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Abstract
In order to simplify a sentence, human ed-
itors perform multiple rewriting transforma-
tions: they split it into several shorter sen-
tences, paraphrase words (i.e. replacing com-
plex words or phrases by simpler synonyms),
reorder components, and/or delete information
deemed unnecessary. Despite these varied
range of possible text alterations, current mod-
els for automatic sentence simplification are
evaluated using datasets that are focused on
a single transformation, such as lexical para-
phrasing or splitting. This makes it impossi-
ble to understand the ability of simplification
models in more realistic settings. To alleviate
this limitation, this paper introduces ASSET,
a new dataset for assessing sentence simplifi-
cation in English. ASSET is a crowdsourced
multi-reference corpus where each simplifica-
tion was produced by executing several rewrit-
ing transformations. Through quantitative and
qualitative experiments, we show that simpli-
fications in ASSET are better at capturing
characteristics of simplicity when compared to
other standard evaluation datasets for the task.
Furthermore, we motivate the need for devel-
oping better methods for automatic evaluation
using ASSET, since we show that current pop-
ular metrics may not be suitable when multiple
simplification transformations are performed.

1 Introduction

Sentence Simplification (SS) consists in modifying
the content and structure of a sentence to make it
easier to understand, while retaining its main idea
and most of its original meaning (Alva-Manchego
et al., 2020). Simplified texts can benefit non-native
speakers (Paetzold, 2016), people suffering from
aphasia (Carroll et al., 1998), dyslexia (Rello et al.,
2013) or autism (Evans et al., 2014). They also help
language processing tasks, such as parsing (Chan-
drasekar et al., 1996), summarisation (Silveira and
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Branco, 2012), and machine translation (Hasler
et al., 2017).

In order simplify a sentence, several rewriting
transformations can be performed: replacing com-
plex words/phrases with simpler synonyms (i.e. lex-
ical paraphrasing), changing the syntactic structure
of the sentence (e.g. splitting), or removing super-
fluous information that make the sentence more
complicated (Petersen, 2007; Aluı́sio et al., 2008;
Bott and Saggion, 2011). However, models for
automatic SS are evaluated on datasets whose sim-
plifications are not representative of this variety
of transformations. For instance, TurkCorpus (Xu
et al., 2016), a standard dataset for assessment in
SS, contains simplifications produced mostly by
lexical paraphrasing, while reference simplifica-
tions in HSplit (Sulem et al., 2018a) focus on split-
ting sentences. The Newsela corpus (Xu et al.,
2015) contains simplifications produced by pro-
fessionals applying multiple rewriting transforma-
tions, but sentence alignments are automatically
computed and thus imperfect, and its data can
only be accessed after signing a restrictive public-
sharing licence and cannot be redistributed, ham-
pering reproducibility.

These limitations in evaluation data prevent
studying models’ capabilities to perform a broad
range of simplification transformations. Even
though most SS models are trained on simplifi-
cation instances displaying several text transforma-
tions (e.g. WikiLarge (Zhang and Lapata, 2017)),
we currently do not measure their performance in
more abstractive scenarios, i.e. cases with substan-
tial modifications to the original sentences.

In this paper we introduce ASSET (Abstractive
Sentence Simplification Evaluation and Tuning), a
new dataset for tuning and evaluation of automatic
SS models. ASSET consists of 23,590 human sim-
plifications associated with the 2,359 original sen-
tences from TurkCorpus (10 simplifications per
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original sentence). Simplifications in ASSET were
collected via crowdsourcing (§ 3), and encompass
a variety of rewriting transformations (§ 4), which
make them simpler than those in TurkCorpus and
HSplit (§ 5), thus providing an additional suitable
benchmark for comparing and evaluating automatic
SS models. In addition, we study the applicability
of standard metrics for evaluating SS using simpli-
fications in ASSET as references (§ 6). We analyse
whether BLEU (Papineni et al., 2002) or SARI (Xu
et al., 2016) scores correlate with human judge-
ments of fluency, adequacy and simplicity, and find
that neither of the metrics shows a strong corre-
lation with simplicity ratings. This motivates the
need for developing better metrics for assessing
SS when multiple rewriting transformations are
performed.

We make the following contributions:

• A high quality large dataset for tuning and
evaluation of SS models containing simplifica-
tions produced by applying multiple rewriting
transformations.1

• An analysis of the characteristics of the
dataset that turn it into a new suitable bench-
mark for evaluation.

• A study questioning the suitability of popular
metrics for evaluating automatic simplifica-
tions in a multiple-transformation scenario.

2 Related Work

2.1 Studies on Human Simplification
A few corpus studies have been carried out to anal-
yse how humans simplify sentences, and to attempt
to determine the rewriting transformations that are
performed.

Petersen and Ostendorf (2007) analysed a cor-
pus of 104 original and professionally simplified
news articles in English. Sentences were manu-
ally aligned and each simplification instance was
categorised as dropped (1-to-0 alignment), split
(1-to-N), total (1-to-1) or merged (2-to-1). Some
splits were further sub-categorised as edited (i.e.
the sentence was split and some part was dropped)
or different (i.e. same information but very differ-
ent wording). This provides evidence that sentence
splitting and deletion of information can be per-
formed simultaneously.

1ASSET is released with a CC-BY-NC license at
https://github.com/facebookresearch/
asset.

Aluı́sio et al. (2008) studied six corpora of sim-
ple texts (different genres) and a corpus of complex
news texts in Brazilian Portuguese, to produce a
manual for Portuguese text simplification (Specia
et al., 2008). It contains several rules to perform
the task focused on syntactic alterations: to split
adverbial/coordinated/subordinated sentences, to
reorder clauses to a subject-verb-object structure,
to transform passive to active voice, among others.

Bott and Saggion (2011) worked with a dataset
of 200 news articles in Spanish with their cor-
responding manual simplifications. After auto-
matically aligning the sentences, the authors de-
termined the simplification transformations per-
formed: change (e.g. difficult words, pronouns,
voice of verb), delete (words, phrases or clauses),
insert (word or phrases), split (relative clauses,
coordination, etc.), proximisation (add locative
phrases, change from third to second person), re-
order, select, and join (sentences).

From all these studies, it can be argued that the
scope of rewriting transformations involved in the
simplification process goes beyond only replacing
words with simpler synonyms. In fact, human per-
ception of complexity is most affected by syntactic
features related to sentence structure (Brunato et al.,
2018). Therefore, since human editors make sev-
eral changes to both the lexical content and syntac-
tic structure of sentences when simplifying them,
we should expect that models for automatic sen-
tence simplification can also make such changes.

2.2 Evaluation Data for SS

Most datasets for SS (Zhu et al., 2010; Coster and
Kauchak, 2011; Hwang et al., 2015) consist of auto-
matic sentence alignments between related articles
in English Wikipedia (EW) and Simple English
Wikipedia (SEW). In SEW, contributors are asked
to write texts using simpler language, such as by
shortening sentences or by using words from Ba-
sic English (Ogden, 1930). However, Yasseri et al.
(2012) found that the syntactic complexity of sen-
tences in SEW is almost the same as in EW. In addi-
tion, Xu et al. (2015) determined that automatically-
aligned simple sentences are sometimes just as
complex as their original counterparts, with only a
few words replaced or dropped and the rest of the
sentences left unchanged.

More diverse simplifications are available in the
Newsela corpus (Xu et al., 2015), a dataset of 1,130
news articles that were each manually simplified

https://github.com/facebookresearch/asset
https://github.com/facebookresearch/asset
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to up to 5 levels of simplicity. The parallel arti-
cles can be automatically aligned at the sentence
level to train and test simplification models (Alva-
Manchego et al., 2017; Štajner et al., 2018). How-
ever, the Newsela corpus can only be accessed after
signing a restrictive license that prevents publicly
sharing train/test splits of the dataset, which im-
pedes reproducibility.

Evaluating models on automatically-aligned sen-
tences is problematic. Even more so if only one
(potentially noisy) reference simplification for each
original sentence is available. With this concern
in mind, Xu et al. (2016) collected the TurkCor-
pus, a dataset with 2,359 original sentences from
EW, each with 8 manual reference simplifications.
The dataset is divided into two subsets: 2,000 sen-
tences for validation and 359 for testing of sentence
simplification models. TurkCorpus is suitable for
automatic evaluation that involves metrics requir-
ing multiple references, such as BLEU (Papineni
et al., 2002) and SARI (Xu et al., 2016). How-
ever, Xu et al. (2016) focused on simplifications
through lexical paraphrasing, instructing annota-
tors to rewrite sentences by reducing the number
of difficult words or idioms, but without deleting
content or splitting the sentences. This prevents
evaluating a model’s ability to perform a more di-
verse set of rewriting transformations when simpli-
fying sentences. HSplit (Sulem et al., 2018a), on
the other hand, provides simplifications involving
only splitting for sentences in the test set of Turk-
Corpus. We build on TurkCorpus and HSplit by
collecting a dataset that provides several manually-
produced simplifications involving multiple types
of rewriting transformations.

2.3 Crowdsourcing Manual Simplifications

A few projects have been carried out to collect man-
ual simplifications through crowdsourcing. Pel-
low and Eskenazi (2014a) built a corpus of every-
day documents (e.g. driving test preparation ma-
terials), and analysed the feasibly of crowdsourc-
ing their sentence-level simplifications. Of all the
quality control measures taken, the most success-
ful was providing a training session to workers,
since it allowed to block spammers and those with-
out the skills to perform the task. Additionally,
they proposed to use workers’ self-reported con-
fidence scores to flag submissions that could be
discarded or reviewed. Later on, Pellow and Es-
kenazi (2014b) presented a preliminary study on

producing simplifications through a collaborative
process. Groups of four workers were assigned one
sentence to simplify, and they had to discuss and
agree on the process to perform it. Unfortunately,
the data collected in these studies is no longer pub-
licly available.

Simplifications in TurkCorpus were also col-
lected through crowdsourcing. Regarding the
methodology followed, Xu et al. (2016) only report
removing bad workers after manual check of their
first several submissions. More recently, Scarton
et al. (2018) used volunteers to collect simplifica-
tions for SimPA, a dataset with sentences from the
Public Administration domain. One particular char-
acteristic of the methodology followed is that lex-
ical and syntactic simplifications were performed
independently.

3 Creating ASSET

We extended TurkCorpus (Xu et al., 2016) by us-
ing the same original sentences, but crowdsourced
manual simplifications that encompass a richer set
of rewriting transformations. Since TurkCorpus
was adopted as the standard dataset for evaluat-
ing SS models, several system outputs on this data
are already publicly available (Zhang and Lapata,
2017; Zhao et al., 2018; Martin et al., 2020). There-
fore, we can now assess the capabilities of these
and other systems in scenarios with varying sim-
plification expectations: lexical paraphrasing with
TurkCorpus, sentence splitting with HSplit, and
multiple transformations with ASSET.

3.1 Data Collection Protocol
Manual simplifications were collected using Ama-
zon Mechanical Turk (AMT). AMT allows us to
publish HITs (Human Intelligence Tasks), which
workers can choose to work on, submit an answer,
and collect a reward if the work is approved. This
was also the platform used for TurkCorpus.

Worker Requirements. Participants were work-
ers who: (1) have a HIT approval rate >= 95%;
(2) have a number of HITs approved > 1000; (3)
are residents of the United States of America, the
United Kingdom or Canada; and (4) passed the cor-
responding Qualification Test designed for our task
(more details below). The first two requirements
are measured by the AMT platform and ensure that
the workers have experience on different tasks and
have had most of their work approved by previous
requesters. The last two requirements are intended
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Original Their eyes are quite small, and their visual acuity is poor.
TurkCorpus Their eyes are very little, and their sight is inferior.
HSplit Their eyes are quite small. Their visual acuity is poor as well.
ASSET They have small eyes and poor eyesight.

Original His next work, Saturday, follows an especially eventful day in the life of a successful neurosurgeon.
TurkCorpus His next work at Saturday will be a successful Neurosurgeon.
HSplit His next work was Saturday. It follows an especially eventful day in the life of a successful Neurosurgeon.
ASSET ”Saturday” records a very eventful day in the life of a successful neurosurgeon.

Original He settled in London, devoting himself chiefly to practical teaching.
TurkCorpus He rooted in London, devoting himself mainly to practical teaching.
HSplit He settled in London. He devoted himself chiefly to practical teaching.
ASSET He lived in London. He was a teacher.

Table 1: Examples of simplifications collected for ASSET together with their corresponding version from Turk-
Corpus and HSplit for the same original sentences.

to ensure that the workers have a proficient level of
English, and are capable of performing the simpli-
fication task.

Qualification Test. We provided a training ses-
sion to workers in the form of a Qualification
Test (QT). Following Pellow and Eskenazi (2014a),
we showed them explanations and examples of
multiple simplification transformations (see details
below). Each HIT consisted of three sentences
to simplify, and all submissions were manually
checked to filter out spammers and workers who
could not perform the task correctly. The sentences
used in this stage were extracted from the QATS
dataset (Štajner et al., 2016). We had 100 workers
take the QT, out of which 42 passed the test (42%)
and worked on the task.

Annotation Round. Workers who passed the QT
had access to this round. Similar to Pellow and Es-
kenazi (2014a), each HIT now consisted of four
original sentences that needed to be simplified.
In addition to the simplification of each sentence,
workers were asked to submit confidence scores
on their simplifications using a 5-point likert scale
(1:Very Low, 5:Very High). We collected 10 simpli-
fications (similar to Pellow and Eskenazi (2014a))
for each of the 2,359 original sentences in TurkCor-
pus.

Simplification Instructions. For both the QT
and the Annotation Round, workers received the
same set of instructions about how to simplify a sen-
tence. We provided examples of lexical paraphras-
ing (lexical simplification and reordering), sentence
splitting, and compression (deleting unimportant
information). We also included an example where
all transformations were performed. However, we
clarified that it was at their discretion to decide

which types of rewriting to execute in any given
original sentence.2

Table 1 presents a few examples of simplifi-
cations in ASSET, together with references from
TurkCorpus and HSplit, randomly sampled for the
same original sentences. It can be noticed that an-
notators in ASSET had more freedom to change
the structure of the original sentences.

3.2 Dataset Statistics
ASSET contains 23,590 human simplifications as-
sociated with the 2,359 original sentences from
TurkCorpus (2,000 from the validation set and 359
from the test set). Table 2 presents some general
statistics from simplifications in ASSET. We show
the same statistics for TurkCorpus and HSplit for
comparison.3

In addition to having more references per origi-
nal sentence, ASSET’s simplifications offer more
variability, for example containing many more in-
stances of natural sentence splitting than Turk-
Corpus. In addition, reference simplifications are
shorter on average in ASSET, given that we al-
lowed annotators to delete information that they
considered unnecessary. In the next section, we
further compare these datasets with more detailed
text features.

4 Rewriting Transformations in ASSET

We study the simplifications collected for ASSET
through a series of text features to measure the

2Full instructions are available in the dataset’s repository.
3HSplit is composed of two sets of simplifications: one

where annotators were asked to split sentences as much as
they could, and one where they were asked to split the original
sentence only if it made the simplification easier to read and
understand. However, we consider HSplit as a whole because
differences between datasets far outweigh differences between
these two sets.
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ASSET TurkCorpus HSplit

Original Sentences 2,359 2,359 359
Num. of References 10 8 4
Type of Simp. Instances

1-to-1 17,245 18,499 408
1-to-N 6,345 373 1,028

Tokens per Reference 19.04 21.29 25.49

Table 2: General surface statistics for ASSET com-
pared with TurkCorpus and HSplit. A simplification
instance is an original-simplified sentence pair.

abstractiveness of the rewriting transformations
performed by the annotators. From here on, the
analysis and statistics reported refer to the test set
only (i.e. 359 original sentences), so that we can
fairly compare ASSET, TurkCorpus and HSplit.

4.1 Text Features

In order to quantify the rewriting transformations,
we computed several low-level features for all sim-
plification instances using the tseval package
(Martin et al., 2018):

• Number of sentence splits: Corresponds to
the difference between the number of sen-
tences in the simplification and the number
of sentences in the original sentence. In
tseval, the number of sentences is calcu-
lated using NLTK (Loper and Bird, 2002).

• Compression level: Number of characters in
the simplification divided by the number of
characters in the original sentence.

• Replace-only Levenshtein distance: Com-
puted as the normalised character-level Lev-
enshtein distance (Levenshtein, 1966) for re-
place operations only, between the original
sentence and the simplification. Replace-only
Levenshtein distance is computed as follows
(with o the original sentence and s the simpli-
fication):

replace ops(o, s)

min(len(o), len(s))

We do not consider insertions and deletions
in the Levenshtein distance computation so
that this feature is independent from the com-
pression level. It therefore serves as a proxy
for measuring the lexical paraphrases of the
simplification.

• Proportion of words deleted, added and re-
ordered: Number of words deleted/reordered
from the original sentence divided by the num-
ber of words in the original sentence; and the
number of words that were added to the origi-
nal sentence divided by the number of words
in the simplification.

• Exact match: Boolean feature that equals
to true when the original sentence and the
simplification are exactly the same, to account
for unchanged sentences.

• Word deletion only: Boolean feature that
equals to true when the simplification is ob-
tained only by deleting words from the origi-
nal sentence. This feature captures extractive
compression.

• Lexical complexity score ratio: We com-
pute the score as the mean squared log-ranks
of content words in a sentence (i.e. without
stopwords). We use the 50k most frequent
words of the FastText word embeddings vo-
cabulary (Bojanowski et al., 2016). This vo-
cabulary was originally sorted with frequen-
cies of words in the Common Crawl. This
score is a proxy to the lexical complexity of
the sentence given that word ranks (in a fre-
quency table) have been shown to be best in-
dicators of word complexity (Paetzold and
Specia, 2016). The ratio is then the value of
this score on the simplification divided by that
of the original sentence.

• Dependency tree depth ratio: We compute
the ratio of the depth of the dependency parse
tree of the simplification relative to that of
the original sentence. When a simplification
is composed by more than one sentence, we
choose the maximum depth of all dependency
trees. Parsing is performed using spaCy.4 This
feature serves as a proxy to measure improve-
ments in structural simplicity.

Each feature was computed for all simplification
instances in the dataset and then aggregated as a
histogram (Figure 1) and as a percentage (Table 3).

4.2 Results and Analysis
Figure 1 shows the density of all features in ASSET,
and compares them with those in TurkCorpus and

4github.com/explosion/spaCy

github.com/explosion/spaCy
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Figure 1: Density of text features in simplifications from HSplit, TurkCorpus, and ASSET.

ASSET TurkCorpus HSplit

Sentence Splitting 20.2% 4.6% 68.2%
Compression (<75%) 31.2% 9.9% 0.1%
Word Reordering 28.3% 19.4% 10.1%
Exact Match 0.4% 16.3% 26.5%
Word Deletion Only 4.5% 3.9% 0.0%

Table 3: Percentage of simplifications featuring one of
different rewriting transformations operated in ASSET,
TurkCorpus and HSplit. A simplification is considered
as compressed when its character length is less than
75% of that of the original sentence.

HSplit. Table 3 highlights some of these statistics.
In particular, we report the percentage of sentences
that: have at least one sentence split, have a com-
pression level of 75% or lower, have at least one
reordered word, are exact copies of the original
sentences, and operated word deletion only (e.g. by
removing only an adverb).

Sentence splits are practically non-existent in
TurkCorpus (only 4.6% have one split or more),
and are more present and distributed in HSplit. In
ASSET, annotators tended to not split sentences,
and those who did mostly divided the original sen-
tence into just two sentences (1 split).

Compression is a differentiating feature of AS-
SET. Both TurkCorpus and HSplit have high den-
sity of a compression ratio of 1.0, which means that
no compression was performed. In fact, HSplit has
several instances with compression levels greater
than 1.0, which could be explained by splitting
requiring adding words to preserve fluency. In
contrast, ASSET offers more variability, perhaps
signalling that annotators consider deleting infor-

mation as an important simplification operation.
By analysing replace-only Levenshtein distance,

we can see that simplifications in ASSET para-
phrase the input more. For TurkCorpus and HSplit,
most simplifications are similar to their original
counterparts (higher densities closer to 0). On the
other hand, ASSET’s simplifications are distributed
in all levels, indicating more diversity in the reword-
ings performed. This observation is complemented
by the distributions of deleted, added and reordered
words. Both TurkCorpus and HSplit have high
densities of ratios close to 0.0 in all these features,
while ASSET’s are more distributed. Moreover,
these ratios are rarely equal to 0 (low density),
meaning that for most simplifications, at least some
effort was put into rewriting the original sentence.
This is comfirmed by the low percentage of exact
matches in ASSET (0.4%) with respect to TurkCor-
pus (16.3%) and HSplit (26.5%). Once again, it
suggests that more rewriting transformations are
being performed in ASSET.

In terms of lexical complexity, HSplit has a high
density of ratios close to 1.0 due to its simplifica-
tions being structural and not lexical. TurkCorpus
offers more variability, as expected, but still their
simplifications contain a high number of words that
are equally complex, perhaps due to most simpli-
fications just changing a few words. On the other
hand, ASSET’s simplifications are more distributed
across different levels of reductions in lexical com-
plexity.

Finally, all datasets show high densities of a 1.0
ratio in dependency tree depth. This could mean
that significant structural changes were not made,
which is indicated by most instances corresponding
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to operations other than splitting. However, AS-
SET still contains more simplifications that reduce
syntactic complexity than TurkCorpus and HSplit.

5 Rating Simplifications in ASSET

Here we measure the quality of the collected sim-
plifications using human judges. In particular, we
study if the abstractive simplifications in ASSET
(test set) are preferred over lexical-paraphrase-only
or splitting-only simplifications in TurkCorpus (test
set) and HSplit, respectively.

5.1 Collecting Human Preferences

Preference judgments were crowdsourced with
a protocol similar to that of the simplifications
(§ 3.1).

Selecting Human Judges. Workers needed to
comply with the same basic requirements as de-
scribed in § 3.1. For this task, the Qualification
Test (QT) consisted in rating the quality of simpli-
fications based on three criteria: fluency (or gram-
maticality), adequacy (or meaning preservation),
and simplicity. Each HIT consisted of six original-
simplified sentence pairs, and workers were asked
to use a continuous scale (0-100) to submit their
level of agreement (0: Strongly disagree, 100:
Strongly agree) with the following statements:

1. The Simplified sentence adequately expresses
the meaning of the Original, perhaps omitting
the least important information.

2. The Simplified sentence is fluent, there are no
grammatical errors.

3. The Simplified sentence is easier to under-
stand than the Original sentence.

Using continuous scales when crowdsourcing
human evaluations is common practice in Machine
Translation (Bojar et al., 2018; Barrault et al.,
2019), since it results in higher levels of inter-
annotator consistency (Graham et al., 2013). The
six sentence pairs for the Rating QT consisted of:

• Three submissions to the Annotation QT, man-
ually selected so that one contains splitting,
one has a medium level of compression, and
one contains grammatical and spelling mis-
takes. These allowed to check that the particu-
lar characteristics of each sentence pair affect
the corresponding evaluation criteria.

• One sentence pair extracted from Wiki-
Large (Zhang and Lapata, 2017) that contains
several sentence splits. This instance appeared
twice in the HIT and allowed checking for
intra-annotator consistency.

• One sentence pair from WikiLarge where the
Original and the Simplification had no rela-
tion to each other. This served to check the
attention level of the worker.

All submitted ratings were manually reviewed
to validate the quality control established and to
select the qualified workers for the task.

Preference Task. For each of the 359 original
sentences in the test set, we randomly sampled one
reference simplification from ASSET and one from
TurkCorpus, and then asked qualified workers to
choose which simplification answers best each of
the following questions:

• Fluency: Which sentence is more fluent?

• Meaning: Which sentence expresses the orig-
inal meaning the best?

• Simplicity: Which sentence is easier to read
and understand?

Workers were also allowed to judge simplifica-
tions as “similar” when they could not determine
which one was better. The same process was fol-
lowed to compare simplifications in ASSET against
those in HSplit. Each HIT consisted of 10 sentence
pairs.

5.2 Results and Analysis
Table 4 (top section) presents, for each evaluation
dimension, the percentage of times a simplifica-
tion from ASSET or TurkCorpus was preferred
over the other, and the percentage of times they
were judged as “similar”. In general, judges pre-
ferred ASSET’s simplifications in terms of fluency
and simplicity. However, they found TurkCorpus’
simplifications more meaning preserving. This is
expected since they were produced mainly by re-
placing words/phrases with virtually no deletion of
content.

A similar behaviour was observed when compar-
ing ASSET to HSplit (bottom section of Table 4).
In this case, however, the differences in preferences
are greater than with TurkCorpus. This could in-
dicate that changes in syntactic structure are not
enough for a sentence to be consider simpler.
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Fluency Meaning Simplicity

ASSET 38.4%* 23.7% 41.2%*
TurkCorpus 22.8% 37.9%* 20.1%
Similar 38.7% 38.4% 38.7%

ASSET 53.5%* 17.0% 59.0%*
HSplit 19.5% 51.5%* 14.8%
Similar 27.0% 31.5% 26.2%

Table 4: Percentages of human judges who preferred
simplifications in ASSET or TurkCorpus, and ASSET
or HSplit, out of 359 comparisons. * indicates a statis-
tically significant difference between the two datasets
(binomial test with p-value < 0.001).

6 Evaluating Evaluation Metrics

In this section we study the behaviour of evalua-
tion metrics for SS when using ASSET’s simpli-
fications (test set) as references. In particular, we
measure the correlation of standard metrics with
human judgements of fluency, adequacy and sim-
plicity, on simplifications produced by automatic
systems.

6.1 Experimental Setup
Evaluation Metrics. We analysed the behaviour
of two standard metrics in automatic evaluation of
SS outputs: BLEU (Papineni et al., 2002) and SARI
(Xu et al., 2016). BLEU is a precision-oriented met-
ric that relies on the number of n-grams in the out-
put that match n-grams in the references, indepen-
dently of position. SARI measures improvement in
the simplicity of a sentence based on the n-grams
added, deleted and kept by the simplification sys-
tem. It does so by comparing the output of the
simplification model to multiple references and the
original sentence, using both precision and recall.
BLEU has shown positive correlation with human
judgements of grammaticality and meaning preser-
vation (Štajner et al., 2014; Wubben et al., 2012;
Xu et al., 2016), while SARI has high correlation
with judgements of simplicity gain (Xu et al., 2016).
In our experiments, we used the implementations
of these metrics available in the EASSE package
for automatic sentence simplification evaluation
(Alva-Manchego et al., 2019).5 We computed all
the scores at sentence-level as in the experiment by
Xu et al. (2016), where they compared sentence-
level correlations of FKGL, BLEU and SARI with
human ratings. We used a smoothed sentence-level
version of BLEU so that comparison is possible,

5https://github.com/feralvam/easse

even though BLEU was designed as a corpus-level
metric.

System Outputs. We used publicly-available
simplifications produced by automatic SS sys-
tems: PBSMT-R (Wubben et al., 2012), which is a
phrase-based MT model; Hybrid (Narayan and Gar-
dent, 2014), which uses phrase-based MT coupled
with semantic analysis; SBSMT-SARI (Xu et al.,
2016), which relies on syntax-based MT; NTS-
SARI (Nisioi et al., 2017), a neural sequence-to-
sequence model with a standard encoder-decoder
architecture; and ACCESS (Martin et al., 2020),
an encoder-decoder architecture conditioned on ex-
plicit attributes of sentence simplification.

Collection of Human Ratings. We randomly
chose 100 original sentences from ASSET and, for
each of them, we sampled one system simplifica-
tion. The automatic simplifications were selected
so that the distribution of simplification transfor-
mations (e.g. sentence splitting, compression, para-
phrases) would match that from human simplifica-
tions in ASSET. That was done so that we could
obtain a sample that has variability in the types
of rewritings performed. For each sentence pair
(original and automatic simplification), we crowd-
sourced 15 human ratings on fluency (i.e. grammat-
icality), adequacy (i.e. meaning preservation) and
simplicity, using the same worker selection criteria
and HIT design of the Qualification Test as in § 5.1.

6.2 Inter-Annotator Agreement

We followed the process suggested in (Graham
et al., 2013). First, we normalised the scores
of each rater by their individual mean and stan-
dard deviation, which helps eliminate individual
judge preferences. Then, the normalised contin-
uous scores were converted to five interval cate-
gories using equally spaced bins. After that, we
followed Pavlick and Tetreault (2016) and com-
puted quadratic weighted Cohen’s κ (Cohen, 1968)
simulating two raters: for each sentence, we chose
one worker’s rating as the category for annotator
A, and selected the rounded average scores for
the remaining workers as the category for anno-
tator B. We then computed κ for this pair over
the whole dataset. We repeated the process 1,000
times to compute the mean and variance of κ. The
resulting values are: 0.687 ± 0.028 for Fluency,
0.686± 0.030 for Meaning and 0.628± 0.032 for
Simplicity. All values point to a moderate level

https://github.com/feralvam/easse
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Metric References Fluency Meaning Simplicity

BLEU ASSET 0.42* 0.61* 0.31*
TurkCorpus 0.35* 0.59* 0.18

SARI ASSET 0.16 0.13 0.28*
TurkCorpus 0.14 0.10 0.17

Table 5: Pearson correlation of human ratings with au-
tomatic metrics on system simplifications. * indicates
a significance level of p-value < 0.05.

of agreement, which is in line with the subjective
nature of the simplification task.

6.3 Correlation with Evaluation Metrics
We computed the Pearson correlation between the
normalised ratings and the evaluation metrics of our
interest (BLEU and SARI) using ASSET or Turk-
Corpus as the set of references. We refrained from
experimenting with HSplit since neither BLEU
nor SARI correlate with human judgements when
calculated using that dataset as references (Sulem
et al., 2018a). Results are reported in Table 5.

BLEU shows a strong positive correlation with
Meaning Preservation using either simplifications
from ASSET or TurkCorpus as references. There is
also some positive correlation with Fluency judge-
ments, but that is not always the case for Simplicity:
no correlation when using TurkCorpus and moder-
ate when using ASSET. This is in line with previous
studies that have shown that BLEU is not a good
estimate for simplicity (Wubben et al., 2012; Xu
et al., 2016; Sulem et al., 2018b).

In the case of SARI, correlations are positive but
low with all criteria and significant only for sim-
plicity with ASSET’s references. Xu et al. (2016)
showed that SARI correlated with human judge-
ments of simplicity gain, when instructing judges
to “grade the quality of the variations by identify-
ing the words/phrases that are altered, and count-
ing how many of them are good simplifications”.6

The judgements they requested differ from the ones
we collected, since theirs were tailored to rate sim-
plifications produced by lexical paraphrasing only.
These results show that SARI might not be suitable
for the evaluation of automatic simplifications with
multiple rewrite operations.

In Table 6, we further analyse the human rat-
ings collected, and compute their correlations with
similar text features as in § 4. The results shown re-

6https://github.com/cocoxu/
simplification/tree/master/HIT_MTurk_
crowdsourcing

Feature Fluency Meaning Simplicity

Length 0.12 0.31* 0.03
Sentence Splits -0.13 -0.06 -0.08
Compression Level 0.26* 0.46* 0.04
Levenshtein Distance -0.40* -0.67* -0.18
Replace-only Lev. Dist. -0.04 -0.17 -0.06
Prop. Deleted Words -0.43* -0.67* -0.19
Prop. Added Words -0.19 -0.38* -0.12
Prop. Reordered Words -0.37* -0.57* -0.18
Dep. Tree Depth Ratio 0.20 0.24 0.06
Word Rank Ratio 0.04 0.08 -0.05

Table 6: Pearson correlation of human ratings with text
features on system simplifications. * indicates a signif-
icance level of p-value < 0.01.

inforce our previous observations that judgements
on Meaning correlate with making few changes
to the sentence: strong negative correlation with
Levenshtein distance, and strong negative correla-
tion with proportion of words added, deleted, and
reordered. No conclusions could be drawn with
respect to Simplicity.

7 Conclusion

We have introduced ASSET, a new dataset for tun-
ing and evaluation of SS models. Simplifications in
ASSET were crowdsourced, and annotators were
instructed to apply multiple rewriting transforma-
tions. This improves current publicly-available
evaluation datasets, which are focused on only one
type of transformation. Through several experi-
ments, we have shown that ASSET contains sim-
plifications that are more abstractive, and that are
consider simpler than those in other evaluation cor-
pora. Furthermore, we have motivated the need to
develop new metrics for automatic evaluation of
SS models, especially when evaluating simplifica-
tions with multiple rewriting operations. Finally,
we hope that ASSET’s multi-transformation fea-
tures will motivate the development of SS models
that benefit a variety of target audiences accord-
ing to their specific needs such as people with low
literacy or cognitive disabilities.
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