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Abstract

Answering natural language questions over ta-
bles is usually seen as a semantic parsing task.
To alleviate the collection cost of full logical
forms, one popular approach focuses on weak
supervision consisting of denotations instead
of logical forms. However, training seman-
tic parsers from weak supervision poses diffi-
culties, and in addition, the generated logical
forms are only used as an intermediate step
prior to retrieving the denotation. In this pa-
per, we present TAPAS, an approach to ques-
tion answering over tables without generating
logical forms. TAPAS trains from weak super-
vision, and predicts the denotation by select-
ing table cells and optionally applying a cor-
responding aggregation operator to such selec-
tion. TAPAS extends BERT’s architecture to
encode tables as input, initializes from an ef-
fective joint pre-training of text segments and
tables crawled from Wikipedia, and is trained
end-to-end. We experiment with three differ-
ent semantic parsing datasets, and find that
TAPAS outperforms or rivals semantic parsing
models by improving state-of-the-art accuracy
on SQA from 55.1 to 67.2 and performing on
par with the state-of-the-art on WIKISQL and
WIKITQ, but with a simpler model architec-
ture. We additionally find that transfer learn-
ing, which is trivial in our setting, from WIK-
ISQL to WIKITQ, yields 48.7 accuracy, 4.2
points above the state-of-the-art.

1 Introduction

Question answering from semi-structured tables is
usually seen as a semantic parsing task where the
question is translated to a logical form that can be
executed against the table to retrieve the correct
denotation (Pasupat and Liang, 2015; Zhong et al.,
2017; Dasigi et al., 2019; Agarwal et al., 2019).
Semantic parsers rely on supervised training data
that pairs natural language questions with logical
forms, but such data is expensive to annotate.

In recent years, many attempts aim to reduce

the burden of data collection for semantic parsing,
including paraphrasing (Wang et al., 2015), human
in the loop (Iyer et al., 2017; Lawrence and Rie-
zler, 2018) and training on examples from other
domains (Herzig and Berant, 2017; Su and Yan,
2017). One prominent data collection approach
focuses on weak supervision where a training ex-
ample consists of a question and its denotation
instead of the full logical form (Clarke et al., 2010;
Liang et al., 2011; Artzi and Zettlemoyer, 2013).
Although appealing, training semantic parsers from
this input is often difficult due to the abundance of
spurious logical forms (Berant et al., 2013; Guu
et al., 2017) and reward sparsity (Agarwal et al.,
2019; Muhlgay et al., 2019).

In addition, semantic parsing applications only
utilize the generated logical form as an intermedi-
ate step in retrieving the answer. Generating logi-
cal forms, however, introduces difficulties such as
maintaining a logical formalism with sufficient ex-
pressivity, obeying decoding constraints (e.g. well-
formedness), and the label bias problem (Andor
et al., 2016; Lafferty et al., 2001).

In this paper we present TAPAS (for Table
Parser), a weakly supervised question answering
model that reasons over tables without generating
logical forms. TAPAS predicts a minimal program
by selecting a subset of the table cells and a possi-
ble aggregation operation to be executed on top of
them. Consequently, TAPAS can learn operations
from natural language, without the need to spec-
ify them in some formalism. This is implemented
by extending BERT’s architecture (Devlin et al.,
2019) with additional embeddings that capture tab-
ular structure, and with two classification layers
for selecting cells and predicting a corresponding
aggregation operator.

Importantly, we introduce a pre-training method
for TAPAS, crucial for its success on the end task.
We extend BERT’s masked language model objec-
tive to structured data, and pre-train the model over
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millions of tables and related text segments crawled
from Wikipedia. During pre-training, the model
masks some tokens from the text segment and from
the table itself, where the objective is to predict
the original masked token based on the textual and
tabular context.

Finally, we present an end-to-end differentiable
training recipe that allows TAPAS to train from
weak supervision. For examples that only involve
selecting a subset of the table cells, we directly
train the model to select the gold subset. For exam-
ples that involve aggregation, the relevant cells and
the aggregation operation are not known from the
denotation. In this case, we calculate an expected
soft scalar outcome over all aggregation operators
given the current model, and train the model with a
regression loss against the gold denotation.

In comparison to prior attempts to reason over ta-
bles without generating logical forms (Neelakantan
et al., 2015; Yin et al., 2016; Müller et al., 2019),
TAPAS achieves better accuracy, and holds several
advantages: its architecture is simpler as it includes
a single encoder with no auto-regressive decoding,
it enjoys pre-training, tackles more question types
such as those that involve aggregation, and directly
handles a conversational setting.

We find that on three different semantic pars-
ing datasets, TAPAS performs better or on par in
comparison to other semantic parsing and ques-
tion answering models. On the conversational
SQA (Iyyer et al., 2017), TAPAS improves state-
of-the-art accuracy from 55.1 to 67.2, and achieves
on par performance on WIKISQL (Zhong et al.,
2017) and WIKITQ (Pasupat and Liang, 2015).
Transfer learning, which is simple in TAPAS, from
WIKISQL to WIKITQ achieves 48.7 accuracy, 4.2
points higher than state-of-the-art. Our code and
pre-trained model are publicly available at https:
//github.com/google-research/tapas.

2 TAPAS Model

Our model’s architecture (Figure 1) is based on
BERT’s encoder with additional positional embed-
dings used to encode tabular structure (visualized
in Figure 2). We flatten the table into a sequence
of words, split words into word pieces (tokens) and
concatenate the question tokens before the table to-
kens. We additionally add two classification layers
for selecting table cells and aggregation operators
that operate on the cells. We now describe these
modifications and how inference is performed.

Question

[CLS] Tok 1 Tok N [SEP] Tok 1 Tok M... ...

E[CLS] E1 EN E[SEP] E’1 E’M... ...

[CLS] T1 TN [SEP] T’1 T’M... ...

0.9

0.9

0

0.2

0

Ps

Flattened Table

...

Aggregation 
prediction Cell selection

Rank ... Days
1 ... 37
2 ... 31
3 ... 17
4 ... 15
... ... ...

op Pa(op) compute(op,Ps,T)

NONE 0 -
COUNT 0.1 .9 + .9 + .2 = 2
SUM 0.8 .9×37 + .9×31 + .2×15 = 64.2

AVG 0.1 64.2 ÷ 2 = 32.1

spred= .1×2 + .8×64.2 + .1×32.1 = 54.8

Figure 1: TAPAS model (bottom) with example model
outputs for the question: “Total number of days for the
top two”. Cell prediction (top right) is given for the
selected column’s table cells in bold (zero for others)
along with aggregation prediction (top left).

Additional embeddings We add a separator to-
ken between the question and the table, but unlike
Hwang et al. (2019) not between cells or rows. In-
stead, the token embeddings are combined with
table-aware positional embeddings before feeding
them to the model. We use different kinds of posi-
tional embeddings:

• Position ID is the index of the token in the flat-
tened sequence (same as in BERT).

• Segment ID takes two possible values: 0 for the
question, and 1 for the table header and cells.

• Column / Row ID is the index of the colum-
n/row that this token appears in, or 0 if the token
is a part of the question.

• Rank ID if column values can be parsed as floats
or dates, we sort them accordingly and assign an
embedding based on their numeric rank (0 for
not comparable, 1 for the smallest item, i + 1
for an item with rank i). This can assist the
model when processing questions that involve
superlatives, as word pieces may not represent
numbers informatively (Wallace et al., 2019).

• Previous Answer given a conversational setup
where the current question might refer to the
previous question or its answers (e.g., question
5 in Figure 3), we add a special embedding that
marks whether a cell token was the answer to the
previous question (1 if the token’s cell was an
answer, or 0 otherwise).

Cell selection This classification layer selects a
subset of the table cells. Depending on the selected

https://github.com/google-research/tapas
https://github.com/google-research/tapas
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col1 col2
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SEG0 SEG0 SEG0 SEG0 SEG1 SEG1 SEG1 SEG1 SEG1 SEG1 SEG1 SEG1

COL0 COL0 COL0 COL0 COL1 COL1 COL2 COL2 COL1 COL2 COL1 COL2

ROW0 ROW0 ROW0 ROW0 ROW0 ROW0 ROW0 ROW0 ROW1 ROW1 ROW2 ROW2

Segment
Embeddings

Column
Embeddings

Row
Embeddings

RANK0

Token
Embeddings

RANK0 RANK0 RANK0 RANK0 RANK0 RANK0 RANK1 RANK1 RANK2 RANK2
Rank
Embeddings RANK0

POS0 POS1 POS2 POS3 POS4 POS5 POS6 POS7 POS8 POS9 POS10 POS11
Position
Embeddings

Table

Figure 2: Encoding of the question “query?” and a simple table using the special embeddings of TAPAS. The
previous answer embeddings are omitted for brevity.

aggregation operator, these cells can be the final
answer or the input used to compute the final an-
swer. Cells are modelled as independent Bernoulli
variables. First, we compute the logit for a token
using a linear layer on top of its last hidden vec-
tor. Cell logits are then computed as the average
over logits of tokens in that cell. The output of
the layer is the probability p(c)s to select cell c. We
additionally found it useful to add an inductive bias
to select cells within a single column. We achieve
this by introducing a categorical variable to select
the correct column. The model computes the logit
for a given column by applying a new linear layer
to the average embedding for cells appearing in
that column. We add an additional column logit
that corresponds to selecting no column or cells.
We treat this as an extra column with no cells. The
output of the layer is the probability p(co)col to select
column co computed using softmax over the col-
umn logits. We set cell probabilities p(c)s outside
the selected column to 0.

Aggregation operator prediction Semantic
parsing tasks require discrete reasoning over the
table, such as summing numbers or counting cells.
To handle these cases without producing logical
forms, TAPAS outputs a subset of the table cells
together with an optional aggregation operator.
The aggregation operator describes an operation
to be applied to the selected cells, such as SUM,
COUNT, AVERAGE or NONE. The operator is
selected by a linear layer followed by a softmax
on top of the final hidden vector of the first token
(the special [CLS] token). We denote this layer
as pa(op), where op is some aggregation operator.

Inference We predict the most likely aggregation
operator together with a subset of the cells (using
the cell selection layer). To predict a discrete cell
selection we select all table cells for which their

probability is larger than 0.5. These predictions
are then executed against the table to retrieve the
answer, by applying the predicted aggregation over
the selected cells.

3 Pre-training

Following the recent success of pre-training models
on textual data for natural language understanding
tasks, we wish to extend this procedure to struc-
tured data, as an initialization for our table parsing
task. To this end, we pre-train TAPAS on a large
number of tables from Wikipedia. This allows the
model to learn many interesting correlations be-
tween text and the table, and between the cells of a
columns and their header.

We create pre-training inputs by extracting text-
table pairs from Wikipedia. We extract 6.2M tables:
3.3M of class Infobox1 and 2.9M of class WikiTable.
We consider tables with at most 500 cells. All
of the end task datasets we experiment with only
contain horizontal tables with a header row with
column names. Therefore, we only extract Wiki
tables of this form using the <th> tag to identify
headers. We furthermore, transpose Infoboxes into
a table with a single header and a single data row.
The tables, created from Infoboxes, are arguably
not very typical, but we found them to improve
performance on the end tasks.

As a proxy for questions that appear in the end
tasks, we extract the table caption, article title, ar-
ticle description, segment title and text of the seg-
ment the table occurs in as relevant text snippets.
In this way we extract 21.3M snippets.

We convert the extracted text-table pairs to pre-
training examples as follows: Following Devlin
et al. (2019), we use a masked language model
pre-training objective. We also experimented with
adding a second objective of predicting whether

1en.wikipedia.org/wiki/Help:Infobox

en.wikipedia.org/wiki/Help:Infobox
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the table belongs to the text or is a random table
but did not find this to improve the performance on
the end tasks. This is aligned with Liu et al. (2019)
that similarly did not benefit from a next sentence
prediction task.

For pre-training to be efficient, we restrict our
word piece sequence length to a certain budget
(e.g., we use 128 in our final experiments). That
is, the combined length of tokenized text and table
cells has to fit into this budget. To achieve this, we
randomly select a snippet of 8 to 16 word pieces
from the associated text. To fit the table, we start
by only adding the first word of each column name
and cell. We then keep adding words turn-wise
until we reach the word piece budget. For every
table we generate 10 different snippets in this way.

We follow the masking procedure introduced
by BERT. We use whole word masking2 for the
text, and we find it beneficial to apply whole cell
masking (masking all the word pieces of the cell if
any of its pieces is masked) to the table as well.

We note that we additionally experimented with
data augmentation, which shares a similar goal
to pre-training. We generated synthetic pairs of
questions and denotations over real tables via a
grammar, and augmented these to the end tasks
training data. As this did not improve end task
performance significantly, we omit these results.

4 Fine-tuning

Overview We formally define table parsing in a
weakly supervised setup as follows. Given a train-
ing set of N examples {(xi, Ti, yi)}Ni=1, where xi
is an utterance, Ti is a table and yi is a correspond-
ing set of denotations, our goal is to learn a model
that maps a new utterance x to a program z, such
that when z is executed against the corresponding
table T , it yields the correct denotation y. The pro-
gram z comprises a subset of the table cells and an
optional aggregation operator. The table T maps a
table cell to its value.

As a pre-processing step described in Section 5.1,
we translate the set of denotations y for each ex-
ample to a tuple (C, s) of cell coordinates C and
a scalar s, which is only populated when y is a
single scalar. We then guide training according to
the content of (C, s). For cell selection examples,
for which s is not populated, we train the model to
select the cells in C. For scalar answer examples,

2https://github.com/google-research/
bert/blob/master/README.md

where s is populated but C is empty, we train the
model to predict an aggregation over the table cells
that amounts to s. We now describe each of these
cases in detail.

Cell selection In this case y is mapped to a subset
of the table cell coordinates C (e.g., question 1 in
Figure 3). For this type of examples, we use a
hierarchical model that first selects a single column
and then cells from within that column only.

We directly train the model to select the column
col which has the highest number of cells in C. For
our datasets cells C are contained in a single col-
umn and so this restriction on the model provides a
useful inductive bias. If C is empty we select the
additional empty column corresponding to empty
cell selection. The model is then trained to select
cells C ∩ col and not select (T \C)∩ col. The loss
is composed of three components: (1) the average
binary cross-entropy loss over column selections:

Jcolumns =
1

|Cols|
∑

co∈Cols

CE(p
(co)
col ,1co=col)

where the set of columns Cols includes the addi-
tional empty column, CE(·) is the cross entropy
loss, 1 is the indicator function. (2) the average
binary cross-entropy loss over column cell selec-
tions:

Jcells =
1

|Cells(col)|
∑

c∈Cells(col)

CE(p
(c)
s ,1c∈C),

where Cells(col) is the set of cells in the chosen col-
umn. (3) As for cell selection examples no aggrega-
tion occurs, we define the aggregation supervision
to be NONE (assigned to op0), and the aggregation
loss is:

Jaggr = − log pa(op0).

The total loss is then JCS = Jcolumns + Jcells +
αJaggr, where α is a scaling hyperparameter.

Scalar answer In this case y is a single scalar s
which does not appear in the table (i.e. C = ∅, e.g.,
question 2 in Figure 3). This usually corresponds
to examples that involve an aggregation over one
or more table cells. In this work we handle aggre-
gation operators that correspond to SQL, namely
COUNT, AVERAGE and SUM, however our model
is not restricted to these.

For these examples, the table cells that should be
selected and the aggregation operator type are not
known, as these cannot be directly inferred from

https://github.com/google-research/bert/blob/master/README.md
https://github.com/google-research/bert/blob/master/README.md
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# Question Answer Example Type

1 Which wrestler had the most number of reigns? Ric Flair Cell selection

2 Average time as champion for top 2 wrestlers? AVG(3749,3103)=3426 Scalar answer

3 How many world champions are there with only 
one reign?

COUNT(Dory Funk Jr., 
Gene Kiniski)=2

Ambiguous answer

4 What is the number of reigns for Harley Race? 7 Ambiguous answer

5

Which of the following wrestlers were ranked in 
the bottom 3? 

{Dory Funk Jr., Dan 
Severn, Gene Kiniski}

Cell selection

Out of these, who had more than one reign? Dan Severn Cell selection

Rank Name No. of 
reigns

Combined 
days

1 Lou Thesz 3 3,749

2 Ric Flair 8 3,103

3 Harley Race 7 1,799

4 Dory Funk Jr. 1 1,563

5 Dan Severn 2 1,559

6 Gene Kiniski 1 1,131

Table Example questions

Figure 3: A table (left) with corresponding example questions (right). The last example is conversational.

the scalar answer s. To train the model given this
form of supervision one could search offline (Dua
et al., 2019; Andor et al., 2019) or online (Berant
et al., 2013; Liang et al., 2018) for programs (ta-
ble cells and aggregation) that execute to s. In our
table parsing setting, the number of spurious pro-
grams that execute to the gold scalar answer can
grow quickly with the number of table cells (e.g.,
when s = 5, each COUNT over any five cells is
potentially correct). As with this approach learning
can easily fail, we avoid it.

Instead, we make use of a training recipe where
no search for correct programs is needed. Our ap-
proach results in an end-to-end differentiable train-
ing, similar in spirit to Neelakantan et al. (2015).
We implement a fully differentiable layer that la-
tently learns the weights for the aggregation pre-
diction layer pa(·), without explicit supervision for
the aggregation type.

Specifically, we recognize that the result of exe-
cuting each of the supported aggregation operators
is a scalar. We then implement a soft differentiable
estimation for each operator (Table 1), given the
token selection probabilities and the table values:
compute(op, ps, T ). Given the results for all ag-
gregation operators we then calculate the expected
result according to the current model:

spred =
∑
i=1

p̂a(opi) · compute(opi, ps, T ),

where p̂a(opi) = pa(opi)∑
i=1 pa(opi)

is a probability dis-
tribution normalized over aggregation operators
excluding NONE.

We then calculate the scalar answer loss with
Huber loss (Huber, 1964) given by:

Jscalar =

{
0.5 · a2 a ≤ δ
δ · a− 0.5 · δ2 otherwise

op compute(op, ps, T )

COUNT
∑

c∈T p
(c)
s

SUM
∑

c∈T p
(c)
s · T [c]

AVERAGE
compute(SUM,ps,T )

compute(COUNT,ps,T )

Table 1: Aggregation operators soft implementation.
AVERAGE approximation is discussed in Appendix D.
Note that probabilities p(c)s outside of the column se-
lected by the model are set to 0.

where a = |spred − s|, and δ is a hyperparameter.
Like Neelakantan et al. (2015), we find this loss
is more stable than the squared loss. In addition,
since a scalar answer implies some aggregation
operation, we also define an aggregation loss that
penalizes the model for assigning probability mass
to the NONE class:

Jaggr = − log(
∑
i=1

pa(opi))

The total loss is then JSA = Jaggr+βJscalar, where
β is a scaling hyperparameter. As for some ex-
amples Jscalar can be very large, which leads to
unstable model updates, we introduce a cutoff hy-
perparameter. Then, for a training example where
Jscalar > cutoff, we set J = 0 to ignore the exam-
ple entirely, as we noticed this behaviour correlates
with outliers. In addition, as computation done dur-
ing training is continuous, while that being done
during inference is discrete, we further add a tem-
perature that scales token logits such that ps would
output values closer to binary ones.

Ambiguous answer A scalar answer s that also
appears in the table (thus C 6= ∅) is ambiguous,
as in some cases the question implies aggregation
(question 3 in Figure 3), while in other cases a table
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WIKISQL WIKITQ SQA

Logical Form 3 7 7

Conversational 7 7 3

Aggregation 3 3 7

Examples 80654 22033 17553
Tables 24241 2108 982

Table 2: Dataset statistics.

cell should be predicted (question 4 in Figure 3).
Thus, in this case we dynamically let the model
choose the supervision (cell selection or scalar
answer) according to its current policy. Concretely,
we set the supervision to be of cell selection if
pa(op0) ≥ S, where 0 < S < 1 is a threshold
hyperparameter, and the scalar answer supervision
otherwise. This follows hard EM (Min et al., 2019),
as for spurious programs we pick the most probable
one according to the current model.

5 Experiments

5.1 Datasets

We experiment with the following semantic parsing
datasets that reason over single tables (see Table 2).

WIKITQ (Pasupat and Liang, 2015) This
dataset consists of complex questions on Wikipedia
tables. Crowd workers were asked, given a table,
to compose a series of complex questions that in-
clude comparisons, superlatives, aggregation or
arithmetic operation. The questions were then veri-
fied by other crowd workers.

SQA (Iyyer et al., 2017) This dataset was con-
structed by asking crowd workers to decompose
a subset of highly compositional questions from
WIKITQ, where each resulting decomposed ques-
tion can be answered by one or more table cells.
The final set consists of 6, 066 question sequences
(2.9 question per sequence on average).

WIKISQL (Zhong et al., 2017) This dataset fo-
cuses on translating text to SQL. It was constructed
by asking crowd workers to paraphrase a template-
based question in natural language. Two other
crowd workers were asked to verify the quality
of the proposed paraphrases.

As our model predicts cell selection or scalar an-
swers, we convert the denotations for each dataset
to 〈question, cell coordinates, scalar answer〉
triples. SQA already provides this information

(gold cells for each question). For WIKISQL and
WIKITQ, we only use the denotations. Therefore,
we derive cell coordinates by matching the deno-
tations against the table contents. We fill scalar
answer information if the denotation contains a
single element that can be interpreted as a float,
otherwise we set its value to NaN. We drop exam-
ples if there is no scalar answer and the denotation
can not be found in the table, or if some denotation
matches multiple cells.

5.2 Experimental Setup
We apply the standard BERT tokenizer on ques-
tions, table cells and headers, using the same vo-
cabulary of 32k word pieces. Numbers and dates
are parsed in a similar way as in the Neural Pro-
grammer (Neelakantan et al., 2017).

The official evaluation script of WIKITQ and
SQA is used to report the denotation accuracy for
these datasets. For WIKISQL, we generate the
reference answer, aggregation operator and cell co-
ordinates from the reference SQL provided using
our own SQL implementation running on the JSON
tables. However, we find that the answer produced
by the official WIKISQL evaluation script is incor-
rect for approx. 2% of the examples. Throughout
this paper we report accuracies against our refer-
ence answers, but we explain the differences and
also provide accuracies compared to the official
reference answers in Appendix A.

We start pre-training from BERT-Large (see Ap-
pendix B for hyper-parameters). We find it ben-
eficial to start the pre-training from a pre-trained
standard text BERT model (while randomly initial-
izing our additional embeddings), as this enhances
convergence on the held-out set.

We run both pre-training and fine-tuning on a
setup of 32 Cloud TPU v3 cores with maximum se-
quence length 512. In this setup pre-training takes
around 3 days and fine-tuning around 10 hours for
WIKISQL and WIKITQ and 20 hours for SQA
(with the batch sizes from table 12). The resource
requirements of our model are essentially the same
as BERT-large3.

For fine-tuning, we choose hyper-parameters
using a black box Bayesian optimizer similar to
Google Vizier (Golovin et al., 2017) for WIKISQL
and WIKITQ. For SQA we use grid-search. We
discuss the details in Appendix B.

3https://github.com/google-research/
bert/blob/master/README.md#
out-of-memory-issues

https://github.com/google-research/bert/blob/master/README.md#out-of-memory-issues
https://github.com/google-research/bert/blob/master/README.md#out-of-memory-issues
https://github.com/google-research/bert/blob/master/README.md#out-of-memory-issues
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Model Dev Test

Liang et al. (2018) 71.8 72.4
Agarwal et al. (2019) 74.9 74.8
Wang et al. (2019) 79.4 79.3
Min et al. (2019) 84.4 83.9

TAPAS 85.1 83.6

TAPAS (fully-supervised) 88.0 86.4

Table 3: WIKISQL denotation accuracy4.

Model Test

Pasupat and Liang (2015) 37.1
Neelakantan et al. (2017) 34.2
Haug et al. (2018) 34.8
Zhang et al. (2017) 43.7
Liang et al. (2018) 43.1
Dasigi et al. (2019) 43.9
Agarwal et al. (2019) 44.1
Wang et al. (2019) 44.5

TAPAS 42.6
TAPAS (pre-trained on WIKISQL) 48.7
TAPAS (pre-trained on SQA) 48.8

Table 4: WIKITQ denotation accuracy.

5.3 Results

All results report the denotation accuracy for mod-
els trained from weak supervision. We follow
Niven and Kao (2019) and report the median for
5 independent runs, as BERT-based models can
degenerate. We present our results for WIKISQL
and WIKITQ in Tables 3 and 4 respectively. Table
3 shows that TAPAS, trained in the weakly super-
vised setting, achieves close to state-of-the-art per-
formance for WIKISQL (83.6 vs 83.9 (Min et al.,
2019)). If given the gold aggregation operators and
selected cell as supervision (extracted from the ref-
erence SQL), which accounts as full supervision to
TAPAS, the model achieves 86.4. Unlike the full
SQL queries, this supervision can be annotated by
non-experts.

For WIKITQ the model trained only from the
original training data reaches 42.6 which surpass
similar approaches (Neelakantan et al., 2015).
When we pre-train the model on WIKISQL or
SQA (which is straight-forward in our setup, as
we do not rely on a logical formalism), TAPAS

achieves 48.7 and 48.8, respectively.

Model ALL SEQ Q1 Q2 Q3

Pasupat and Liang (2015) 33.2 7.7 51.4 22.2 22.3
Neelakantan et al. (2017) 40.2 11.8 60.0 35.9 25.5
Iyyer et al. (2017) 44.7 12.8 70.4 41.1 23.6
Sun et al. (2018) 45.6 13.2 70.3 42.6 24.8
Müller et al. (2019) 55.1 28.1 67.2 52.7 46.8

TAPAS 67.2 40.4 78.2 66.0 59.7

Table 5: SQA test results. ALL is the average question
accuracy, SEQ the sequence accuracy, and QX, the ac-
curacy of the X’th question in a sequence.

SQA (SEQ) WIKISQL WIKITQ

all 39.0 84.7 29.0
-pos 36.7 -2.3 82.9 -1.8 25.3 -3.7
-ranks 34.4 -4.6 84.1 -0.6 30.7 +1.8
-{cols,rows} 19.6 -19.4 74.1 -10.6 17.3 -11.6
-table pre-training 26.5 -12.5 80.8 -3.9 17.9 -11.1
-aggregation - 82.6 -2.1 23.1 -5.9

Table 6: Dev accuracy with different embeddings re-
moved from the full model: positional (pos), numeric
ranks (ranks), column (cols) and row (rows). The
model without table pre-training was initialized from
the original BERT model pre-trained on text only. The
model without aggregation is only trained with the cell
selection loss.

For SQA, Table 5 shows that TAPAS leads to
substantial improvements on all metrics: Improv-
ing all metrics by at least 11 points, sequence accu-
racy from 28.1 to 40.4 and average question accu-
racy from 55.1 to 67.2.

Model ablations Table 6 shows an ablation study
on our different embeddings. To this end we pre-
train and fine-tune models with different features.
As pre-training is expensive we limit it to 200, 000
steps. For all datasets we see that pre-training on
tables and column and row embeddings are the
most important. Positional and rank embeddings
are also improving the quality but to a lesser extent.

We additionally find that when removing the
scalar answer and aggregation losses (i.e., set-
ting JSA=0) from TAPAS, accuracy drops for both
datasets. For WIKITQ, we observe a substantial
drop in performance from 29.0 to 23.1 when re-
moving aggregation. For WIKISQL performance
drops from 84.7 to 82.6. The relatively small de-
crease for WIKISQL can be explained by the fact
that most examples do not need aggregation to be
answered. In principle, 17% of the examples of

4As explained in Section 5.2, we report TAPAS numbers
comparing against our own reference answers. Appendix A
contains numbers WRT the official WIKISQL eval script.
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the dev set have an aggregation (SUM, AVERAGE
or COUNT), however, for all types we find that for
more than 98% of the examples the aggregation is
only applied to one or no cells. In the case of SUM
and AVERAGE, this means that most examples can
be answered by selecting one or no cells from the
table. For COUNT the model without aggregation
operators achieves 28.2 accuracy (by selecting 0
or 1 from the table) vs. 66.5 for the model with
aggregation. Note that 0 and 1 are often found in
a special index column. These properties of WIK-
ISQL make it challenging for the model to decide
whether to apply aggregation or not. For WIKITQ
on the other hand, we observe a substantial drop
in performance from 29.0 to 23.1 when removing
aggregation.

Qualitative Analysis on WIKITQ We manu-
ally analyze 200 dev set predictions made by
TAPAS on WIKITQ. For correct predictions via
an aggregation, we inspect the selected cells to see
if they match the ground truth. We find that 96% of
the correct aggregation predictions where also cor-
rect in terms of the cells selected. We further find
that 14% of the correct aggregation predictions had
only one cell, and could potentially be achieved by
cell selection, with no aggregation.

We also perform an error analysis and identify
the following exclusive salient phenomena: (i) 12%
are ambiguous (“Name at least two labels that re-
leased the group’s albums.”), have wrong labels or
missing information ; (ii) 10% of the cases require
complex temporal comparisons which could also
not be parsed with a rich formalism such as SQL
(“what country had the most cities founded in the
1830’s?”) ; (iii) in 16% of the cases the gold de-
notation has a textual value that does not appear in
the table, thus it could not be predicted without per-
forming string operations over cell values ; (iv) on
10%, the table is too big to fit in 512 tokens ; (v) on
13% of the cases TAPAS selected no cells, which
suggests introducing penalties for this behaviour
; (vi) on 2% of the cases, the answer is the differ-
ence between scalars, so it is outside of the model
capabilities (“how long did anne churchill/spencer
live?”) ; (vii) the other 37% of the cases could not
be classified to a particular phenomenon.

Pre-training Analysis In order to understand
what TAPAS learns during pre-training we analyze
its performance on 10,000 held-out examples. We
split the data such that the tables in the held-out

all text header cell

all 71.4 68.8 96.6 63.4
word 74.1 69.7 96.9 66.6
number 53.9 51.7 83.6 53.2

Table 7: Mask LM accuracy on held-out data, when
the target word piece is located in the text, table header,
cell or anywhere (all) and the target is anything, a word
or number.

data do not occur in the training data. Table 7
shows the accuracy of masked word pieces of dif-
ferent types and in different locations. We find
that average accuracy across position is relatively
high (71.4). Predicting tokens in the header of
the table is easiest (96.6), probably because many
Wikipedia articles use instances of the same kind of
table. Predicting word pieces in cells is a bit harder
(63.4) than predicting pieces in the text (68.8). The
biggest differences can be observed when compar-
ing predicting words (74.1) and numbers (53.9).
This is expected since numbers are very specific
and often hard to generalize. The soft-accuracy
metric and example (Appendix C) demonstrate,
however, that the model is relatively good at pre-
dicting numbers that are at least close to the target.

Limitations TAPAS handles single tables as con-
text, which are able to fit in memory. Thus, our
model would fail to capture very large tables, or
databases that contain multiple tables. In this case,
the table(s) could be compressed or filtered, such
that only relevant content would be encoded, which
we leave for future work.

In addition, although TAPAS can parse composi-
tional structures (e.g., question 2 in Figure 3), its
expressivity is limited to a form of an aggregation
over a subset of table cells. Thus, structures with
multiple aggregations such as “number of actors
with an average rating higher than 4” could not be
handled correctly. Despite this limitation, TAPAS

succeeds in parsing three different datasets, and
we did not encounter this kind of errors in Section
5.3. This suggests that the majority of examples
in semantic parsing datasets are limited in their
compositionality.

6 Related Work

Semantic parsing models are mostly trained to pro-
duce gold logical forms using an encoder-decoder
approach (Jia and Liang, 2016; Dong and Lapata,
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2016). To reduce the burden in collecting full logi-
cal forms, models are typically trained from weak
supervision in the form of denotations. These are
used to guide the search for correct logical forms
(Clarke et al., 2010; Liang et al., 2011).

Other works suggested end-to-end differentiable
models that train from weak supervision, but do not
explicitly generate logical forms. Neelakantan et al.
(2015) proposed a complex model that sequentially
predicts symbolic operations over table segments
that are all explicitly predefined by the authors,
while Yin et al. (2016) proposed a similar model
where the operations themselves are learned during
training. Müller et al. (2019) proposed a model that
selects table cells, where the table and question are
represented as a Graph Neural Network, however
their model can not predict aggregations over ta-
ble cells. Cho et al. (2018) proposed a supervised
model that predicts the relevant rows, column and
aggregation operation sequentially. In our work,
we propose a model that follow this line of work,
with a simpler architecture than past models (as
the model is a single encoder that performs com-
putation for many operations implicitly) and more
coverage (as we support aggregation operators over
selected cells).

Finally, pre-training methods have been de-
signed with different training objectives, including
language modeling (Dai and Le, 2015; Peters et al.,
2018; Radford et al., 2018) and masked language
modeling (Devlin et al., 2019; Lample and Con-
neau, 2019). These methods dramatically boost
the performance of natural language understanding
models (Peters et al., 2018, inter alia). Recently,
several works extended BERT for visual question
answering, by pre-training over text-image pairs
while masking different regions in the image (Tan
and Bansal, 2019; Lu et al., 2019). As for tables,
Chen et al. (2019) experimented with rendering a
table into natural language so that it can be handled
with a pre-trained BERT model. In our work we
extend masked language modeling for table repre-
sentations, by masking table cells or text segments.

7 Conclusion

In this paper we presented TAPAS, a model for
question answering over tables that avoids gener-
ating logical forms. We showed that TAPAS effec-
tively pre-trains over large scale data of text-table
pairs and successfully restores masked words and
table cells. We additionally showed that the model

can fine-tune on semantic parsing datasets, only
using weak supervision, with an end-to-end differ-
entiable recipe. Results show that TAPAS achieves
better or competitive results in comparison to state-
of-the-art semantic parsers.

In future work we aim to extend the model to
represent a database with multiple tables as context,
and to effectively handle large tables.
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A WIKISQL Execution Errors

In some tables, WIKISQL contains “REAL” num-
bers stored in “TEXT” format. This leads to in-
correct results for some of the comparison and
aggregation examples. These errors in the WIK-
ISQL execution accuracy penalize systems that
do their own execution (rather then producing an
SQL query). Table 8 shows two examples where
our result derivation and the one used by WIK-
ISQL differ because the numbers in the “Crowd”
(col5) column are not represented as numbers in
the respective SQL table. Table 9 and 10 contain
accuracies compared against the official and our
answers.

Model WIKISQL TAPAS

TAPAS (no answer loss) 81.2 82.5
TAPAS 83.9 85.1
TAPAS (supervised) 86.6 88.0

Table 9: WIKISQL development denotation accuracy.

Model WIKISQL TAPAS

TAPAS (no answer loss) 80.1 81.2
TAPAS 82.4 83.6
TAPAS (supervised) 85.2 86.4

Table 10: WIKISQL test denotation accuracy.

B Hyperparameters

Parameter Values Scale

Learning rate (1e-5, 3e-3) Log
Warmup ratio (0.0, 0.2) Linear
Temperature (0.1, 1) Linear
Answer loss cutoff (0.1, 10,000) Log
Huber loss delta (0.1, 10,000) Log
Cell selection preference (0, 1) Linear
Reset cell selection weights [0, 1] Discrete

Table 11: Hyper-parameters for WIKISQL and WIK-
ITQ. Values are constrained to either a range (a, b) or
a list [a, b, c, . . .].

Parameter PRETRAIN SQA WIKISQL WIKITQ

Training Steps 1,000,000 200,000 50,000 50,000
Learning rate 5e-5 1.25e-5 6.17164e-5 1.93581e-5
Warmup ratio 0.01 0.2 0.142400 0.128960
Temperature 1.0 0.107515 0.0352513
Answer loss cutoff 0.185567 0.664694
Huber loss delta 1265.74 0.121194
Cell selection preference 0.611754 0.207951
Batch size 512 128 512 512
Gradient clipping 10 10
Select one column 1 0 1
Reset cell selection weights 0 0 1

Table 12: Optimal hyper-parameters found for pretrain-
ing (PRETRAIN), SQA, WIKISQL and WIKITQ.

C Pre-training Example

In order to better understand how well the model
predicts numbers, we relax our accuracy measure
to a soft form of accuracy:

acc(x, y) =


1 if x = y

0 if x or y is not a number
1.0− |x−y|

max(x,y)
else

With this soft metric we get an overall accuracy
of 74.5 (instead of 71.4) and an accuracy of 80.5
(instead of 53.9) for numbers. Showing that the
model is pretty good at guessing numbers that are
at least close to the target. The following example
demonstrates this:

Team Pld W D L PF PA PD Pts

South Korea 2 1 1 0 33 22 11 5
Spain 2 1 〈1〉 〈0〉 31 24 7 5
Zimbabwe 2 0 0 2 22 〈43,40〉 - 〈19,18〉 2

Table 13: Table example from the Wikipedia page de-
scribing the 1997 Rugby World Cup Sevens. 〈x〉marks
a correct prediction and 〈x,y〉 an incorrect prediction.

In the example, the model correctly restores the
Draw (D) and Loss (L) numbers for Spain. It fails
to restore the Points For (PF) and Points Against
(PA) for Zimbabwe, but gives close estimates. Note
that the model also does not produce completely
consistent results for each row we should have
PA+PD = PF and the column sums of PF and
PA should equal.

D The average of stochastic sets

Our approach to estimate aggregates of cells in the
table operates directly on latent conditionally inde-
pendent Bernoulli variables Gc ∼ Bern(pc) that in-
dicate whether each cell is included in the aggrega-
tion and a latent categorical variable that indicates
the chosen aggregation operation op: AVERAGE,
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col0 col1 col2 col3 col4 col5
Home team Home team score Away team Away team score Venue Crowd

geelong 18.17 (125) hawthorn 6.7 (43) corio oval 9,000
footscray 8.18 (66) south melbourne 11.18 (84) western oval 12,500
fitzroy 11.5 (71) richmond 8.12 (60) brunswick street oval 14,000
north melbourne 6.12 (48) essendon 14.11 (95) arden street oval 8,000
st kilda 14.7 (91) collingwood 17.13 (115) junction oval 16,000
melbourne 12.11 (83) carlton 11.11 (77) mcg 31,481

Question What was the away team’s score when the crowd at Arden Street Oval was larger than 31,481?
SQL Query SELECT col3 AS result FROM table 2 10767641 15

WHERE col5 > 31481.0 AND col4 = "arden street oval"
WIKISQL answer ["14.11 (95)"]
Our answer []

Question What was the sum of the crowds at Western Oval?
SQL Query SELECT SUM(col5) AS result FROM table 2 10767641 15

WHERE col4 = "western oval"
WIKISQL answer [12.0]
Our answer [12500.0]

Table 8: Table “2-10767641-15” from WIKISQL. “col6” was removed. The “Crowd” column is of type “REAL”
but the cell values are actually stored as “TEXT”. Below we have two questions from the training set with the
answer that is produced by the WIKISQL evaluation script and the answer we derive.

SUM or COUNT. Given Gc and the table values
T we can define a random subset S ⊆ T where
pc = P (c ∈ S) for each cell c ∈ T .

The expected value of COUNT(S) =
∑

cGc can
be computed as

∑
c pc and SUM(S) =

∑
cGcTc as∑

c pcTc as described in Table 1. For the average
however, this is not straight-forward. We will see in
what follows that the quotient of the expected sum
and the count, which equals the weighed average
of T by pc in general is not the true expected value,
which can be written as:

E
[∑

GcTc∑
Gc

]
This quantity differs from the weighted average,

a key difference being that the weighted average
is not sensitive to constants scaling all the output
probabilities, which could in theory find optima
where all the pc are below 0.5 for example. By the
linearity of the expectation we can write:

∑
c

TcE

[
Gc∑
j Gj

]
=
∑
c

TcpcE

[
1

1 +
∑

j 6=cGj

]

So it comes down to computing that quantity
Qc = E

[
1
Xc

]
= E

[
1

1+
∑

j 6=c Gj

]
. The key obser-

vation is that this is the expectation of a reciprocal

of a Poisson Binomial Distribution 5 (a sum of
Bernoulli variables) in the special case where one
of the probabilities is 1.

By using the Jensen inequality we get a lower
bound on Qc as 1

E[Xc]
= 1

1+
∑

j 6=c pj
. Note that if in-

stead we used 1∑
j pj

then we recover the weighted
average, which is strictly bigger than the lower
bound and in general not an upper or lower bound.
We can get better approximations by computing
the Taylor expansion using the moments6 of Xc of
order k:

Qc = E
[
1

Xc

]
' 1

E [Xc]
+

var [Xc]

E [Xc]
3 + · · ·+

(−1)k
E
[
(Xc − E [Xc])

k
]

E [Xc]
k+1

where var [Xc] =
∑

j 6=c pj(1− pj).

The full form for the zero and second order Tay-
lor approximations are:

5wikipedia.org/Poisson binomial distribution
6wikipedia.org/Taylor expansions for the moments

https://en.wikipedia.org/wiki/Poisson_binomial_distribution
https://en.wikipedia.org/wiki/Taylor_expansions_for_the_moments_of_functions_of_random_variables
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AVERAGE0(T, p) =
∑
c

Tc
pc

1 +
∑

j 6=c pj

AVERAGE2(T, p) =
∑
c

Tc
pc(1 + εc)

1 +
∑

j 6=c pj

with εc =

∑
j 6=c pj(1− pj)

(1 +
∑

j 6=c pj)
2

The approximations are then easy to write in any
tensor computation language and will be differen-
tiable. In this work we experimented with the zero
and second order approximations and found small
improvements over the weighted average baseline.
It’s worth noting that in the dataset the proportion
of average examples is very low. We expect this
method to be more relevant in the more general
setting.


