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Abstract

While the recent tree-based neural models
have demonstrated promising results in gener-
ating solution expression for the math word
problem (MWP), most of these models do
not capture the relationships and order infor-
mation among the quantities well. This re-
sults in poor quantity representations and in-
correct solution expressions. In this paper, we
propose Graph2Tree, a novel deep learning
architecture that combines the merits of the
graph-based encoder and tree-based decoder
to generate better solution expressions. In-
cluded in our Graph2Tree framework are two
graphs, namely the Quantity Cell Graph and
Quantity Comparison Graph, which are de-
signed to address limitations of existing meth-
ods by effectively representing the relation-
ships and order information among the quan-
tities in MWPs. We conduct extensive ex-
periments on two available datasets. Our ex-
periment results show that Graph2Tree out-
performs the state-of-the-art baselines on two
benchmark datasets significantly. We also
discuss case studies and empirically examine
Graph2Tree’s effectiveness in translating the

MWP text into solution expressions’.

1 Introduction

Math Word Problem (MWP), which involves au-
tomatically answering a mathematical question ac-
cording to a textual description, is an important
natural language understanding task that has been
studied by researchers since the 1960s (Bobrow,
1964). A typical MWP is a short narrative that de-
scribes a problem and poses a question about an
unknown quantity. Table 1 provides an example of
a typical MWP where the reader is required to in-
fer the revenue of a store after selling all the teddy
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Problem: 348 teddy bears are sold for $23
each. There are total 470 teddy bears in a
store and the remaining teddy bears are sold
for $17 each. How much did the store earn
after selling all the teddy bears?

Expression: x = 348 x 23+ (470—348) x 17
Solution: 10078

Table 1: A math word problem.

bears. Earlier studies have attempted to perform the
MWP task via statistical machine learning methods
(Kushman et al., 2014; Hosseini et al., 2014; Mitra
and Baral, 2016; Roy and Roth, 2018) and seman-
tic parsing approaches (Shi et al., 2015; Koncel-
Kedziorski et al., 2015; Roy and Roth, 2015; Huang
et al., 2017). However, these methods are non-
scalable as tremendous efforts are required to de-
sign suitable features and expression templates.

In recent years, deep learning-based models have
been developed to solve MWPs. These deep learn-
ing methods are able to automate the learning of
features and generalize well by returning new so-
lution expressions that are unseen in the training
datasets. Wang et al. (2017) proposed a large-scale
MWP dataset and applied a vanilla sequence to
sequence (seq2seq) model to translate the language
text to a solution expression. Since then, many re-
search efforts mainly focused on improving the gen-
eration of solution expressions. Some researchers
have proposed seq2seq models to improve solution
expression generation using implicit (Wang et al.,
2018; Chiang and Chen, 2019) and explicit (Wang
et al., 2019; Liu et al., 2019; Xie and Sun, 2019)
tree structures. Improving the representation of
quantity is a potential approach to achieve better
solution expressions. For example, to get the cor-
rect solution expression for the problem described
in Table 1, an ideal MWP model should be able
to associate quantity, i.e., 348 teddy bears, with its
price attribute of $23, and understand the arithmetic
order by deriving 122 remaining teddy bears, i.e.,
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470 — 348, before associating the price attribute
of $17. The existing deep learning models are not
effective in capturing such relationships and order
information among the quantities in MWPs, thus
resulting in an inaccurate representation of the final
solution expressions.

To enrich the representation of a quantity, the
relationships between the descriptive words associ-
ated with a quantity need to be modeled. However,
such relationships cannot be effectively modeled
using recurrent models, which are commonly used
in the existing MWP deep learning methods. In-
spired by the concept of Quantity Schema (Roy
and Roth, 2015) and Qset (Koncel-Kedziorski et al.,
2015), we design the Quantity Cell Graph to asso-
ciate informatively descriptive words to quantity.
We first extract associated nouns, verbs, adjectives,
units, and rates that describe a quantity in the MWP
text. Next, we construct a graph where the ex-
tracted descriptive words are represented as neigh-
bor nodes directly linked to a quantity. Finally, a
neural network model is used to learn enriched la-
tent representations of the quantities based on the
constructed Quantity Cell Graph.

The loss of quantities’ numerical qualities in ex-
isting MWP methods can also result in poor quan-
tity representations. Most of the existing MWP
methods often replace quantities with special sym-
bols (e.g., “n1”, “ny”, etc.) (Wang et al., 2017,
2018; Liu et al., 2019). The loss of quantities’ nu-
merical qualities could be problematic when gen-
erating solution expressions. Take the example
in Table 1, without modeling the numerical qual-
ities of quantities, an MWP method may learn a
solution expression “384 — 470" which results in a
negative number that is unlikely to occur in MWPs.
To address this limitation, we introduce the Quan-
tity Comparison Graph, which was inspired by a
numerical machine reading comprehension model
proposed by Ran et al. (2019). The intuition of
Quantity Comparison Graph is to retain the nu-
merical qualities of the quantity and leverage cer-
tain heuristics to represent the relationships among
quantities in MWPs such that solution expressions
reflect a more realistic arithmetic order.

Besides improving the quantity representation,
we also aim to improve the solution expression gen-
erative process. For longer solution expressions in
MWPs, as some quantities are repeatedly used in
different arithmetic sub-solution expressions, the
existing methods which utilized recurrent neural

networks may not be able to learn the underlying
reasoning process and arithmetic order. For exam-
ple, in Table 1, the quantity 348 is being used in
“348 % 23” and “(470 — 348) * 17”. To address this
limitation, we propose to use a graph encoder to
guide the learning of representations of quantities
and a tree decoder to explicitly model the multi-
stage reasoning process.

Contribution.  In this paper, we combine
the above-proposed solutions and introduce the
Graph2Tree solver to address the existing MWPs
methods’ limitations. The contributions of this pa-
per are as follows:

e We construct the Quantity Cell Graph and
Quantity Comparison Graph to enrich the
quantity representations by capturing relation-
ships between quantities and their attributes
and retaining the quantities’ numerical quali-
ties.

o We propose the Graph2Tree to improve the
learning of solution expressions’ generation.
The Graph2Tree model uses a graph trans-
former to learn the latent quantity represen-
tations from our proposed graphs, and a tree
structure decoder to generate a solution ex-
pression tree. To the best of our knowledge,
this is the first graph-to-tree model for MWPs.

e We conduct extensive experiments on two
available large-scale MWPs datasets, and our
results show that our proposed Graph2Tree
model outperforms state-of-the-art baselines
on MWP task.

2 Problem Formulation

We denote the text of the math word problem as P,
where P is a sequence of word tokens and numeric
values. We let V), = {v1, - - - , v, } denote the word
tokens in P and np = {ny,--- ,n;} denote the set
of quantities in P. Our goal is to map P to a valid
and correct mathematical expression E,.

Solving MWPs requires an understanding of
quantities in problem and their complex mathemat-
ical relationships. MWPs are often expressed in a
linear textual sequence form, which is not ideal for
learning the quantities’ complex interactions. Thus,
we propose to formulate the problem into graph
form so that the relationships between quantities
can be expressed more explicitly. The problem text
P is transformed into graph G by augmenting the
text sequences with other structural information
like dependency parsing and POS tagging.
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Figure 1: Overview of the proposed model. In order to initialize representation of text P, a BILSTM is used
to compute node representation H. Later, after extracting Quantity Cells from text P, we construct Quantity
Comparison Graph and Quantity Cell Graph. With two graphs and H, we use the proposed graph transformer to
get the internal representation. Finally, a tree-based decoder is implemented to generate the target euqation £.

The final mathematical expression £, that we
aim to construct can always be represented as a
solution expression tree 7'. I" may include constant
quantities, operators and quantities in np. The set
of constant quantities V,,,, contains some special
values not appeared in text like 7, 1. The set of
math operators V,, contains {4, —,*, /}. Over-
all, the target vocabulary of P can be denoted
as Vigee = Vop U Veon U np (Ve varies in dif-
ferent problems as np varies) . The goal of our
Graph2Tree model here is to estimate the condi-
tional probability P(E,|P), which can be trans-
formed as P(T|G, Viec).

3 Methodology

Figure 1 shows our proposed Graph2Tree frame-
work. Graph2Tree first encodes the MWP text in-
put using BiLSTM and simultaneously constructs
Quantity Cell Graph and Quantity Comparison
Graph. The output of BiILSTM, word-level rep-
resentations, are used as node representations. To-
gether with the two constructed graphs, the node
representations are input into a graph transformer
to learn a graph representation of the MWP. The
multiGCN component of the graph transformer is
modified to learn the graph representation based on
the Quantity Cell Graph and Quantity Comparison
Graph. This enriches the final graph representa-
tion with quantities’ relationship information and
numerical qualities. Pooling is used to aggregate
all nodes into a pool-based graph embedding vec-
tor as the graph transformer’s output. Finally, the
output graph representation and the updated node

representations are used as input to a tree-structure
decoder to infer the final solution expression tree.

3.1 Graph-Based Encoder

There have been some graph-based models (Sahu
et al., 2019) intending to grab the complicated re-
lations in text. The graph-based encoder in our
Graph2Tree framework is inspired by the graph
transformer model (Koncel-Kedziorski et al., 2016;
Cai and Lam, 2019). We first discuss the initializa-
tion of node representations based on MWPs’ input
problem text. Next, we introduce the construction
of the Quantity Cell Graph and Quantity Compar-
ison Graph. Finally, we discuss the learning of
graph representation using the graph transformer
module.

3.1.1 Node Representation Initialization

To initialize the node representations, we first learn
the word-level hidden state representations of the
input MWP text using a BiILSTM neural network,
H = {hy,--- ,hn} € RV*4 N = m + . Here
d denotes the dimension of hidden vectors, m rep-
resents the number of words, and [/ represents the
number of quantities. The learned hidden state
representations will be used as the input node rep-
resentations for the graph encoder.

3.1.2 Quantity Cell

We refer all quantities np and words V), from the
problem as nodes in the graph. Next, we define
a quantity cell as a subset of nodes in the graph
that are associated with a quantity. Formally, each
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MWP P is transformed into multiple guantity cells
QC = {Q1,Q2, - ,Qm}, where m is the num-
ber of quantities in P. Each quantity cell Q; € QC
contains a quantity token {n;} and the correspond-
ing attributes {v1;, - - - ,vq }. These quantity cells
are sub-graph representations of quantity-related in-
formation in the MWPs. Dependency parsing, con-
stituency parsing and POS tagging implemented
with stanford corenlp toolkit (Manning et al., 2014)
are used to extract and construct the quantity cells.

A quantity cell in an MWP P consists of the

following properties:

e Quantity. The quantity numeric value.

e Associated Nouns. We consider the nouns re-
lated to the Quantity in the dependency parse
tree. Associated Nouns are the nouns related
by the num, number and prep_of relations.

e Associated Adjectives. Associated Adjectives
are the adjectives related to Quantity or Asso-
ciated Nouns with the amod relation, which is
detected by the dependency parser.

e Associated Verbs. For each Quantity, we de-
tect the related verbs, Associated Verbs, ac-
cording to nsubj and dobj relations.

e Units and Rates. We detect the nouns related
to Associated Nouns by prep_of as the Unit.
The nouns related Associated Nouns which
own the key words such as “each”, “every”
and “per” are regarded as Rates.

If the quantity cell detection process does not grab
any attributes, we will use a window centered on
Quantity to select neighboring words as the at-
tributes of the Quantity. An example of the quantity
cell is illustrated in the left part of Figure 1.

3.1.3 Quantity Graph Construction

From the quantity cells, we construct two graphs:
Quantity Cell Graph and Quantity Comparison
Graph. The goal of the Quantity Cell Graph is to
associate informative descriptive words to quantity
so as to enrich the quantity’s representation. Simi-
larly, the goal of the Quantity Comparison Graph
is to retain the numerical qualities of the quantity
and leverage heuristics to improve representations
of the relationships among quantities. Formally,
we define the construction of two graphs as follow:
¢ Quantity Cell Graph G .. For each Quan-
tity Cell QQ; = {nl} U {UM’, cee ,Um'}, the
undirected edge e;; between n; and each
vj € {v14, -, vgi} will be added to the graph
Gqcell-
e Quantity Comparison Graph G.o,,. For

two quantity nodes n;,n; € np, a directed
edge e;; = (n;,n;) pointing from n; to n;
will be added to the graph Gycomp if n; >
n;. This heuristic constraint can prevent the
subtracting a larger number from a smaller
number, which results in a negative number.
We represent the two graphs using adjacency
matrices. For graph G, an adjacency matrix A €
RNXN s first initialized. If there exists an edge
between the ¢-th and j-th nodes, we need to assign
value 1 to corresponding position of the adjacency
matrix (4, j, A; ;) for this edge. Otherwise, 0 would
be assigned. Thus, we compute the adjacency ma-
trix Agcomp for graph Ggcomp and Ageerp for Gyeeny.

3.1.4 Graph Transformer

The inputs to the graph transfer module are adja-
cency matrices of multiple graphs {Ak},f:l, A €
{Agcomp, Ageen} and initial node embeddings H,
where K is the number of graphs and each A;, €
RN*N is the adjacency matrix for k-th graph. K
graphs are used as we adopt a multi-head struc-
ture in our model and they are split evenly between
Quantity Cell Graphs and Quantity Comparison
Graph.

The graph transformer first utilizes graph convo-
lution networks (GCNs) (Kipf and Welling, 2017)
to learn the graph node features. For multiple
graphs, we use a K-head graph convolution setup.
This is similar to the transformer model proposed
in Vaswani et al. (2017), where K separate graph
convolution networks are used and concatenated
before a residual connection is applied.

Specifically, a single GCN has its parameter
Wy € R where d;, = d/K. Given an ad-
jacency matrix Ay representing graph structure and
a feature matrix X (in the beginning, X is set as H)
meaning the input feature for all nodes, we define
learning of GCN as follow:

GCN (A, X) = GConva(Ag, GConvi(Ag, X))

(1
Here, the GCN contains 2 different graph convolu-
tion operations:

GConv(Ag, X) = relu(AkXTng) 2)

For each graphs {A;}X |, we perform learning
of GCN in parallel, yielding dx-dimensional output
values. The output values are concatenated and
projected, resulting in the final values:

K

7= | GON(4;,H) 3)
k=1
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Here, || denotes the concatenation of the K’ GCN
heads.

Graph transformer then augments this K-head
graph convolution network with a feed-forward net-

work, layer-norm layer, and residual connection:

Z =7 + LayerNorm(Z) 4)
Z = Z 4 LayerNorm(FFN(Z))  (5)

here, FFN(z) is a two-layer feed-forward net-
work with a relu function between layers:

FFN(z) = max(O,mWfl +bp1)Wyra+bsa (6)

The resulting node representations Z represent
quantities, entities and relations. In order to learn
the global context graph representation, we ap-
ply the element-wise min-pooling operation on all
learned node representations. Finally, the global
feature is fed into a fully connected neural network
(FC) to generate the graph representation z:

zg = FC(MinPool(Z)) (7)

3.2 Tree-Based Decoder

Inspired by the the Goal-driven Tree Structure
(GTS) (Xie and Sun, 2019), we build a tree-based
decoder to construct the solution expressions. We
set the quantity nodes to be the leaf nodes and each
operator node must have two child nodes. As such,
the specialized tree decoder generates an equation
following the pre-order traversal ordering. As part
of the tree construction process, the centermost op-
erator is first produced, followed by the left child
node. This process is repeated until the leaf node
is produced. Subsequently, we generate the right
child nodes recursively.

3.2.1 Tree Initialization

To start the above mentioned tree generation pro-
cess, our model initializes the root node vector gt
according to the global context graph representa-
tion z,. For each token y in the target vocabulary
Viec of P, the representation for a certain token
e(y|P) is defined as:

e(y)op) /Lf Y € ‘/Op
€(y,con) Zf Y € Veon )]
Eg)oc(y,P) ifyenp

The expression trees in our decoder contain three
kinds of nodes: operators, constant quantities, and
quantities that appeared in P. Constant quantities

and quantities in np are always set to be in leaf
nodes position. Operators will always take up the
positions of the non-leaf nodes. The quantities’ rep-
resentations in np are dependent on certain MWPs,

i.e., y will take the corresponding Efoc(% p from

Z. The representations of operators and constant
quantities are independent, i.e., their representa-
tions are obtained by 2 independent embedding
matrices M, and Mop,.

3.2.2 Pre-Order Tree Generation

We adopt the pre-order traversal manner to con-
struct the expression tree:

e Step 1. The generation starts with a deriva-
tion tree with only a root node ¢,,.¢. We use
attention module of GTS to encode the node
embedding Z into global graph vector G

G. = GTS — Attention(groot, Z)  (9)

e Step 2. This tree decoder applies left sub-
node generation module to the derivation in a
top-down manner, generating new left child
node ¢; conditioned on the parent node g, and
global graph G.. Note that the token g is
predicted when generating the new node:

q = GTS — Left(gy, G.)
gy = GTS — Predict(q;, G.)

If the generated g is an operator, two empty
child node positions are created and we will
keep executing Step 2. This step works like
decomposing the whole goal into multi-stage
reasoning. If the generated ¢ is a quantity
(constant or from n p), we will get into Step
3.

e Step 3. The tree decoder switches to use the
right sub-node generation module and popu-
late the empty right node position. At every
decoding step, we use the left child node ¢;,
global graph vector GG, and a sub-tree embed-
ding t; as the input to the right generation
module and generate the right child node ¢,
and the corresponding token g,

qgr = GTS — Right(ql, Ge, tl)

Uy = GTS — Predict(q,, G¢)
The addition of the sub-tree embedding works
similarly to incorporating a sub-tree copying
mechanism. The additional sub-tree embed-

ding t; is computed by using sub-tree embed-
ding component of GTS:

tl = GTS — SubTree(Z)la ql)

(10)

1D

(12)
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If ¢, is an operator, the next step should go
back to Step 2. If ¢, is a quantity, we will get
into Step 4.

e Step 4. The model switches to backtracking
to find the new empty right node position. If
the model cannot find the new empty right
node position, the generation is completed. If
the empty right node position still exists, go
back to Step 2.

3.3 Model Learning

For each problem-tree expression example, (p, '),
the loss function L(T', P) is defined as the a sum
of the negative log-likeihoods of probabilities for
predicting t-node token y;. Formally, our training
goal is to minimize the following loss function:

E

L(T,P) = Z —logprob(yt| ¢, Ge, P)
t=1

(13)

where ¢ is the goal vector, (G, is the global graph
context, F' is the number of tokens in 1", and prob
is computed by distribution computation function
in GTS.

4 Experiment

In this section, we compare our proposed
Graph2Tree model with state-of-the-art baselines.
We also conduct ablation study and analysis to in-
vestigate the effectiveness of various components
of our model.

Datasets. Two commonly-used MWP datasets
are used in our experiments: MAWPS (Koncel-
Kedziorski et al., 2016) with 2,373 problems and
Math23K (Wang et al., 2017) with 23,162 prob-
lems.

Baselines. We compare Graph2Tree to an exten-
sive set of baselines and state-of-the-art models:
DNS (Wang et al., 2017) uses a vanilla seq2seq
model to generate expressions. Math-EN (Wang
et al., 2018) benefits from an equation normaliza-
tion to reduce target space. T-RNN (Wang et al.,
2019) applies recursive neural networks over pre-
dicted tree-structure templates. S-Aligned (Chiang
and Chen, 2019) designs the decoder with a stack to
track the semantic meanings of operands. GROUP-
ATT (Li et al., 2019) borrows the idea of multi-
head attentions from Transformer (Vaswani et al.,
2017). AST-Dec (Liu et al., 2019) creates an ex-
pression tree with a tree LSTM decoder. GTS (Xie
and Sun, 2019) develops a tree structured neu-
ral networks in a goal-driven manner to generate

expression trees. IRE (Sahu et al., 2019) is an-
other baseline that was first proposed in relation
extraction and has something in common with our
method.

Implementation Details and Evaluation Metric.
In the Graph2Tree model, we use a word embed-
ding (not pre-trained) with 128 units, a one layer
graph transformer with 4 GCNs, each of which
has the dimension of the hidden state set to 128.
The dimensions of the hidden state for all the other
layers are set to 512. Our model is trained for 80
epochs. Mini-batch size and dropout rate are set
to 64 and 0.5, respectively. For optimizer, we use
Adam with learning rate set to 0.001, 51 = 0.94
and B2 = 0.99, and the learning rate will be halved
every 20 epochs. Also, we use a beam size of 5 in
beam search.

For the Math23K dataset, some methods are eval-
uated using 5-fold cross-validation, expressed in
“Math23K*”, and others are evaluated using the
available test set (expressed as “Math23K”). We
evaluate Graph2Tree on both settings. For the
MAWPS dataset, the models are evaluated with
5-fold cross-validation. Following previous works,
we use solution accuracy as the evaluation metric.

4.1 Overall Results

MAWPS | Math23K | Math23K*
DNS 59.5 - 58.1
Math-EN 69.2 66.7 -
T-RNN 66.8 66.9 -
S-Aligned - - 65.8
GROUP-ATT 76.1 69.5 66.9
AST-Dec - 69.0 -
GTS 82.6 75.6 74.3
IRE - 76.7 -
Graph2Tree 83.7 77.4 75.5

Table 2: Solution accuracy of Graph2Tree and various
baselines. Note that Math23K denotes results on public
test set and Math23K* denotes 5-fold cross-validation.

Table 2 shows the solution accuracy of
Graph2Tree and various baselines. We observe
that Graph2Tree outperforms all baselines in the
two MWP datasets. As the code for GTS is made
available?, we implemented GTS and tested it on
all dataset settings. We also statistically test the im-
provement of Graph2Tree over the strongest base-
line (i.e., GTS) and found that the improvement to
be significant at 0.01 level using paired t-test. The
superior performance of Graph2Tree demonstrates

https://github.com/ShichaoSun/math_
seq2tree
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the importance of enriching quantity’s representa-
tions in handling the MWP task.

4.2 Ablation Study and Parameter Analysis

To understand the effects of the various components
and hyperparameters in our Graph2Tree model, we
conduct ablation studies and parameter analysis on
the Math23K dataset.

4.2.1 Effect of Quantity Graph

We investigate the effects of Quantity Cell Graph
and Quantity Comparison Graph in our model. The
results of our ablation study are shown in Table 3.
We find that the Graph2Tree with both Quantity
Cell Graph and Quantity Comparison Graph per-
forms the best. We also observe that having ei-
ther Quantity Cell Graph and Quantity Compar-
ison Graph still outperforms the implementation
without either graph (i.e., full-connected graph).
More interestingly, we also noted that enriching
the quantity representation with either graph would
also outperform the baseline GTS model in this
task, suggesting the importance of quantity rep-
resentation in MWP task. From this study, we
also infer that improving quantity representation,
modeling the relationships among quantities, and
retaining their numerical qualities help to achieve
better results for the MWP task. Also, if two types
of graphs are merged into an integrated graph, the
performance drops. We postulate that a possible
reason for the inferior performance may be due to
the noise introduced by the integration of multiple
graphs.

Math23K
Graph2Tree 7.4
only Quantity Cell Graph 76.8
only Quantity Comparison Graph 76.9
only Full-Connected Graph 75.3
merge two graphs as single one 76.4

Table 3: Solution accuracy with various graph configu-
rations in Graph2Tree.

4.2.2 Effect of Graph Number

The number of GCNs is a tuneable hyperparameter
in our Graph2Tree model. Thus, we investigate the
effect of the number of GCNs on our model’s per-
formance. We varied the number of GCNs from 2,
4, 8. Note that even numbers are used as the GCNs
are split evenly to model the Quantity Cell Graph
and Quantity Comparison Graph. Table 4 shows
the study’s results. We observe that the 4-GCN

version achieves the best performance. A potential
reason could be due to the optimal capacity of in-
formation aggregation is achieved using 4 GCNs
over the two quantity graphs.

| Math23K
w/2GCN | 76.7
w/4GCN | 774
w/8GCN | 76.9

Table 4: Solution accuracy with varying number of
GCNs.

4.2.3 Impact of Length of Expression

To investigate how well our Graph2Tree model per-
forms with the increasing expression complexity as
compared to state-of-the-art models using explicit
tree decoders, we analyze the increasing number of
operators in the test set. From the results shown in
Table 5, we note that:

(1) Our proposed Graph2tree outperforms the
other two models in most cases except that the
number of operators equals to 5. In other cases with
less than 5 operators, our model shown statistically
significant improvements over other two models.

(2) All the models’ performances follow an accu-
racy descending pattern when the length of expres-
sion becomes longer. This is intuitive as longer ex-
pressions often associate with more complex ques-
tions that are more difficult to solve and have fewer
data for training.

#0p | Pro (%) | AST-Dec (%) | GTS (%) | Our (%)

1 17.3 82.7 84.9 85.5
2 52.2 74.5 80.6 83.7
3 19.1 59.9 70.7 71.7
4 6.6 42.4 50.0 51.5
5 3.4 44.1 38.2 38.2
6 0.9 55.6 44.4 55.6

Table 5: Accuracy for increasing length of templates.
#Op is the number of operators in expressions. Pro de-
notes the proportion of MWPs for different expression
lengths.

4.2.4 Impact of Numerical Comparison

One of the primary goals of our Graph2Tree model
is to address the situation where the wrong arith-
metic order leads to incorrect solution expression
generation. We evaluate this aspect of our model
by investigating how Graph2Tree has improved
the arithmetic order errors. We first retrieve the
MWPs with incorrectly predicted expressions. As
we are interested in arithmetic order errors, we
check that the incorrectly predicted expressions’
length is equal to their corresponding ground truth
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Case 1: The class organized students to climb the mountain. The female students were divided
into 4 groups, and each group had 15 students. There were 76 male students in total. How many
students joined climbing last week?

GTS: (15 + 76) * 4; (error) Graph2Tree: 15 * 4 + 76;

Case 2: Lingling and Yaya are 200 meters apart. Lingling is in the front and runs 3 meters per
second. Yaya is in the rear and runs 5 meters per second. They set off at the same time, running
in the same direction. How long will it be before Yaya could catch up with Lingling?

GTS: 200/(3 — 5); (error) Graph2Tree: 200/(5 — 3);

Case 3: A bus and a truck departed from the two cities of A and B, which are 900 kilometers
apart. They went in opposite directions. It takes 10 hours for the bus to travel from A to B, and
15 hours for the truck to travel from B to A. How many hours would it be before the bus, and
the truck meet?

GTS: 900/(900/10 4 1/15); (error) Graph2Tree: 900/(900/10 + 900/15);

Table 6: Three examples of solving MWPs with our Graph2Tree model.

expressions’ length. In total, we retrieved 103 in-
correct predicted expressions for Graph2Tree and
119 for GTS. Next, we manually count the num-
ber of incorrectly predicted expression attributed to
arithmetic order error among the initially retrieve
set. We found that Graph2Tree has generated 7
expressions with arithmetic order error, while GTS
has generated 27 arithmetic order error expressions.
This suggests that Graph2Tree is able to signifi-
cantly improve the arithmetic order in MWP task.

4.3 Case Study

Finally, we perform a case study on the solution
expressions generated by GTS and Graph2Tree. Se-
lected case studies are shown in Table 6. In Case
1, there are essential words, i.e., “each,” “group,
and “students” around the quantity “15”, and “stu-
dents” around the quantity “76”. However, GTS
predicts operator “+” between these two quanti-
ties with obviously different units as GTS is unable
to model quantity representation effectively using
BiLSTM. For the second case, we observe that
GTS gives a wrong prediction “3 — 5 as GTS does
not model quantities’ numerical qualities. For the
last case, this MWP requires models to have the
ability to handle situation where quantities are re-
peatedly and frequently used. Graph2Tree is able
to handle this situation better than the GTS model
as our model encodes the MWP in richer graph
representation. The three case studies demonstrate
Graph2Tree model strengths in generating more ac-
curate and realistic solution expressions for MWPs.

Besides, further analysis is performed on error
cases. We found that our model, like other base-
lines, performed poorly in solving MWPs with long
solution expressions. Answering these MWPs re-

’

quires complex reasoning which opens the possi-
bility for future works.

5 Related Work
5.1 Math Word Problems Solving

The earlier works on math word problems (MWPs)
are mainly tested on small-scale datasets. These
works can be broadly divided into statistical ma-
chine learning based (Kushman et al., 2014; Hos-
seini et al., 2014; Mitra and Baral, 2016; Roy and
Roth, 2018; Zou and Lu, 2019a) and semantic pars-
ing based (Shi et al., 2015; Koncel-Kedziorski et al.,
2015; Roy and Roth, 2015; Huang et al., 2017; Zou
and Lu, 2019b).

Recently, deep learning based models have be-
come a new trend in solving math word problems.
Wang et al. (2017) applied a vanilla seq2seq model
to map the language text to an expression. Li et al.
(2019) applied multi-head attention to model differ-
ent types of MWP features. Both Wang et al. (2018)
and Chiang and Chen (2019) proposed to generate
expressions with the implicit tree structure. Huang
et al. (2018) designed a new intermediate form to
generate. Other models (Wang et al., 2019; Liu
et al., 2019; Xie and Sun, 2019) have generated an
expression tree explicitly to derive the final answer.

5.2 Graph Transformer

Transformer is a self-attention based neural net-
work which has shown potential in tasks like neu-
ral machine translation (Vaswani et al., 2017) and
language modeling (Devlin et al., 2019). However,
there are only a fewer works which focus on ex-
tension of transformer to graph-structure data. In
community of natural language processing, the first
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graph transformer was introduce in a knowledge-
graph-to-text task (Koncel-Kedziorski et al., 2019),
where a graph attention Network (Velickovic et al.,
2018) is used with a transformer style architecture.
Another graph transformer (Cai and Lam, 2019)
extends vanilla multi-head attention mechanism
into relation-enhanced global attention mechanism.
Our work aims to explore the adaptation of trans-
former in modeling multiple heterogeneous graph
in parallel for the MWP task.

6 Conclusion

In this paper, we proposed a novel MWP solver,
Graph2Tree, which improves the task performance
by enriching the quantity representations in the
problem. We conducted extensive experiments to
evaluate our model against state-of-the-art base-
lines. Our experiments shown that Graph2Tree is
able to outperform the baselines on the MWP task.
For future work, we aim to consider more com-
plex relationships among the quantities and other
attributes to enrich quantity representations further.
We will also explore adding heuristic in the tree-
based decoder to guide and improve the generation
of solution expression.
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