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Abstract

State-of-the-art NLP models can often be
fooled by human-unaware transformations
such as synonymous word substitution. For
security reasons, it is of critical importance
to develop models with certified robustness
that can provably guarantee that the predic-
tion is can not be altered by any possible syn-
onymous word substitution. In this work, we
propose a certified robust method based on a
new randomized smoothing technique, which
constructs a stochastic ensemble by applying
random word substitutions on the input sen-
tences, and leverage the statistical properties
of the ensemble to provably certify the robust-
ness. Our method is simple and structure-free
in that it only requires the black-box queries of
the model outputs, and hence can be applied
to any pre-trained models (such as BERT) and
any types of models (world-level or subword-
level). Our method significantly outperforms
recent state-of-the-art methods for certified ro-
bustness on both IMDB and Amazon text clas-
sification tasks. To the best of our knowledge,
we are the first work to achieve certified robust-
ness on large systems such as BERT with prac-
tically meaningful certified accuracy.

1 Introduction

Deep neural networks have achieved state-of-the-
art results in many NLP tasks, but also have been
shown to be brittle to carefully crafted adversarial
perturbations, such as replacing words with sim-
ilar words (Alzantot et al., 2018), adding extra
text (Wallace et al., 2019), and replacing sentences
with semantically similar sentences (Ribeiro et al.,
2018). These adversarial perturbations are imper-
ceptible to humans, but can fool deep neural net-
works and break their performance. Efficient meth-
ods for defending these attacks are of critical im-
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portance for deploying modern deep NLP models
to practical automatic AI systems.

In this paper, we focus on defending the synony-
mous word substitution attacking (Alzantot et al.,
2018), in which an attacker attempts to alter the
output of the model by replacing words in the in-
put sentence with their synonyms according to a
synonym table, while keeping the meaning of this
sentence unchanged. A model is said to be certi-
fied robust if such an attack is guaranteed to fail,
no matter how the attacker manipulates the input
sentences. Achieving and verifying certified ro-
bustness is highly challenging even if the synonym
table used by the attacker is known during training
(see Jia et al., 2019), because it requires to check ev-
ery possible synonymous word substitution, whose
number is exponentially large.

Various defense methods against synonymous
word substitution attacks have been developed
(e.g., Wallace et al., 2019; Ebrahimi et al., 2018),
most of which, however, are not certified robust
in that they may eventually be broken by stronger
attackers. Recently, Jia et al. (2019); Huang et al.
(2019) proposed the first certified robust methods
against word substitution attacking. Their methods
are based on the interval bound propagation (IBP)
method (Dvijotham et al., 2018) which computes
the range of the model output by propagating the
interval constraints of the inputs layer by layer.

However, the IBP-based methods of Jia et al.
(2019); Huang et al. (2019) are limited in several
ways. First, because IBP only works for certifying
neural networks with continuous inputs, the inputs
in Jia et al. (2019) and Huang et al. (2019) are
taken to be the word embedding vectors of the input
sentences, instead of the discrete sentences. This
makes it inapplicable to character-level (Zhang
et al., 2015) and subword-level (Bojanowski et al.,
2017) model, which are more widely used in prac-
tice (Wu et al., 2016).
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In this paper, we propose a structure-free certi-
fied defense method that applies to arbitrary models
that can be queried in a black-box fashion, with-
out any requirement on the model structures. Our
method is based on the idea of randomized smooth-
ing, which smooths the model with random word
substitutions build on the synonymous network,
and leverage the statistical properties of the ran-
domized ensembles to construct provably certifica-
tion bounds. Similar ideas of provably certification
using randomized smoothing have been developed
recently in deep learning (e.g., Cohen et al., 2019;
Salman et al., 2019; Zhang et al., 2020; Lee et al.,
2019), but mainly for computer vision tasks whose
inputs (images) are in a continuous space (Cohen
et al., 2019). Our method admits a substantial ex-
tension of the randomized smoothing technique to
discrete and structured input spaces for NLP.

We test our method on various types of NLP
models, including text CNN (Kim, 2014), Char-
CNN (Zhang et al., 2015), and BERT (Devlin et al.,
2019). Our method significantly outperforms the
recent IBP-based methods (Jia et al., 2019; Huang
et al., 2019) on both IMDB and Amazon text clas-
sification. In particular, we achieve an 87.35% cer-
tified accuracy on IMDB by applying our method
on the state-of-the-art BERT, on which previous
certified robust methods are not applicable.

2 Adversarial Word Substitution

In a text classification task, a model f(X) maps
an input sentence X ∈ X to a label c in a set Y
of discrete categories, where X = x1, . . . , xL is a
sentence consisting of L words. In this paper, we
focus on adversarial word substitution in which an
attacker arbitrarily replaces the words in the sen-
tence by their synonyms according to a synonym
table to alert the prediction of the model. Specif-
ically, for any word x, we consider a pre-defined
synonym set Sx that contains the synonyms of x
(including x itself). We assume the synonymous
relation is symmetric, that is, x is in the synonym
set of all its synonyms. The synonym set Sx can be
built based on GLOVE (Pennington et al., 2014).

With a given input sentence X = x1,. . . , xL,
the attacker may construct an adversarial sentence
X′ = x′1, . . . , x

′
L by perturbing at most R ≤ L

words xi in X to any of their synonyms x′i ∈ Sxi ,

SX :=
{

X′ :
∥∥X′ − X

∥∥
0
≤ R, x′i ∈ Sxi , ∀i

}
,

where SX denotes the candidate set of adver-

sarial sentences available to the attacker. Here
‖X′ − X‖0 :=

∑L
i=1 I {x′i 6= xi} is the Hamming

distance, with I{·} the indicator function. It is ex-
pected that all X′ ∈ SX have the same semantic
meaning as X for human readers, but they may have
different outputs from the model. The goal of the at-
tacker is to find X′ ∈ SX such that f(X) 6= f(X′).

Certified Robustness Formally, a model f is
said to be certified robust against word substitu-
tion attacking on an input X if it is able to give
consistently correct predictions for all the possible
word substitution perturbations, i.e,

y = f(X) = f(X′), for all X′ ∈ SX, (1)

where y denotes the true label of sentence X. Decid-
ing if f is certified robust can be highly challenging,
because, unless additional structural information
is available, it requires to exam all the candidate
sentences in SX, whose size grows exponentially
with R. In this work, we mainly consider the case
when R = L, which is the most challenging case.

3 Certifying Smoothed Classifiers

Our idea is to replace f with a more smoothed
model that is easier to verify by averaging the out-
puts of a set of randomly perturbed inputs based
on random word substitutions. The smoothed clas-
sifier fRS is constructed by introducing random
perturbations on the input space,

fRS(X) = arg max
c∈Y

PZ∼ΠX (f(Z) = c) ,

where ΠX is a probability distribution on the input
space that prescribes a random perturbation around
X. For notation, we define

gRS(X, c) := PZ∼ΠX (f(Z) = c) ,

which is the “soft score” of class c under fRS.
The perturbation distribution ΠX should be cho-

sen properly so that fRS forms a close approxima-
tion to the original model f (i.e., fRS(X) ≈ f(X)),
and is also sufficiently random to ensure that fRS

is smooth enough to allow certified robustness (in
the sense of Theorem 1 below).

In our work, we define ΠX to be the uniform
distribution on a set of random word substitutions.
Specifically, let Px be a perturbation set for word
x in the vocabulary, which is different from the syn-
onym set Sx. In this work, we construct Px based
on the top K nearest neighbors under the cosine
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similarity of GLOVE vectors, where K is a hyper-
parameter that controls the size of the perturbation
set; see Section 4 for more discussion on Px.

For a sentence X = x1, . . . , xL, the sentence-
level perturbation distribution ΠX is defined by ran-
domly and independently perturbing each word xi
to a word in its perturbation set Pxi with equal
probability, that is,

ΠX(Z) =

L∏
i=1

I {zi ∈ Pxi}
|Pxi |

,

where Z = z1, . . . , zL is the perturbed sentence
and |Pxi | denotes the size of Pxi . Note that the ran-
dom perturbation Z and the adversarial candidate
X′ ∈ SX are different.

3.1 Certified Robustness
We now discuss how to certify the robustness of the
smoothed model fRS. Recall that fRS is certified
robust if y = fRS(X′) for any X′ ∈ SX, where y is
the true label. A sufficient condition for this is

min
X′∈SX

gRS(X′, y) ≥ max
X′∈SX

gRS(X′, c) ∀c 6= y,

where the lower bound of gRS(X′, y) on X′ ∈ SX
is larger than the upper bound of gRS(X′, c) on
X′ ∈ SX for every c 6= y. The key step is hence to
calculate the upper and low bounds of gRS(X′, c)
for ∀c ∈ Y and X′ ∈ SX, which we address in
Theorem 1 below. All proofs are in Appendix A.2.

Theorem 1. (Certified Lower/Upper Bounds) As-
sume the perturbation set Px is constructed such
that |Px| = |Px′ | for every word x and its synonym
x′ ∈ Sx. Define

qx = min
x′∈Sx

|Px ∩ Px′ |/|Px|,

where qx indicates the overlap between the two
different perturbation sets. For a given sentence
X = x1, . . . , xL, we sort the words according to
qx, such that qxi1 ≤ qxi2 ≤ · · · ≤ qxiL . Then

min
X′∈SX

gRS(X′, c) ≥ max(gRS(X, c)− qX, 0)

max
X′∈SX

gRS(X′, c) ≤ min(gRS(X, c) + qX, 1).

where qX := 1−
∏R
j=1 qxij . Equivalently, this says∣∣gRS(X′, c)− gRS(X, c)

∣∣ ≤ qX, any label c ∈ Y.

The idea is that, with the randomized smoothing,
the difference between gRS(X′, c) and gRS(X, c) is

at most qX for any adversarial candidate X′ ∈ SX.
Therefore, we can give adversarial upper and lower
bounds of gRS(X′, c) by gRS(X, c) ± qX, which,
importantly, avoids the difficult adversarial opti-
mization of gRS(X′, c) on X′ ∈ SX, and instead just
needs to evaluate gRS(X, c) at the original input X.

We are ready to describe a practical criterion for
checking the certified robustness.

Proposition 1. For a sentence X and its label y,
we define

yB = arg max
c∈Y,c 6=y

gRS(X, c).

Then under the condition of Theorem 1, we can
certify that f(X′) = f(X) = y for any X′ ∈ SX if

∆X
def
= gRS(X, y)− gRS(X, yB)− 2qX > 0. (2)

Therefore, certifying whether the model gives
consistently correct prediction reduces to checking
if ∆X is positive, which can be easily achieved with
Monte Carlo estimation as we show in the sequel.

Estimating gRS(X, c) and ∆X Recall that
gRS(X, c) = PZ∼ΠX(f(Z) = c). We can es-
timate gRS(X, c) with a Monte Carlo estimator∑n

i=1 I{f(Z(i)) = c}/n, where Z(i) are i.i.d. sam-
ples from ΠX. And ∆X can be approximated ac-
cordingly. Using concentration inequality, we can
quantify the non-asymptotic approximation error.
This allows us to construct rigorous statistical pro-
cedures to reject the null hypothesis that fRS is not
certified robust at X (i.e., ∆X ≤ 0) with a given
significance level (e.g., 1%). See Appendix A.1 for
the algorithmic details of the testing procedure.

We can see that our procedure is structure-free in
that it only requires the black-box assessment of the
output f(Z(i)) of the random inputs, and does not
require any other structural information of f and
fRS, which makes our method widely applicable to
various types of complex models.

Tightness A key question is if our bounds are
sufficiently tight. The next theorem shows that the
lower/upper bounds in Theorem 1 are tight and can
not be further improved unless further information
of the model f or fRS is acquired.

Theorem 2. (Tightness) Assume the conditions
of Theorem 1 hold. For a model f that satis-
fies fRS(X) = y and yB as defined in Proposi-
tion 1, there exists a model f∗ such that its re-
lated smoothed classifier gRS

∗ satisfies gRS
∗ (X, c) =
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...
Synonym Network

An old story for young girls ...

Input Sentence

Story ... Young

Tale ... Boyish

... ... ...

Perturbation Set

Randomized Inputs
Sample 1: An aged tale for boyish ladies ......

Sample n: An oldish epic for youthful girls ...

Classifier f
Output 1

Output n

...

Test if △X > 0 holds

Certified Robust!

Figure 1: A pipeline of the proposed robustness certification approach.

gRS(X, c) for c = y and c = yB , and

min
X′∈SX

gRS
∗ (X′, y) = max(gRS

∗ (X, y)− qX, 0)

max
X′∈SX

gRS
∗ (X′, yB) = min(gRS

∗ (X, yB) + qX, 1),

where qX is defined in Theorem 1.
In other words, if we access gRS only through the

evaluation of gRS(X, y) and gRS(X, yB), then the
bounds in Theorem 1 are the tightest possible that
we can achieve, because we can not distinguish
between gRS and the gRS

∗ in Theorem 2 with the
information available.

3.2 Practical Algorithm
Figure 1 visualizes the pipeline of the proposed
approach. Given the synonym sets SX, we generate
the perturbation sets PX from it. When an input
sentence X arrives, we draw perturbed sentences
{Z(i)} from ΠX and average their outputs to esti-
mate ∆X, which is used to decide if the model is
certified robust for X.

Training the Base Classifier f Our method
needs to start with a base classifier f . Although it
is possible to train f using standard learning tech-
niques, the result can be improved by considering
that the method uses the smoothed fRS, instead of
f . To improve the accuracy of fRS, we introduce
a data augmentation induced by the perturbation
set. Specifically, at each training iteration, we first
sample a mini-batch of data points (sentences) and
randomly perturbing the sentences using the per-
turbation distribution ΠX. We then apply gradient
descent on the model based on the perturbed mini-
batch. Similar training procedures were also used
for Gaussian-based random smoothing on continu-
ous inputs (see e.g., Cohen et al., 2019).

Our method can easily leverage powerful pre-
trained models such as BERT. In this case, BERT
is used to construct feature maps and only the top
layer weights are finetuned using the data augmen-
tation method.

4 Experiments

We test our method on both IMDB (Maas et al.,
2011) and Amazon (McAuley, 2013) text classifica-
tion tasks, with various types of models, including
text CNN (Kim, 2014), Char-CNN (Zhang et al.,
2015) and BERT (Devlin et al., 2019). We compare
with the recent IBP-based methods (Jia et al., 2019;
Huang et al., 2019) as baselines. Text CNN (Kim,
2014) was used in Jia et al. (2019) and achieves
the best result therein. All the baseline models
are trained and tuned using the schedules recom-
mended in the corresponding papers. We consider
the case when R = L during attacking, which
means all words in the sentence can be perturbed si-
multaneously by the attacker. Code for reproducing
our results can be found in https://github.com/

lushleaf/Structure-free-certified-NLP.

Synonym Sets Similar to Jia et al. (2019); Alzan-
tot et al. (2018), we construct the synonym set Sx of
word x to be the set of words with≥ 0.8 cosine sim-
ilarity in the GLOVE vector space. The word vec-
tor space is constructed by post-processing the pre-
trained GLOVE vectors (Pennington et al., 2014)
using the counter-fitted method (Mrkšić et al.,
2016) and the “all-but-the-top” method (Mu and
Viswanath, 2018) to ensure that synonyms are near
to each other while antonyms are far apart.

Perturbation Sets We say that two words x and
x′ are connected synonymously if there exists a
path of words x = x1, x2, . . . , x` = x′, such that
all the successive pairs are synonymous. Let Bx to
be the set of words connected to x synonymously.
Then we define the perturbation set Px to consist
of the top K words in Bx with the largest GLOVE
cosine similarity if |Bx| ≥ K, and set Px = Bx
if |Bx| < K. Here K is a hyper-parameter that
controls the size of Px and hence trades off the
smoothness and accuracy of fRS. We useK = 100
by default and investigate its effect in Section 4.2.

https://github.com/lushleaf/Structure-free-certified-NLP
https://github.com/lushleaf/Structure-free-certified-NLP
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Method IMDB Amazon
Jia et al. (2019) 79.74 14.00
Huang et al. (2019) 78.74 12.36
Ours 81.16 24.92

Table 1: The certified accuracy of our method and the
baselines on the IMDB and Amazon dataset.

Evaluation Metric We evaluate the certified ro-
bustness of a model fRS on a dataset with the cer-
tified accuracy (Cohen et al., 2019), which equals
the percentage of data points on which fRS is cer-
tified robust, which, for our method, holds when
∆X > 0 can be verified.

4.1 Main Results

We first demonstrate that adversarial word substitu-
tion is able to give strong attack in our experimental
setting. Using IMDB dataset, we attack the vanilla
BERT (Devlin et al., 2019) with the adversarial
attacking method of Jin et al. (2020). The vanilla
BERT achieves a 91% clean accuracy (the testing
accuracy on clean data without attacking), but only
a 20.1% adversarial accuracy (the testing accuracy
under the particular attacking method by Jin et al.
(2020)). We will show later that our method is able
to achieve 87.35% certified accuracy and thus the
corresponding adversarial accuracy must be higher
or equal to 87.35%.

We compare our method with IBP (Jia et al.,
2019; Huang et al., 2019). in Table 1. We can see
that our method clearly outperforms the baselines.
In particular, our approach significantly outper-
forms IBP on Amazon by improving the 14.00%
baseline to 24.92%.

Thanks to its structure-free property, our algo-
rithm can be easily applied to any pre-trained mod-
els and character-level models, which is not eas-
ily achievable with Jia et al. (2019) and Huang
et al. (2019). Table 2 shows that our method
can further improve the result using Char-CNN (a
character-level model) and BERT (Devlin et al.,
2019), achieving an 87.35% certified accuracy
on IMDB. In comparison, the IBP baseline only
achieves a 79.74% certified accuracy under the
same setting.

4.2 Trade-Off between Clean Accuracy and
Certified Accuracy

We investigate the trade-off between smoothness
and accuracy while tuning K in Table 3. We can

Method Model Accuracy
Jia et al. (2019) CNN 79.74
Huang et al. (2019) CNN 78.74

Ours
CNN 81.16
Char-CNN 82.03
BERT 87.35

Table 2: The certified accuracy of different models and
methods on the IMDB dataset.

see that the clean accuracy decreases when K in-
creases, while the gap between the clean accuracy
and certified accuracy, which measures the smooth-
ness, decreases when K increases. The best certi-
fied accuracy is achieved when K = 100.

K 20 50 100 250 1000
Clean (%) 88.47 88.48 88.09 84.83 67.54

Certified (%) 65.58 77.32 81.16 79.98 65.13

Table 3: Results of the smoothed model fRS with dif-
ferentK on IMDB using text CNN. “Clean” represents
the accuracy on the clean data without adversarial at-
tacking and “Certified” the certified accuracy.

5 Conclusion

We proposed a robustness certification method,
which provably guarantees that all the possible per-
turbations cannot break down the system. Com-
pared with previous work such as Jia et al. (2019);
Huang et al. (2019), our method is structure-free
and thus can be easily applied to any pre-trained
models (such as BERT) and character-level models
(such as Char-CNN).

The construction of the perturbation set is of crit-
ical importance to our method. In this paper, we
used a heuristic way based on the synonym network
to construct the perturbation set, which may not be
optimal. In further work, we will explore more
efficient ways for constructing the perturbation set.
We also plan to generalize our approach to achieve
certified robustness against other types of adver-
sarial attacks in NLP, such as the out-of-list attack.
An naı̈ve way is to add the “OOV” token into the
synonyms set of every word, but potentially better
procedures can be further explored.
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A Appendix

A.1 Bounding the Error of Monte Carlo Estimation
As shown in Proposition 1, the smoothed model fRS is certified robust at an input X in the sense of (1) if

∆X = gRS(X, y)− gRS(X, yB)− 2qX

= gRS(X, y)−max
c6=y

gRS(X, c)− 2qX > 0,

where y is the true label of X, and

gRS(X, c) := PZ∼ΠX (f(Z) = c) = EZ∼ΠX [I{f(Z) = c}] .

Assume {Z(i)}ni=1 is an i.i.d. sample from ΠX. By Monte Carlo approximation, we can estimate gRS(X, c)
for all c ∈ Y jointly, via

ĝRS(X, c) :=
1

n

n∑
i=1

I
{
f(Z(i)) = c

}
,

and estimate ∆X via

∆̂X :=
1

n

n∑
i=1

I
{
f(Z(i)) = y

}
−max

c 6=y

1

n

n∑
i=1

I
{
f(Z(i)) = c

}
− 2qX.

To develop a rigorous procedure for testing ∆X > 0, we need to bound the non-asymptotic error of
the Monte Carlo estimation, which can be done with a simple application of Hoeffding’s concentration
inequality and union bound.
Proposition 2. Assume {Z(i)} is i.i.d. drawn from ΠX. For any δ ∈ (0, 1), with probability at least 1− δ,
we have

∆X ≥∆̂X − 2

√
log 1

δ + log |Y|
2n

.

We can now frame the robustness certification problem into a hypothesis test problem. Consider the
null hypothesis H0 and alternatively hypothesis Ha:

H0 :∆X ≤ 0 (fRS is not certified robust to X)

Ha :∆X > 0 (fRS is certified robust to X).

Then according to Proposition 2, we can reject the null hypothesis H0 with a significance level δ if

∆̂X − 2

√
log 1

δ + log |Y|
2n

> 0.

In all the experiments, we set δ = 0.01 and n = 5000.

A.2 Proof of the Main Theorems
In this section, we give the proofs of the theorems in the main text.

A.2.1 Proof of Proposition 1
According to the definition of fRS, it is certified robust at X, that is, y = fRS(X′) for ∀X′ ∈ SX, if

gRS(X′, y) ≥ max
c6=y

gRS(X′, c), X′ ∈ SX. (3)

Obviously

gRS(X′, y)−max
c6=y

gRS(X′, c) ≥ min
X′∈SX

gRS(X′, y)−max
c 6=y

max
X′∈SX

gRS(X′, c)

≥
(
gRS(X, y)− qX

)
−max

c 6=y

(
gRS(X, c) + qX

)
//by Theorem 1.

= ∆X.

Therefore, ∆X > 0 must imply (3) and hence certified robustness.
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A.2.2 Proof of Theorem 1
Our goal is to calculate the upper and lower bounds maxX′∼ΠX g

RS(X′, c) and minX′∼ΠX g
RS(X′, c). Our

key idea is to frame the computation of the upper and lower bounds into a variational optimization.
Lemma 1. Define H[0,1] to be the set of all bounded functions mapping from X to [0, 1], For any
h ∈ H[0,1], define

ΠX[h] = EZ∼ΠX [h(Z)].

Then we have for any X and c ∈ Y ,

min
X′∼ΠX

gRS(X′, c) ≥ min
h∈H[0,1]

min
X′∼ΠX

{
ΠX′ [h] s.t. ΠX[h] = gRS(X, c)

}
:= gRS

low(X, c),

max
X′∼ΠX

gRS(X′, c) ≤ max
h∈H[0,1]

max
X′∼ΠX

{
ΠX′ [h] s.t. ΠX[h] = gRS(X, c)

}
:= gRS

up(X, c).

Proof of Lemma 1. The proof is straightforward. Define h0(X) = I{f(X) = c}. Recall that

gRS(X, c) = PZ∼ΠX (f(Z) = c) = ΠX[h0].

Therefore, h0 satisfies the constraints in the optimization, which makes it obvious that

gRS(X′, c) = ΠX′ [h0] ≥ min
h∈H[0,1]

{
ΠX′ [h] s.t. ΠX[h] = gRS(X, c)

}
.

Taking minX′∈SX on both sides yields the lower bound. The upper bound follows the same derivation.

Therefore, the problem reduces to deriving bounds for the optimization problems.
Theorem 3. Under the assumptions of Theorem 1, for the optimization problems in Lemma 1, we have

gRS
low(X, c) ≥ max(gRS(X, c)− qX, 0), gRS

up(X, c) ≤ min(gRS(X, c) + qX, 1).

where qX is the quantity defined in Theorem 1 in the main text.

Now we proceed to prove Theorem 3.

Proof of Theorem 3. We only consider the minimization problem because the maximization follows the
same proof. For notation, we denote p = gRS(X, c). Applying the Lagrange multiplier to the constraint
optimization problem and exchanging the min and max, we have

gRS
low(X, c) = min

X′∈SX
min

h∈H[0,1]

max
λ∈R

ΠX′ [h]− λΠX[h] + λp

≥max
λ∈R

min
X′∈SX

min
h∈H[0,1]

ΠX′ [h]− λΠX[h] + λp

=max
λ∈R

min
X′∈SX

min
h∈H[0,1]

∫
h(Z) (dΠX′(Z)− λdΠX(Z)) + λp

=−max
λ∈R

max
X′∈SX

∫
(λdΠX(Z)− dΠX′(Z))+ + λp

=−max
λ≥0

max
X′∈SX

∫
(λdΠX(Z)− dΠX′(Z))+ + λp.

Here dΠ0
X(Z) and dΠ0

X′(Z) is the counting measure and (s)+ = max(s, 0). Now we calculate∫
(λdΠX(Z)− dΠX′(Z))+.

Lemma 2. Given x, x′, define nx = |Px|, nx′ = |Px′ | and nx,x′ = |Px ∩ Px′ |. We have the following
identity ∫

(λdΠX(Z)− dΠX′(Z))+

=λ

1−
∏

j∈[L],xj 6=x′j

nxj ,x′j
nxj

+

 ∏
j∈[L],xj 6=x′j

nxj ,x′j
nxj

λ− ∏
j∈[L],xj 6=x′j

nxj
nx′j


+

.
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As a result, under the assumption that nx = |Px| = |Px′ | = nx′ for every word x and its synonym x′ ∈ Sx,
we have∫

(λdΠX(Z)− dΠX′(Z))+ =λ

1−
∏

j∈[L],xj 6=x′j

nxj ,x′j
nxj

+

 ∏
j∈[L],xj 6=x′j

nxj ,x′j
nxj

 (λ− 1)+ .

We now need to solve the optimization of maxX′∈SX

∫
(λdΠX(Z)− dΠX′(Z))+.

Lemma 3. For any word x, define x̃∗ = arg min
x′∈Sx

nx,x′/nx. For a given sentence X = x1, . . . , xL, we

define an ordering of the words x`1 , . . . , x`L such that nx`i ,x̃∗`i/nx`i ≤ nx`j ,x̃
∗
`j
/nx`j for any i ≤ j. For a

given X and R, we define an adversarial perturbed sentence X∗ = x∗1, . . . , x
∗
L, where

x∗i =

{
x̃∗i if i ∈ [`1, . . . , `R]

xi if i /∈ [`1, . . . , `R].

Then for any λ ≥ 0, we have that X∗ is the optimal solution of maxX′∈SX

∫
(λdΠX(Z)− dΠX′(Z))+, that

is,

max
X′∈SX

∫
(λdΠX(Z)− dΠX′(Z))+ =

∫
(λdΠX(Z)− dΠX∗(Z))+ .

Now by Lemma 3, the lower bound becomes

gRS
low(X, c) = −max

λ≥0
max
X′∈SX

∫
(λdΠX(Z)− dΠX′(Z))+ + λp

= −max
λ≥0

∫
(λdΠX(Z)− dΠX∗(Z))+ + λp

= max
λ≥0

(p− qX)λ− (1− qX)(λ− 1)+ (4)

= max(p− qX, 0),

where qX is consistent with the definition in Theorem 1:

qX = 1−
∏

j∈[L],xj 6=x̃∗j

nxj ,x̃∗j
nxj

= 1−
R∏
j=1

qx`j .

Here equation (4) is by calculation using the assumption of Theorem 1. The optimization of maxλ≥0 in (4)
is an elementary step: if p ≤ q, we have λ∗ = 0 with solution 0; if p ≥ q, we have λ∗ = 1 with solution
(p− qX). This finishes the proof of the lower bound. The proof the upper bound follows similarly.

Proof of Lemma 2 Notice that we have∫
(λdΠX(Z)− dΠX′(Z))+ =

∑
Z∈SX′∩SX

(
λ |SX|−1 − |SX′ |

−1
)

+
+ λ

∑
Z∈SX−SX′

|SX|−1

= |SX′ ∩ SX|
(
λ |SX|−1 − |SX′ |

−1
)

+
+ λ |SX − SX′ | |SX|−1 .

Also notice that |SX| =
∏L
j=1 nxj ; |SX′ | =

∏L
j=1 nx′j ; |SX′ ∩ SX| =

∏L
j=1 nxj ,x′j and |SX − SX′ | =∏L

j=1 nxj −
∏L
j=1 nxj ,x′j . Plugging in the above value, we have

|SX − SX′ | |SX|−1 =

∏L
j=1 nxj −

∏L
j=1 nxj ,x′j∏L

j=1 nxj

=1−
L∏
j=1

nxj ,x′j
nxj

=1−
∏

j∈[L],xj 6=x′j

nxj ,x′j
nxj

.
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And also,(
λ |SX|−1 − |SX′ |

−1
)

+
=

λ L∏
j=1

n−1
xj −

L∏
j=1

n−1
x′j


+

=

λ ∏
j∈[L],xj=x′j

n−1
xj

∏
j∈[L],xj 6=x′j

n−1
xj −

∏
j∈[L],xj=x′j

n−1
xj

∏
j∈[L],xj 6=x′j

n−1
x′j


+

=
∏

j∈[L],xj=x′j

n−1
xj

λ ∏
j∈[L],xj 6=x′j

n−1
xj −

∏
j∈[L],xj 6=x′j

n−1
x′j


+

.

Plugging in the above value, we have

|SX′ ∩ SX|
(
λ |SX|−1 − |SX′ |

−1
)

+
=

L∏
j=1

nxj ,x′j

(
λ |SX|−1 − |SX′ |

−1
)

+

=
∏

j∈[L],xj=x′j

nxj
∏

j∈[L],xj 6=x′j

nxj ,x′j

(
λ |SX|−1 − |SX′ |

−1
)

+

=
∏

j∈[L],xj 6=x′j

nxj ,x′j

λ ∏
j∈[L],xj 6=x′j

n−1
xj −

∏
j∈[L],xj 6=x′j

n−1
x′j


+

=
∏

j∈[L],xj 6=x′j

nxj ,x′j

∏
j∈[L],xj 6=x′j

n−1
xj

λ− ∏
j∈[L],xj 6=x′j

nxj
nx′j


+

=

 ∏
j∈[L],xj 6=x′j

nxj ,x′j
nxj

λ− ∏
j∈[L],xj 6=x′j

nxj
nx′j


+

.

Combining all the calculation, we get∫
(λdΠX(Z)− dΠX′(Z))+

=λ

1−
∏

j∈[L],xj 6=x′j

nxj ,x′j
nxj

+

 ∏
j∈[L],xj 6=x′j

nxj ,x′j
nxj

λ− ∏
j∈[L],xj 6=x′j

nxj
nx′j


+

.

Proof of Lemma 3 It is sufficient to proof that, for any X′ 6= X∗, we have∫
(λdΠX(Z)− dΠX∗(Z))+ ≥

∫
(λdΠX(Z)− dΠX′(Z))+ .

Notice that for any λ ≥ 0, define

Q(X,X′′) = λ

1−
∏

j∈[L],xj 6=x′j

nxj ,x′′j
nxj

+

 ∏
j∈[L],xj 6=x′j

nxj ,x′′j
nxj

 (λ− 1)+ .

Given any X, we can view Q(X,X′′) as the function of nxi,x′′i /nxi , i ∈ [L]. And Q(X,X′′) is a decreasing

function of nxi,x′′i /nxi for any i ∈ [L] when fixing
nxj,x

′′
j

nxj
for all other j 6= i. Suppose r̃k is the k-th

smallest quantities of nxi,x̃∗i /nxi , i ∈ [L] and r′k is the k-th smallest quantities of nxj ,x̃∗j /nxi , i ∈ [L]. By
the construction of X∗, we have r̃k ≤ r′k for any k ∈ [L]. This implies that

Q(X,X∗) ≥ Q(X,X′).
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A.2.3 Proof of Theorem 2
We denote gRS(X, y) = pA, gRS(X, yB) = pB and q = qX in this proof for simplicity. The X∗ below is
the one defined in the proof of Lemme 3. Our proof is based on constructing a randomized smoothing
classifier that satisfies the desired property we want to prove.

Case 1 pA ≥ q and pB+q ≤ 1 Note that in this case |SX ∩ SX∗ | / |SX| = 1−q ≥ (pA−q)+pB , where
the inequality is due to pA + pB ≤ 1. Therefore, we can choose set U1 and U2 such that U1 ⊆ SX ∩ SX∗ ;
U2 ⊆ SX ∩ SX∗ ; U1 ∩ U2 = ∅; |U1| / |SX| = pA − q and |U2| / |SX| = pB . We define the classifier:

f∗(Z) =


y if Z ∈ (SX − SX∗) ∩ U1

yB if Z ∈ (SX∗ − SX) ∪ U2

other class (c 6= y or yB) if Z ∈ SX ∩ SX∗ − (U1 ∪ U2)

any class (c ∈ Y) otherwise

This classifier is well defined for binary classification because SX ∩ SX∗ − (U1 ∪ U2) = ∅.

Case 2 pA < q and pB + q ≤ 1 In this case, we can choose set U1 and U2 such that U1 ⊆ SX − SX∗ ;
U2 ⊆ SX ∩ SX∗ ; |U1| / |SX| = pA and |U2| / |SX| = pB . We define the classifier:

f∗(Z) =


y if Z ∈ U1

yB if Z ∈ U2 ∪ (SX∗ − SX)

other class (c 6= y or yB) if Z ∈ SX − (U1 ∪ U2)

any class (c ∈ Y) otherwise

This classifier is well defined for binary classification because SX − (U1 ∪ U2) = ∅.

Case 3 pA ≥ q and pB + q > 1 This case does not exist since we would have pA + pB > 1.

Case 4 pA < q and pB + q > 1 We choose set U1 and U2 such that U1 ⊆ SX − SX∗ ; U2 ∈ SX − SX∗ ;
U1 ∩ U2 = ∅; |U1| / |SX| = pA and |U2| / |SX| = pB − (1− q). Notice that the intersect of U1 and U2

can be empty as |U1| / |SX|+ |U2| / |SX| = pA + pB − (1− q) ≤ 1− (1− q) = q = |SX − SX∗ | / |SX|.
We define the classifier:

f∗(Z) =


y if Z ∈ U1

yB if Z ∈ U2 ∪ SX∗

other class (c 6= y or yB) if Z ∈ (SX − SX∗)− (U1 ∪ U2)

any class (c ∈ Y) otherwise

This classifier is well defined for binary classification because SX − SX∗ − (U1 ∪ U2) = ∅.
It can be easily verified that for each case, the defined classifier satisfies all the conditions in Theorem 2.

B Additional Experiment Details

We set R = L in adversarial attacking, that is, all words in the sentence can be perturbed simultaneously
by the attacker. We use 5,000 random draws in the Monte Carlo estimation of ∆X, and use the same
method in Jia et al. (2019) to tune the hyper-parameters when training the base models e.g. learning rate,
batch size and the schedule of loss function. For the IMDB dataset, we train the IBP models and ours for
60 and 10 epochs, respectively. For the Amazon dataset, we train the IBP models and ours for 100 and 20
epochs, respectively.

We test our algorithm on two different datasets, IMDB and Amazon. The IMDB movie review
dataset (Maas et al., 2011) is a sentiment classification dataset. It consists of 50,000 movie review
comments with binary sentiment labels. The Amazon review dataset (McAuley, 2013) is an extremely
large dataset that contains 34,686,770 reviews with 5 different types of labels. Similar to Cohen et al.
(2019), we test the models on randomly selected subsets of the test set with 1,250 and 6,500 examples for
IMDB and Amazon dataset, respectively.


