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Abstract

Hypernymy detection, a.k.a. lexical entail-
ment, is a fundamental sub-task of many natu-
ral language understanding tasks. Previous ex-
plorations mostly focus on monolingual hyper-
nymy detection on high-resource languages,
e.g., English, but few investigate the low-
resource scenarios. This paper addresses the
problem of low-resource hypernymy detec-
tion by combining high-resource languages.
We extensively compare three joint training
paradigms and for the first time propose apply-
ing meta learning to relieve the low-resource
issue. Experiments demonstrate the superior-
ity of our method among the three settings,
which substantially improves the performance
of extremely low-resource languages by pre-
venting over-fitting on small datasets.

1 Introduction

Hypernymy is a fundamental asymmetric lexico-
semantic relation. It expresses 1 s—a relationship
between concepts and is widely used to build tax-
onomies (Miller, 1995) or large-scale knowledge
bases (Wu et al., 2012; Seitner et al., 2016). Lexico-
semantic patterns (e.g., X such as Y) are gener-
ally employed to harvest benchmark datasets or
resources from large English corpus due to their
high precision (Hearst, 1992). However, Hearst-
like patterns of English can not be easily trans-
ferred to other languages such as Chinese. Creat-
ing high-quality hypernymy benchmarks for other
languages requires much more human-annotation
efforts and hypernymy detection in those languages
remains low-resource tasks (Vuli¢ et al., 2019). In
this paper, we focus on the question: how could we
make full use of hypernymy pairs of high-resource
languages such as English for other low-resource
languages, e.g., Japanese and Thai?

* Work done when C. Yu and J. Han were with Tencent
Al Lab.

To investigate this question, we firstly assume
a strong feasibility of semantic relation transfer
across languages, which is in line with existing
findings on human cognition. Youn et al. (2016)
uncovered the universal conceptual structure of hu-
man lexical semantics among cross-lingual dictio-
naries and revealed the language-independent at-
tribute for semantic similarity of concepts. Wang
et al. (2019) studied cross-lingual training by sim-
ply merging high-resource language pairs and low-
resource language ones, which is prone to over-
fitting to low-resource ones. Based on the above
interesting findings and the datasets in Wang et al.
(2019), we study three training paradigms of com-
bining training data from multiple different lan-
guages, i.e., cross-lingual training, multilingual
training, as well as meta learning.

To the best of our knowledge, meta learning
algorithms have not been previously applied to hy-
pernymy detection. We propose applying meta
learning algorithms in low-resource hypernymy de-
tection and perform extensive comparisons with
multilingual training. Meta-learning algorithms
aim at learning language-independent models and
then fine-tuning on multiple languages with min-
imal training instances. In our experiments, we
further explore the two following questions:

o Considering the language-agnostic lexical se-
mantics, would multilingual training improve
the performance by employing additional reg-
ularization?

e Regarding the effectiveness of meta learning
in low-resource scenarios (Dou et al., 2019),
can we leverage meta learning to help multi-
lingual training?

The results for question 1 are surprising. Obvi-
ous improvement is observed from neither bilingual
cross-training nor multilingual training. The perfor-
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mance even drops on extremely low-resource lan-
guages as the models easily over-fit low-resource
language datasets. Meta learning algorithms, on
the other hand, significantly relieve these cases by
learning good model initialization for all languages.
In the end, meta learning achieves the best per-
formance among three training paradigms, which
answers the main questions of this work.

2 Training Settings

In this section, we first introduce the base super-
vised model for hypernymy detection, and then
illustrate three joint training paradigms.

2.1 Base Model

As discussed in Section 1, pattern-based models are
highly language-dependant and can not generalize
to arbitrary languages. We resort to supervised dis-
tributional models as base models, which take the
distributional representation of terms as input fea-
tures to train hypernymy relation classifiers (Roller
etal., 2014; Yu et al., 2015; Rei et al., 2018). Luck-
ily, pre-trained distributional vectors (e.g., fastText
word embedding (Bojanowski et al., 2017)) are
widely available for most languages.

Formally, given a pair of terms (z, y) in one lan-
guage, we denote the corresponding word vectors
by x and y. The hypernymy detection models learn
a classifier fy to make binary prediction, where the
input features could be the concatenation, differ-
ence, or other complex combinations of x and y.
To keep the base model simple and effective, we
directly concatenate the two vectors and train a two-
layer MLP, i.e., fo(x ®y) = MLP(x @ y). Note
the performances of base model are comparable
with the ones in Wang et al. (2019) without feature
extractors and self training.

2.2 Joint Models

Cross-lingual Training. Following the setting of
Wang et al. (2019), cross-lingual hypernymy detec-
tion aims to predict low-resource language pairs
combining large training data from high-resource
languages. Specially, in our case, English is the
only high-resource language. Therefore, we train
a joint model on the mixture of our large English
dataset and the small dataset of another language
such as Japanese. Due to the different represen-
tation spaces of languages, word translation tech-
niques are required to transfer knowledge and align
the feature space across languages. We adopt the

Algorithm 1: Meta Learning procedure

Initialize base model f with parameter 0
for iin{1,2, ... nsteps} do
Randomly draw L tasks {77, 75,...71}
for/in{1,2...L} do
‘ Update k steps 9;‘: with Equation 1
end
Update 6 using Equation 2
end
Fine-tune # on each low-resource language.

technique of Conneau et al. (2017) to learn a map-
ping matrix Wj_g, to project the word embedding
space of language [ to that of English. The input
feature to the classifier fy for language [ is then
(W)_enX, Wi_eny). The quality of translation
matrix Wj_ep highly affects the transfer perfor-
mance and we carefully choose the best mapping
according to the evaluation on bilingual word trans-
lation benchmarks'. Detailed results are omitted
due to the limited space.

Multilingual Training. Instead of training on a
pair of languages, multilingual training combines
all available pairs in any language. Glava$ and
Vuli¢ (2018) has showed that semantic relation
classification tasks benefit from the additional reg-
ularization resulted from multilingual training. We
also investigate whether multilingual training for
low-resource hypernymy detection could learn a
model that has better generalization ability on all
languages. Due to the language-independent struc-
ture of semantic relation, the interaction among
datasets of all languages imports more external
knowledge than cross-lingual training. However
the characteristic of limited training instances for
low-resource languages may make the model easily
over-fit and hurt the generalization. In the follow-
ing experiments, we would answer and analyze the
question thoroughly.

Meta Learning. Inspired by low-resource ma-
chine translation in Gu et al. (2018) and general
language representation in Dou et al. (2019), we
propose applying meta learning algorithms to hy-
pernymy detection. We firstly learn language-
independent models based on multiple high-
resource languages and then adapt to low-resource
language pairs. Here we adopt the most repre-
sentative model-agnostic meta-learning (MAML)

'nttps://github.com/facebookresearch/
MUSE
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algorithm (Finn et al., 2017). Formally, given the
base model fy with parameters ¢, we denote train-
ing on each language [ as task 7;. For each task
(language) 1}, we sample a batch of data as the
support set 7;(.S) and another batch of data as the
query set 7;(Q). During the meta training stage,
we randomly sample L tasks {77, 7Ts,...77}, and
then update the model parameters by k gradient
steps for each task 7;:

9;6 = Hlk_l - avelk—lﬁTl(s)(fef_ﬂ. (1)

Here L is the loss function for task 7; and « is the
learning rate. The overall objective function for
meta learning is mein > L10)( felk). Hence the

model parameters are updated by:

L
6 =60—pBVy ZﬁTl(Q)(felk)a ()

=1

where (3 is the learning rate for meta learning. The
overall meta learning procedure is formulated in
Algorithm 1. After nsteps of meta learning itera-
tions, we use several small-batch data from each
language to fine-tune the model parameter 6.

Compared with multilingual training in Sec-
tion 2.2, meta learning algorithms have the same
input but different learning procedures or param-
eter updating strategies. Instead of simply merg-
ing all the high-resource and low-resource datasets
to learn a joint model, meta learning algorithms
learn a good initialization for all languages that
can be adapted to one specific language. An obvi-
ous advantage of universal initialization is that it
avoids the case where the model may favor high-
resource languages in multilingual training (Dou
et al., 2019).

3 Experiments

3.1 Experimental Setup

We conduct experiments on the hypernymy detec-
tion datasets of several languages in Wang et al.
(2019)2. The languages are French (FR), Chinese
(zH), Finnish (F1), Italian (IT), Thai (TH), Japanese
(JA), and Greek (EL). True hypernymy pairs are
extracted from Open Multilingual WordNet (Bond
and Foster, 2013) while false pairs are a mixture of
synonymy and other relation pairs. For the English

>The reason why we do not evaluate on Bordea et al.

(2016); Vuli¢ et al. (2019) is either no false hypernymy pair or
unfit setting.

| Lang. | #True | #False | #Vocab
| 17,591 | 57,164 | 47,305

High-Resource | EN

FR | 4,035 | 8.947 | 12.979
Moderately 7H | 2962 | 6382 | 7372
Low-Resource FI 7,157 | 9,433 | 16,082

IT | 3.034 | 6081 | 11,572

TH | 1,156 | 1,977 | 2715
Extremely A | 1448 | 3203 | 7.301
Low-Resource |t | 2612 | 1.454 | 4303

Table 1: Statistics for all languages’ hypernymy detec-
tion datasets. #True and #False are the number of data
with true/false labels. #Vocab stands for the vocabulary
size.

dataset, it combines five commonly-used bench-
marks and we refer to Wang et al. (2019) for the
description of data construction. We further catego-
rize the seven low-resource datasets as moderately
low-resource ones e.g., FR, ZH, FI, IT and extremely
low-resource ones e.g., TH, JA, EL according to rel-
ative dataset sizes. The statistics of all datasets are
shown in Table 1.

For all three low-resource joint training
paradigms, we randomly split the non-English lan-
guage datasets with 20% for training, 20% for de-
velopment, and 60% for testing, following Wang
et al. (2019). For English we also take out the 20%
development set for model selection. Word em-
beddings for each language are from pre-trained
fastText word vectors® whose dimensions are set
to 300. We report averaged accuracy of 5-fold
cross-validation for low-resource languages. For
the three joint models, we uniformly run 5,000
steps and select the best model for each language
based on its development set. The hidden layer
size for the base models is set to 400. We use
vanilla SGD to optimize the meta learner with
batch size 32 and learning rate 5 = 0.5. We
set the sampled task number L in each step to 8§,
update step k to 5, and inner learning rate « to
0.001. Our code is available at https://github.

com/ccclyu/metaHypernymy.

3.2 Experimental Results

In Table 2, we demonstrate the main results of all
training paradigms. Empirically we answer the two
questions raised in the Section 1.

Do simple joint multilingual models work? In
the first row, we report performances of the base

*https://fasttext.cc/docs/en/
crawl-vectors.html
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FR ZH F IT | TH JA BL
Mono 44697 692 744 | 659 740 702

Cross 748 679 711 752 | .693 711 .684
Multi 756 .690 713 760 | .657 711 .653

ZeroMeta .765 700 713 .762|.702 .747 712
Finetune .769 .713 .714 .764 | .709 .756 .734

Table 2: Experimental comparison of training
paradigms for low-resource hypernymy detection.

monolingual model on all seven low-resource lan-
guages, denoted by “Mono”. On top of it, Cross-
lingual training (or bilingual, denoted by “Cross”)
obtains marginal improvements for moderately low-
resource languages. However, the performance
drops dramatically for two extremely low-resource
languages, i.e., JA from 0.740 to 0.711 and EL from
0.702 to 0.684. We note that data sparsity leads to
the over-fitting issue and thus bad generalization.
Similar observations could be drawn from multi-
lingual training (“Multi” for short). In summary,
for extremely low-resource datasets, effective and
advanced joint training is needed.

Is meta learning better than multilingual train-
ing? As discussed in Section 2.2, simple multi-
lingual training and meta learning have the same
input. But our experiments indicate that even the
model initialized by meta learning (not fine-tuned,
denoted by “zeroMeta” in Table 2) achieves supe-
rior performances. For example, on Thai, the accu-
racy jumps from 0.657 to 0.702 without fine-tuning.
After fine-tuning with several batches of data, meta
learning (denoted by “Finetune”) achieves the best
performance for all low-resource languages. To
fully understand the difference of the two train-
ing paradigms, we use the same batch size and
run the two joint training models for 5,000 steps.
Figure 1 shows the loss curve of the development
set for each low-resource language as well as En-
glish. We have two major observations: 1) Both
the two joint training paradigms could well fit En-
glish, the high-resource dataset, but multilingual
training converges quickly then over-fits severely
on extremely low-resource datasets (indicated by
bold lines in Figure 1a), which results in dropping
performances. Instead, meta learning has a rela-
tively stable trend on the descending loss. For EL
(the purple bold line in Figure 1b), though the loss
first increases, it finally decreases and reaches a
lower level. 2) The converging dev losses of meta
learning reach to lower numbers and have lower
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Figure 1: Comparison of training curve of two settings.
Bold lines are extremely low-resource ones (TH, JA,
EL).

variances among all languages. This demonstrates
that meta learning aims at learning a language-
independent model/initialization that is helpful for
fine-tuning rather than over-fitting on some lan-
guages.

3.3 Discussion

Experiments are based on good word represen-
tations and bilingual lexicon induction methods.
However, the quality of them would impact results
considerably, which we briefly discuss below.

Transferability of Word Vector Space. One of
the limitation of training paradigms in our work
might be non-isomorphic embedding spaces, which
are largely caused by the intrinsic property of dis-
similar languages. The projection matrix Wi_ey, is
learned unsupervisedly based on strong assumption
that the embedding spaces for two languages are
isometric, i.e., similar in terms of structures (Vulié
et al., 2020). However when generalizing to more
low-resource languages, it does not always hold. It
would be necessary in practice to carefully quan-
tify isomorphism between two word vector spaces
and adopt the approaches that relax the isomorphic
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assumption (Patra et al., 2019).

Contextualized Word Representation (CWR).
Replacing static word vectors with CWRs such
as ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019) has achieved dominant performances on al-
most every NLP task. Ethayarajh (2019) show that
principal component embeddings of CWR in lower
layers of BERT outperform GloVe and fastText on
many static embedding benchmarks such as word
similarity and analogy. However it remains unclear
how to use CWR to fully help lexical semantic
tasks. We are also interested in whether zero-shot
multilingual CWR pre-training such as Multilin-
gual BERT (Pires et al., 2019) would benefit this
task. Another promising direction is to devise the
lexical knowledge from large pre-training language
models (Bosselut et al., 2019; Petroni et al., 2019).
We left them for the future work.

4 Related Work

Cross-Lingual Hypernymy Detection. Wang
et al. (2019) firstly studies hypernymy detection
in multilingual joint settings, Other similar tasks
intend to predict whether a pair of words from
two different languages exhibit hypernymy rela-
tionship (Vyas and Carpuat, 2016; Upadhyay et al.,
2018; Glavas and Vuli¢, 2019) or to what extent
the relationship (Vulic et al., 2019) is. In this work,
we focus on the former task.

Meta Learning. Also known as learn to learn, it
aims at developing models that could learn new
tasks or adopt to new tasks with a few training
examples. Recently it has attracted more atten-
tion due to the simple yet effective models such
as MAML (Finn et al., 2017) and Reptile (Nichol
etal., 2018).

There are emerging investigations of apply-
ing meta learning in NLP tasks such as ma-
chine translation (Gu et al., 2018), semantic pars-
ing (Huang et al., 2018), personalized dialogue
system (Madotto et al., 2019), relation classifica-
tion (Obamuyide and Vlachos, 2019) and code-
switched speech recognition (Winata et al., 2020).
Our work is inspired by Dou et al. (2019) that com-
pares multi-task learning and meta learning for gen-
eral language representations.

5 Conclusion

Transferring lexical knowledge across languages
are important especially for low-resource cases.
In this paper, we investigate three joint train-

ing paradigms for detecting hypernymy in low-
resource languages. We show that simple mul-
tilingual training is not helpful for all tasks and
we significantly improve the performance using
meta learning. Our study demonstrates the feasi-
bility and effectiveness to combine high- and low-
resource data to jointly train hypernymy detection
models.
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