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Abstract

Text classification is fundamental in natural

language processing (NLP), and Graph Neu-

ral Networks (GNN) are recently applied in

this task. However, the existing graph-based

works can neither capture the contextual word

relationships within each document nor fulfil

the inductive learning of new words. In this

work, to overcome such problems, we propose

TextING1 for inductive text classification via

GNN. We first build individual graphs for each

document and then use GNN to learn the fine-

grained word representations based on their lo-

cal structures, which can also effectively pro-

duce embeddings for unseen words in the new

document. Finally, the word nodes are incor-

porated as the document embedding. Exten-

sive experiments on four benchmark datasets

show that our method outperforms state-of-the-

art text classification methods.

1 Introduction

Text classification is one of the primary tasks in

the NLP field, as it provides fundamental method-

ologies for other NLP tasks, such as spam filter-

ing, sentiment analysis, intent detection, and so

forth. Traditional methods for text classification in-

clude Naive Bayes (Androutsopoulos et al., 2000),

k-Nearest Neighbor (Tan, 2006) and Support Vec-

tor Machine (Forman, 2008). They are, however,

primarily dependent on the hand-crafted features

at the cost of labour and efficiency.

There are several deep learning methods pro-

posed to address the problem, among which Re-

current Neural Network (RNN) (Mikolov et al.,

2010) and Convolutional Neural Network (CNN)

(Kim, 2014) are essential ones. Based on them,

extended models follow to leverage the classifi-

cation performance, for instance, TextCNN (Kim,

∗The first two authors contribute equally to this work.
1https://github.com/CRIPAC-DIG/TextING

2014), TextRNN (Liu et al., 2016) and TextRCNN

(Lai et al., 2015). Yet they all focus on the local-

ity of words and thus lack of long-distance and

non-consecutive word interactions. Graph-based

methods are recently applied to solve such issue,

which do not treat the text as a sequence but as a

set of co-occurrent words instead. For example,

Yao et al. (2019) employ Graph Convolutional Net-

works (Kipf and Welling, 2017) and turns the text

classification problem into a node classification

one (TextGCN). Moreover, Huang et al. (2019) im-

prove TextGCN by introducing the message pass-

ing mechanism and reducing the memory consump-

tion.

However, there are two major drawbacks in these

graph-based methods. First, the contextual-aware

word relations within each document are neglected.

To be specific, TextGCN (Yao et al., 2019) con-

structs a single graph with global relations between

documents and words, where fine-grained text level

word interactions are not considered (Wu et al.,

2019; Hu et al., 2019a,b). In Huang et al. (2019),

the edges of the graph are globally fixed between

each pair of words, but the fact is that they may

affect each other differently in a different text. Sec-

ond, due to the global structure, the test documents

are mandatory in training. Thus they are inher-

ently transductive and have difficulty with induc-

tive learning, in which one can easily obtain word

embeddings for new documents with new struc-

tures and words using the trained model.

Therefore, in this work, we propose a novel

Text classification method for INductive word rep-

resentations via Graph neural networks, termed

TextING. In contrast to previous graph-based ap-

proaches with global structure, we train a GNN

that can depict the detailed word-word relations

using only training documents, and generalise to

new documents in test. We build individual graphs

by applying the sliding window inside each doc-



335

ument (Rousseau et al., 2015). The information

of word nodes is propagated to their neighbours

via the Gated Graph Neural Networks (Li et al.,

2015, 2019), which is then aggregated into the

document embedding. We also conduct exten-

sive experiments to examine the advantages of our

approach against baselines, even when words in

test are mostly unseen (21.06% average gain in

such inductive condition). Noticing a concurrent

work (Nikolentzos et al., 2020) also reinforces the

approach with a similar graph network structure,

we describe the similarities and differences in the

method section. To sum up, our contributions are

threefold:

• We propose a new graph neural network for

text classification, where each document is an

individual graph and text level word interac-

tions can be learned in it.

• Our approach can generalise to new words

that absent in training, and it is therefore ap-

plicable for inductive circumstances.

• We demonstrate that our approach outper-

forms state-of-the-art text classification meth-

ods experimentally.

2 Method

TextING comprises three key components: the

graph construction, the graph-based word interac-

tion, and the readout function. The architecture is

illustrated in Figure 1. In this section, we detail

how to implement the three and how they work.
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Figure 1: The architecture of TextING. As an example,

upon a graph of document, every word node updates

itself from its neighbours and they aggregate to the ul-

timate graph representation.

Graph Construction

We construct the graph for a textual document

by representing unique words as vertices and co-

occurrences between words as edges, denoted as

G = (V, E) where V is the set of vertices and E
the edges. The co-occurrences describe the rela-

tionship of words that occur within a fixed-size

sliding window (length 3 at default) and they are

undirected in the graph. Nikolentzos et al. (2020)

also use a sliding window of size 2. However, they

include a particular master node connecting to ev-

ery other node, which means the graph is densely

connected and the structure information is vague

during message passing.

The text is preprocessed in a standard way, in-

cluding tokenisation and stopword removal (Blanco

and Lioma, 2012; Rousseau et al., 2015). Embed-

dings of the vertices are initialised with word fea-

tures, denoted as h ∈ R
|V|×d where d is the embed-

ding dimension. Since we build individual graphs

for each document, the word feature information

is propagated and incorporated contextually during

the word interaction phase.

Graph-based Word Interaction

Upon each graph, we then employ the Gated Graph

Neural Networks (Li et al., 2015) to learn the em-

beddings of the word nodes. A node could receive

the information a from its adjacent neighbours and

then merge with its own representation to update.

As the graph layer operates on the first-order neigh-

bours, we can stack such layer t times to achieve

high-order feature interactions, where a node can

reach another node t hops away. The formulas of

the interaction are:

at = Aht−1Wa, (1)

zt = σ
(

Wzat + Uzht−1 + bz

)

, (2)

rt = σ
(

Wrat + Urht−1 + br

)

, (3)

h̃
t
= tanh

(

What + Uh(r
t ⊙ ht−1) + bh

)

, (4)

ht = h̃
t
⊙ zt + ht−1 ⊙

(

1− zt
)

, (5)

where A ∈ R
|V|×|V| is the adjacency matrix, σ

is the sigmoid function, and all W, U and b are

trainable weights and biases. z and r function as

the update gate and reset gate respectively to de-

termine to what degree the neighbour information

contributes to the current node embedding.

Readout Function

After the word nodes are sufficiently updated, they

are aggregated to a graph-level representation for

the document, based on which the final prediction
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Table 1: The statistics of the datasets including both short (sentence) and long (paragraph) documents. The vocab

means the number of unique words in a document. The Prop.NW denotes the proportion of new words in test.

Dataset # Docs # Training # Test # Classes Max.Vocab Min.Vocab Avg.Vocab Prop.NW

MR 10,662 7,108 3,554 2 46 1 18.46 30.07%
R8 7,674 5,485 2,189 8 291 4 41.25 2.60%
R52 9,100 6,532 2,568 52 301 4 44.02 2.64%
Ohsumed 7,400 3,357 4,043 23 197 11 79.49 8.46%

is produced. We define the readout function as:

hv = σ
(

f1(h
t

v)
)

⊙ tanh
(

f2(h
t

v)
)

, (6)

hG =
1

|V|

∑

v∈V

hv +Maxpooling (h1...hV) , (7)

where f1 and f2 are two multilayer perceptrons

(MLP). The former performs as a soft attention

weight while the latter as a non-linear feature trans-

formation. In addition to averaging the weighted

word features, we also apply a max-pooling func-

tion for the graph representation hG . The idea be-

hind is that every word plays a role in the text and

the keywords should contribute more explicitly.

Finally, the label is predicted by feeding the

graph-level vector into a softmax layer. We min-

imise the loss through the cross-entropy function:

ŷG = softmax (WhG + b) , (8)

L = −
∑

i

yGilog (ŷGi) , (9)

where W and b are weights and bias, and yGi is the

i-th element of the one-hot label.

Model Variant

We also extend our model with a multichannel

branch TextING-M, where graphs with local struc-

ture (original TextING) and graphs with global

structure (subgraphs from TextGCN) work in paral-

lel. The nodes remain the same whereas the edges

of latter are extracted from the large graph (built

on the whole corpus) for each document. We train

them separately and make them vote 1:1 for the

final prediction. Although it is not the inductive

case, our point is to investigate whether and how

the two could complement each other from micro

and macro perspectives.

3 Experiments

In this section, we aim at testing and evaluating the

overall performance of TextING. During the exper-

imental tests, we principally concentrate on three

concerns: (i) the performance and advantages of

our approach against other comparable models, (ii)

the adaptability of our approach for words that are

never seen in training, and (iii) the interpretability

of our approach on how words impact a document.

Datasets. For the sake of consistency, we adopt

four benchmark tasks the same as in (Yao et al.,

2019): (i) classifying movie reviews into posi-

tive or negative sentiment polarities (MR)2, (ii) &

(iii) classifying documents that appear on Reuters

newswire into 8 and 52 categories (R8 and R52 re-

spectively)3, (iv) classifying medical abstracts into

23 cardiovascular diseases categories (Ohsumed)4.

Table 1 demonstrates the statistics of the datasets

as well as their supplemental information.

Baselines. We consider three types of models as

baselines: (i) traditional deep learning methods

including TextCNN (Kim, 2014) and TextRNN

(Liu et al., 2016), (ii) simple but efficient strate-

gies upon word features including fastText (Joulin

et al., 2017) and SWEM (Shen et al., 2018), and

(iii) graph-based methods for text classification in-

cluding TextGCN (Yao et al., 2019) and Huang

et al. (2019).

Experimental Set-up. For all the datasets, the

training set and the test set are given, and we ran-

domly split the training set into the ratio 9:1 for

actual training and validation respectively. The

hyperparameters were tuned according to the per-

formance on the validation set. Empirically, we

set the learning rate as 0.01 with Adam (Kingma

and Ba, 2015) optimiser and the dropout rate as

0.5. Some depended on the intrinsic attributes of

the dataset, for example, the word interaction step

and the sliding window size. We refer to them in

the parameter sensitivity subsection.

Regarding the word embeddings, we used the

pre-trained GloVe (Pennington et al., 2014)5 with

2http://www.cs.cornell.edu/people/pabo/movie-review-
data/

3http://disi.unitn.it/moschitti/corpora.htm
4https://www.cs.umb.edu/˜smimarog/textmining/datasets/
5http://nlp.stanford.edu/data/glove.6B.zip
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Table 2: Test accuracy (%) of various models on four datasets. The mean ± standard deviation of our model is

reported according to 10 times run. Note that some baseline results are from (Yao et al., 2019).

Model MR R8 R52 Ohsumed

CNN (Non-static) 77.75 ± 0.72 95.71 ± 0.52 87.59 ± 0.48 58.44 ± 1.06
RNN (Bi-LSTM) 77.68 ± 0.86 96.31 ± 0.33 90.54 ± 0.91 49.27 ± 1.07
fastText 75.14 ± 0.20 96.13 ± 0.21 92.81 ± 0.09 57.70 ± 0.49
SWEM 76.65 ± 0.63 95.32 ± 0.26 92.94 ± 0.24 63.12 ± 0.55
TextGCN 76.74 ± 0.20 97.07 ± 0.10 93.56 ± 0.18 68.36 ± 0.56
Huang et al. (2019) - 97.80 ± 0.20 94.60 ± 0.30 69.40 ± 0.60

TextING 79.82 ± 0.20 98.04 ± 0.25 95.48 ± 0.19 70.42 ± 0.39
TextING-M 80.19 ± 0.31 98.13 ± 0.12 95.68 ± 0.35 70.84 ± 0.52

d = 300 as the input features while the out-of-

vocabulary (OOV) words’ were randomly sampled

from a uniform distribution [-0.01, 0.01]. For a fair

comparison, the other baseline models shared the

same embeddings.

Results. Table 2 presents the performance of our

model as well as the baselines. We observe that

graph-based methods generally outperform other

types of models, suggesting that the graph model

benefits to the text processing. Further, TextING

ranks top on all tasks, suggesting that the individual

graph exceeds the global one. Particularly, the

result of TextING on MR is remarkably higher.

Because the short documents in MR lead to a low-

density graph in TextGCN, it restrains the label

message passing among document nodes, whereas

our individual graphs (documents) do not rely on

such label message passing mechanism. Another

reason is that there are approximately one third new

words in test as shown in Table 1, which implies

TextING is more friendly to unseen words. The

improvement on R8 is relatively subtle since R8 is

simple to fit and the baselines are rather satisfying.

The proportion of new words is also low on R8.

The multichannel variant also performs well on

all datasets. It implies the model can learn different

patterns through different channels.

Under Inductive Condition. To examine the

adaptability of TextING under inductive condition,

we reduce the amount of training data to 20 labelled

documents per class and compare it with TextGCN.

Word nodes absent in the training set are masked

for TextGCN to simulate the inductive condition.

In this scenario, most of the words in the test set

are unseen during training, which behaves like a

rigorous cold-start problem. The result of both

models on MR and Ohsumed are listed in Table 3.

An average gain of 21.06% shows that TextING is

much less impacted by the reduction of exposed

Table 3: Accuracy (%) of TextGCN and TextING on

MR and Ohsumed, where MR uses 40 labelled docu-

ments (0.5% of full training data) and Ohsumed uses

460 labelled documents (13.7% of full training data).

Model MR* Ohsumed*

TextGCN 53.15 47.24
TextING 64.43 57.11

# Words in Training 465 7,009
# New Words in Test 18,299 7,148

words. In addition, a tendency of test performance

and gain with different percentages of training data

on MR is illustrated as Figure 2. TextING shows a

consistent improvement when increasing number

of words become unseen.
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Figure 2: Test performance and gain with different per-

cent of training data ranging from 0.005 to 1 on MR.

The less data in training, the more new words in test.

Case Study. To understand what is of importance

that TextING learns for a document, we further

visualise the attention layer (i.e. the readout func-

tion), illustrated as Figure 3. The highlighted words

are proportional to the attention weights, and they

show a positive correlation to the label, which in-

terprets how TextING works in sentiment analysis.

Parameter Sensitivity. Figure 4 exhibits the per-

formance of TextING with a varying number of

the graph layer on MR and Ohsumed. The result

reveals that with the increment of the layer, a node

could receive more information from high-order
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(a) Positive reviews (b) Negative reviews

Figure 3: Attention visualisation of positive and nega-

tive movie reviews in MR.

neighbours and learn its representation more accu-

rately. Nevertheless, the situation reverses with a

continuous increment, where a node receives from

every node in the graph and becomes over-smooth.

Figure 5 illustrates the performance as well as the

graph density of TextING with a varying window

size on MR and Ohsumed. It presents a similar

trend as the interaction step’s when the number of

neighbours of a node grows.
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Figure 4: Accuracy with varying interaction steps.
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Figure 5: Accuracy with varying graph density.

4 Conclusion

We proposed a novel graph-based method for in-

ductive text classification, where each text owns

its structural graph and text level word interactions

can be learned. Experiments proved the effective-

ness of our approach in modelling local word-word

relations and word significances in the text.
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