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Abstract

Spoken language understanding tasks usu-
ally rely on pipelines involving complex pro-
cessing blocks such as voice activity detec-
tion, speaker diarization and Automatic speech
recognition (ASR). We propose a novel frame-
work for predicting utterance level labels di-
rectly from speech features, thus removing the
dependency on first generating transcripts, and
transcription free behavioral coding. Our clas-
sifier uses a pretrained Speech-2-Vector en-
coder as bottleneck to generate word-level rep-
resentations from speech features. This pre-
trained encoder learns to encode speech fea-
tures for a word using an objective similar to
Word2Vec. Our proposed approach just uses
speech features and word segmentation infor-
mation for predicting spoken utterance-level
target labels. We show that our model achieves
competitive results to other state-of-the-art ap-
proaches which use transcribed text for the
task of predicting psychotherapy-relevant be-
havior codes.

1 Introduction

Speech interfaces have seen a widely growing trend
and this has brought about increasing interest in
advancing computational approaches to spoken lan-
guage understanding (SLU). (Tur and De Mori,
2011; Xu and Sarikaya, 2014; Yao et al., 2013;
Ravuri and Stolcke, 2015). SLU systems often rely
on Automatic speech recognition (ASR) for gen-
erating lexical features. The ASR output is then
used for the target natural language understanding
task. Furthermore, end-2-end SLU systems for var-
ious applications, including speech synthesis (Oord
et al., 2016), ASR tasks (Amodei et al., 2016; Chan
et al., 2016; Soltau et al., 2016) and speech-2-text
translation (Chung et al., 2019) have shown promis-
ing results. Recently (Haque et al., 2019) propose
a method for learning audio-linguistuc embedding
but that too depends on using transcribed text.
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Figure 1: Upper part describes most of existing ap-
proaches which either use ASR or manual transcripts.
Lower part shows our proposed approach where we pre-
dict behavior codes without using transcripts

Due to the nature of the speech processing
pipeline, natural language understanding tasks suf-
fer from two major problems, 1) error propagation
through ASR leading to noisy lexical features 2)
loss of rich information which supplement lexical
features, such as prosodic and acoustic expressive
speech patterns.

In this paper, we propose a framework to ad-
dress the problem of predicting behavior codes di-
rectly from speech utterances. We focus on data
from Motivational Interviewing (MI) sessions, a
type of talk-based psychotherapy focused on be-
havior change. In psychology research and clinical
practice, behavioral coding is often used to under-
stand process mechanisms and therapy efficacy and
outcomes. Behavior codes are annotated by an
expert at an utterance level (or interaction level)
by listening to the session. Examples of utterance
level behavior codes include if there was a simple
of complex reflection by the therapist of their pa-
tient’s previous utterance(s). Several approaches
have been proposed for automatic prediction of be-
havior codes, mainly using lexical features and/or
linguistic features such as information from depen-
dency trees (Xiao et al., 2016; Tanana et al., 2016;
Pérez-Rosas et al., 2017; Cao et al., 2019; Gibson
et al., 2019). Recent works (Singla et al., 2018;
Chen et al., 2019) reveal that using acoustic and
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Figure 2: Speech signal to word encoder (SSWE) which uses sequence-2-sequence framework for generating
representations of context words given a word.

prosodic features in addition to lexical features out-
performs single modality models.

Speech2Vec (Chung and Glass, 2018) has shown
that high quality word representations can be learnt
by just using speech features. It learns word
representations in an unsupervised manner using
an objective similar to the Skipgram objective of
Word2Vec (Mikolov et al., 2013) (a word represen-
tation should be representative of its context words)
and sequence-to-sequence framework. However,
Speech2Vec only aims to learn word representa-
tions which are averaged spoken-word represen-
tations of that word in the corpus. Our proposed
approach aims to exploit speech signal to word
encoder learnt using an architecture similar to
Speech2Vec as lower level dynamic word repre-
sentations for the utterance classifier. Thus, our
system never actually needs to know what word it
is but only word segmentation information. We hy-
pothesize that word segmentation information can
be obtained with cheaper tools, e.g. a supervised
word segmentation system (Tsiartas et al., 2009)
or a heuristics based system based on acoustic and
prosodic cues (Junqua et al., 1994; Iwano and Hi-
rose, 1999). We plan to investigate the effect of
noise in word boundaries on encoder quality in the
future.

Our end-2-end transcription-free approach is
similar and perhaps even motivated some of the
previous works. There have been some works
(Serdyuk et al., 2018; Lugosch et al., 2019) which
perform prediction tasks directly from speech sig-
nals but lack in capturing the underlying linguis-

tic structure of a language (sentences break into
words for semantics). We believe capturing some
of the important linguistic units (e.g. words) are im-
portant for spoken language understanding. (Qian
et al., 2017) is most similar to our work in terms of
overall architecture as they also first get word level
representations and then use the encoder for utter-
ance level prediction. However (Qian et al., 2017)
uses transcribed word transcriptions but we only
use word boundaries for ASR-free end-2-end spo-
ken language understanding. As shown in Figure
1, most previous works follow the upper pipeline.
They start with a transcript (manually generated
or through an ASR), which is first segmented into
utterances. They then use word-embeddings for
each word in the transcript before feeding it into a
classifier to predict target behavior codes.

Our approach shows competitive results when
compared to state-of-the-art models which use tran-
scribed text. Our target application domain in this
work is psychotherapy. While utterance level be-
havior coding is a valuable resource for psychother-
apy process research, it is also a labor intensive
task for manual annotation. Our proposed method
which does not rely on transcripts should help with
cheaper and faster behavioral annotation. We be-
lieve this framework can be a promising direction
to directly perform classification tasks given a spo-
ken utterance.

2 Our Approach

We first learn a word-level speech signal to word
encoder using a sequence-to-sequence framework.
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Speech-2-Vector follows the learning objective sim-
ilar to Skipgram architecture of Word2Vec. We
then use the pre-trained encoder to predict behavior
codes.

2.1 Speech signal to word encoder
Our Speech signal to word encoder (SSWE) en-
coder is an adaptation of Speech2Vec (Chung
and Glass, 2018) which in turn is motivated by
Word2Vec’s skipgram architecture. The model
learns to predict context words given a word. But
unlike Word2Vec, in SSWE, each word is repre-
sented by a sequence of speech frames. We adopt
the widely known sequence-to-sequence architec-
ture to generate context words given a spoken word.
Our model generates speech features for context
words (Xn−4, Xn−3, ....., Xn+4) given speech fea-
tures for a word Xn. As input for word Xn, it
takes K ∗13 dimensional MFCC features extracted
from every 25 ms window of speech audio using
a frame rate of 10ms. K is the maximum number
of frames a spoken word can have. This input is
then processed through a bidirectional LSTM layer
(Hochreiter and Schmidhuber, 1997) to generate
the context vector C. C is then used by a unidirec-
tional LSTM decoder to generate the speech fea-
tures for words in context (Yn−4, Yn−3, ....., Yn+4).
We optimize the model by minimizing the mean
squared loss between predicted and target outputs:∑k

i=1

∥∥Xi − Y i
∥∥2. Following this approach, our

system never uses any form of explicit transcrip-
tions for learning the encoder, just only the word
boundaries. Figure 2 gives a pictorial description
of this process.

Our Speech-2-Vector encoder is trained using
a speech corpus and word segmentation informa-
tion. In our setup, we assume we have high quality
word segmentation information. For the purpose
of our experiments, we obtain the word segmenta-
tion information using a Forced-aligner (Ochshorn
and Hawkins, 2016) (it uses transcripts but we only
use it for word segmentation, we plan to replace it
with other tool). The forced aligner primarily gives
boundaries for the start and end of a word, which
are then used to get speech features for a word. We
hypothesize that learning word segmentation is a
cheaper task than training a full-blown ASR.

2.2 Utterance classifier
Figure 3 shows the picturesque view of our utter-
ance classifier. Given a word-segmented utterance,
we first process speech features for each word to

W2 W3 WnW1

word-level Speech-2-Vector encoder

Bidirectional LSTM layer

Self-attention layer

S

Dense layer

Prediction (p)

Figure 3: Classifier to predict behavior codes which
takes input a word segmented speech signal and also
uses pretrained Speech-2-Vector encoder to get word
level representations.

Code Description #Train #Test
FA Facilitate 1194 496
GI Giving information 12241 4643

RES Simple reflection 4594 1902
REC Complex reflection 3613 1235
QUC Closed question (Yes/No) 4393 2066
QUO Open question (Wh-type) 3871 1445
MIA MI adherent 2948 1521
MIN MI non-adherent 890 433

Total 33744 13741

Table 1: Data statistics for Behavior code prediction in
Motivational Interviewing Psychotherapy

get word-level representations (Wi..... Wn). We
then learn a function c = f(W) that maps W to a be-
havioral code c1, 2, ..., C, with C being the number
of defined target code types.

We use a parametric composition model to
construct utterance-level embeddings from word-
level embeddings. Word-level representations
(Wi, .....,Wn) are then fed into a bidirectional
LSTM layer to contextualize the word embeddings.
Contextualized word embeddings are then fed to a
self-attention layer to get a sentence representation
S which is then used to predict the behavior code
for an utterance using a dense layer which projects
it to C dimensions using a softmax operation. We
use a self-attention mechanism similar to the one
proposed in (Yang et al., 2016)

3 Dataset

We experiment with two datasets for training the
S2V encoder: first on the LibreSpeech Corpus
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(Panayotov et al., 2015) (500 hour subset of broad-
band speech produced by 1,252 speakers) and sec-
ond, directly on our classifier training data, which
we describe below.

For classification, we use data from Motivational
Interviewing sessions (a type of talk based psy-
chotherapy) for addiction treatment presented in
(Tanana et al., 2016; Pérez-Rosas et al., 2017).
There are 337 transcribed sessions (approx. 160
hours of audio) coded by experts at the utterance
level with behavioral labels following the Moti-
vational Interviewing Skill Code (MISC) manual
(Miller et al., 2003). Each human coder segmented
talk turns into utterances (i.e., complete thoughts)
and assigned one code per utterance for all utter-
ances in a session. The majority of sessions were
coded once by one of three expert coders.

In this paper, we use the strategy proposed by
(Xiao et al., 2016) grouping all counselor codes
into 8 categories (described in Table 1). We remove
backchannels without timestamps which cannot be
aligned and split the data into training and testing
sets by sessions with roughly 2:1 ratio. This split
is consistent with all compared works.

4 Training details

Speech-2-Vector Encoder: We implemented the
model with PyTorch (Paszke et al., 2017). Similar
to (Chung and Glass, 2018), we also adopted the
attention mechanism which enables the Decoder to
condition every decoding step on the last hidden
state of the Encoder (Subramanian et al., 2018).
The window size was set to 4. We train the model
using stochastic gradient descent (SGD) with learn-
ing rate of 1e ∗ −3 and batch size of 64 (spoken-
word, context) pairs. We experimented with hyper-
parameter combinations for: using bidirectional or
unidirectional RNNs, using GRU vs LSTM cell,
number of LSTM hidden layers and learning rates.
We found there was not a big difference in encoder
output quality with higher dimensions. Therefore,
we use a 50 dimensional LSTM cell, thus the result-
ing encoder output becomes 100 (Bidirectional last
hidden states) + 100 (cell state) = 200 dimensions.

Utterance Classifier: The chosen batch size
was 40 utterances. The LSTM hidden state di-
mension is 50. We use dropout at the embedding
layer with drop probability 0.3. The dense layer
is of 100 dimensions. The model is trained using
the Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.001 and an exponential decay

Model Word embeddings
Data F1-score

Word2Vec† Google-wiki 0.53
Word2Vec† Indomain 0.56

Speech2Vec† LibreSpeech 0.58
Speech2Vec† Libre+Indomain* 0.60

Table 2: Using word embeddings learnt using speech
features (Speech2vec) vs Word2Vec. * marks that
model was only fine tuned for in-domain data. † marks
that all these classifiers were trained end-2-end

of 0.98 after 10K steps (1 step = 40 utterances).
Similar to prior work, we also weight each sample
according to normalized inverse frequency ratio.

5 Experiments & Results

Speech2Vec vs Word2Vec: Table 2 shows results
where we compare performance of the system
when we use lexically-derived word embeddings
(word2Vec) vs speech-features derived word em-
beddings (Speech2Vec). If a word appears in a cor-
pus n times, then speech2vec uses a system similar
to our Speech-2-Vector encoder and averages them
to get a word embedding for that dictionary word.
Results confirm two main observations: 1) It is bet-
ter to learn/fine-tune the word embeddings on an
in-domain dataset. 2) Speech2Vec that learns word
embeddings based on different spoken variations
of word provides better results for behavior code
prediction. This result is consistent with findings
from (Singla et al., 2018; Chen et al., 2019) where
it is shown that acoustic-prosodic information can
provide complementary information for predicting
behavior codes and hence, produce better results.
One challenge is that SSWE and Speech2Vec gen-
erally needs large amount of transcribed data to
learn high quality word embeddings. Therefore,
we first train SSWE on a general speech corpus
(here, LibreSpeech (Libre)) before fine-tuning it on
our classifier training data (results with ∗ show this
experiment).

Transcriptions vs. No Transcriptions: Meth-
ods discussed above still rely on transcriptions to
know what the word is. However, our proposed
method does not use any explicit transcription but
only the word segmentation information. Results
in Table 3 show that using a pre-trained Speech-
2-Vector encoder as a building block to get word
representations can lead to competitive results to
other methods which rely heavily on first gener-
ating transcripts of the spoken utterance. Here
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Model Pretrain data F1-score
Majority class - 0.33

Single-modality
Word2Vec† Indomain 0.56

Prosodic Indomain 0.42
Multimodal
Word2Vec+Prosodic† Indomain 0.58

Speech2Vec† Libre+Indomain* 0.60
Speech-only (Our approach)

SSWE Indomain 0.49
SSWE† Indomain 0.44
SSWE Libre+Indomain* 0.56

SSWE† Libre+Indomain* 0.50

Table 3: We compare our proposed approach to previ-
ous approaches. Results in red are for the systems that
do not use any transcriptions, only word segmentation
information.

we also compare our model to the multimodal ap-
proach proposed by (Singla et al., 2018; Chen et al.,
2019) where they use word-level prosodic features
along with lexical word embeddings. Prosodic and
Word2Vec+Prosodic† show results for this system.

Table 3 also shows that doing end-2-end training
(results with *) where our Speech-2-Vector encoder
is also updated by the classifier loss generates poor
results. We hypothesize that it can be due to the
fact that our behavior code prediction data was
split to minimize the speaker overlap. Thus it be-
comes easier to overfit when we fine-tune it on
some speaker-related properties instead of general-
izing for behaviour code prediction task.

6 Conclusions

We show that comparable results can be achieved
for behavior code prediction by just using speech
features and without any ASR or human transcrip-
tions. Our approach still depends on word segmen-
tation information, however, we believe obtaining
word segmentation from speech is comparatively
easier than building a high quality ASR. The eval-
uation results show the application significance of
an end-2-end speech to behavioral coding for psy-
chotherapy conversations. This allows for building
systems that do not include explicit transcriptions,
an attractive option for privacy reasons, when the
end goal (as determined by the behavioral codes)
is to characterize the overall quality of the clinical
encounter for training or quality assurance.

7 Future work

The results still vary and are worse compared to
using human annotations. We plan to do a detailed
analysis along two lines: 1) Comparing if the pro-
posed modeling technique can help bridge gap be-
tween predicted and human annotations, and 2)
Effect of environment variables e.g., background
noise, speaker features, different languages etc.
We believe our approach can benefit from some
straightforward modifications to the architecture,
such as using convolutional neural networks which
have shown to perform better at handling time-
continuous data like speech.
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