in DialogRE.
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Figure 2: Relation type distribution in SF (2013-2014).
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Figure 3: Number of words between two arguments
within a dialogue in DialogRE.

replacing subject/object mentions in d with
special tokens [SUBJ] and [OBJ], and d′′ is
obtained by surrounding each mention of ai
(i ∈ {1, 2}) in d with special tokens [Ai] and
[/Ai] (Baldini Soares et al., 2019). The F1 of
them is 50.9%, 58.8%, and 57.9%, respectively,
substantially lower than that of BERTS (61.2%).

A.5 Ground Truth Argument Type
Method 3 follows the input sequence employed
by Joshi et al. (2020). Specifically, we replace
the argument mentions in document d with newly-
introduced special tokens that represent the sub-
ject/object and argument types. For example,
if the subject type is PER and the object is
STRING, we replace every subject mention in
d with [SUBJ-PER] and every object mention
with [OBJ-STRING]. Let d′ denote the new doc-
ument. The input sequence is [CLS]d′[SEP].
Method 4 takes as input the sequence employed
by Shi and Lin (2019). The input sequence is
[CLS]d′[SEP]a1[SEP]a2[SEP], where d′ is
defined in Method 3.


