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Abstract

Self-attention networks (SANs) with selective
mechanism has produced substantial improve-
ments in various NLP tasks by concentrat-
ing on a subset of input words. However,
the underlying reasons for their strong per-
formance have not been well explained. In
this paper, we bridge the gap by assessing the
strengths of selective SANs (SSANs), which
are implemented with a flexible and univer-
sal Gumbel-Softmax. Experimental results
on several representative NLP tasks, includ-
ing natural language inference, semantic role
labelling, and machine translation, show that
SSANs consistently outperform the standard
SANs. Through well-designed probing exper-
iments, we empirically validate that the im-
provement of SSANs can be attributed in part
to mitigating two commonly-cited weaknesses
of SANs: word order encoding and structure
modeling. Specifically, the selective mecha-
nism improves SANs by paying more attention
to content words that contribute to the meaning
of the sentence. The code and data are released
at https://github.com/xwgeng/SSAN.

1 Introduction

Self-attention networks (SANs) (Lin et al., 2017)
have achieved promising progress in various nat-
ural language processing (NLP) tasks, including
machine translation (Vaswani et al., 2017), natural
language inference (Shen et al., 2018b), semantic
role labeling (Tan et al., 2018; Strubell et al., 2018)
and language representation (Devlin et al., 2019).
The appealing strength of SANs derives from high
parallelism as well as flexibility in modeling depen-
dencies among all the input elements.

Recently, there has been a growing interest in
integrating selective mechanism into SANs, which
has produced substantial improvements in a variety

∗ Work done when interning at Tencent AI Lab.

of NLP tasks. For example, some researchers incor-
porated a hard constraint into SANs to select a sub-
set of input words, on top of which self-attention
is conducted (Shen et al., 2018c; Hou et al., 2019;
Yang et al., 2019b). Yang et al. (2018) and Guo et al.
(2019) proposed a soft mechanism by imposing a
learned Gaussian bias over the original attention
distribution to enhance its ability of capturing local
contexts. Shen et al. (2018c) incorporated rein-
forced sampling to dynamically choose a subset of
input elements, which are fed to SANs.

Although the general idea of selective mecha-
nism works well across NLP tasks, previous stud-
ies only validate their own implementations in a
few tasks, either on only classification tasks (Shen
et al., 2018c; Guo et al., 2019) or sequence gen-
eration tasks (Yang et al., 2018, 2019b). This
poses a potential threat to the conclusive effective-
ness of selective mechanism. In response to this
problem, we adopt a flexible and universal imple-
mentation of selective mechanism using Gumbel-
Softmax (Jang et al., 2017), called selective self-
attention networks (i.e., SSANs). Experimental re-
sults on several representative types of NLP tasks,
including natural language inference (i.e., classifi-
cation), semantic role labeling (i.e., sequence la-
beling), and machine translation (i.e., sequence
generation), demonstrate that SSANs consistently
outperform the standard SANs (§3).

Despite demonstrating the effectiveness of
SSANs, the underlying reasons for their strong
performance have not been well explained, which
poses great challenges for further refinement. In
this study, we bridge this gap by assessing the
strengths of selective mechanism on capturing es-
sentially linguistic properties via well-designed ex-
periments. The starting point for our approach is
recent findings: the standard SANs suffer from two
representation limitation on modeling word order
encoding (Shaw et al., 2018; Yang et al., 2019a)

https://github.com/xwgeng/SSAN
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and syntactic structure modeling (Tang et al., 2018;
Hao et al., 2019a), which are essential for natural
language understanding and generation. Experi-
mental results on targeted linguistic evaluation lead
to the following observations:

• SSANs can identify the improper word orders
in both local (§4.1) and global (§4.2) ranges
by learning to attend to the expected words.

• SSANs produce more syntactic representa-
tions (§5.1) with a better modeling of structure
by selective attention (§5.2).

• The selective mechanism improves SANs by
paying more attention to content words that
posses semantic content and contribute to the
meaning of the sentence (§5.3).

2 Methodology

2.1 Self-Attention Networks
SANs (Lin et al., 2017), as a variant of attention
model (Bahdanau et al., 2015; Luong et al., 2015),
compute attention weights between each pair of
elements in a single sequence. Given the input
layer H = {h1, · · · ,hN} ∈ RN×d, SANs first
transform the layer H into the queries Q ∈ RN×d,
the keys K ∈ RN×d, and the values V ∈ RN×d

with three separate weight matrices. The output
layer O is calculated as:

O = ATT(Q,K)V (1)

where the alternatives to ATT(·) can be additive
attention (Bahdanau et al., 2015) or dot-product
attention (Luong et al., 2015). Due to time and
space efficiency, we used the dot-product attention
in this study, which is computed as:

ATT(Q,K) = softmax(
QKT

√
d

) (2)

where
√
d is the scaling factor with d being the di-

mensionality of layer states (Vaswani et al., 2017).

2.2 Weaknesses of Self-Attention Networks
Despite SANs have demonstrated its effectiveness
on various NLP tasks, recent studies empirically
revealed that SANs suffer from two representa-
tion limitations of modeling word order encoding
(Yang et al., 2019a) and syntactic structure model-
ing (Tang et al., 2018). In this work, we concentrate
on these two commonly-cited issues.

Word Order Encoding SANs merely rely on
attention mechanism with neither recurrence nor
convolution structures. In order to incorporate se-
quence order information, Vaswani et al. (2017)
proposed to inject position information into the
input word embedding with additional position
embedding. Nevertheless, SANs are still weak
at learning word order information (Yang et al.,
2019a). Recent studies have shown that incorpo-
rating recurrence (Chen et al., 2018; Hao et al.,
2019b,c), convolution (Song et al., 2018; Yang
et al., 2019b), or advanced position encoding (Shaw
et al., 2018; Wang et al., 2019a) into vanilla SANs
can further boost their performance, confirming its
shortcomings at modeling sequence order.

Structure Modeling Due to lack of supervision
signals of learning structural information, recent
studies pay widespread attention on incorporat-
ing syntactic structure into SANs. For instance,
Strubell et al. (2018) utilized one attention head to
learn to attend to syntactic parents of each word.
Towards generating better sentence representations,
several researchers propose phrase-level SANs by
performing self-attention across words inside a n-
gram phrase or syntactic constituent (Wu et al.,
2018; Hao et al., 2019a; Wang et al., 2019b). These
studies show that the introduction of syntactic in-
formation can achieve further improvement over
SANs, demonstrating its potential weakness on
structure modeling.

2.3 Selective Self-Attention Networks
In this study, we implement the selective mecha-
nism on SANs by introducing an additional selec-
tor, namely SSANs, as illustrated in Figure 1. The
selector aims to select a subset of elements from
the input sequence, on top of which the standard
self-attention (Equation 1) is conducted. We imple-
ment the selector with Gumbel-Softmax, which has
proven effective for computer vision tasks (Shen
et al., 2018a; Yang et al., 2019c).

Selector Formally, we parameterize selection ac-
tion a ∈ {SELECT,DISCARD} for each input
element with an auxiliary policy network, where
SELECT indicates that the element is selected
for self-attention while DISCARD represents to
abandon the element. The output action sequence
A ∈ RN is calculated as:

π(A) = sigmoid(Es) (3)

Es = QsK
T
s (4)
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Bush held a talk with Sharon

1 1 0 0 0 1
✔ ✔ ✔✘ ✘ ✘

Selector

SANs

Figure 1: Illustration of SSANs that select a subset of
input elements with an additional selector network, on
top of which self-attention is conducted. In this exam-
ple, the word “talk” performs attention operation over
input sequence, where the words “Bush”, “held” and
“Sharon” are chosen as the truly-significant words.

where Qs ∈ RN×d and Ks ∈ RN×d are trans-
formed from the input layer H with distinct weight
matrices. We utilize sigmoid as activation function
to calculate the distribution for choosing the action
SELECT with the probability π or DISCARD
with the probability 1− π.

Gumbel Relaxation There are two challenges
for training the selector: (1) the ground-truth la-
bels indicating which words should be selected are
unavailable; and (2) the discrete variables in A
lead to a non-differentiable objective function. In
response to this problem, Jang et al. (2017) pro-
posed Gumbel-Softmax to give a continuous ap-
proximation to sampling from the categorical dis-
tribution. We adopt a similar approach by adding
Gumbel noise (Gumbel, 1954) in the sigmoid func-
tion, which we refer as Gumbel-Sigmoid. Since
sigmoid can be viewed as a special 2-class case
(Es and 0 in our case) of softmax, we derive the
Gumbel-Sigmoid as:

Gumbel-Sigmoid(Es)

= sigmoid((Es +G′ −G′′)/τ)

=
exp((Es +G′)/τ)

exp((Es +G′)/τ) + exp(G′′/τ)

(5)

where G′ and G′′ are two independent Gumbel
noises (Gumbel, 1954), and τ ∈ (0,∞) is a tem-
perature parameter. As τ diminishes to zero, a sam-
ple from the Gumbel-Sigmoid distribution becomes
cold and resembles the one-hot samples. At train-
ing time, we can use Gumbel-Sigmoid to obtain

differentiable sample A as Gumbel-Sigmoid(Es).
In inference, we choose the action with maximum
probability as the final output.

3 NLP Benchmarks

To demonstrate the robustness and effectiveness
of the SSANs, we evaluate it in three representa-
tive NLP tasks: language inference, semantic role
labeling and machine translation. We used them
as NLP benchmarks, which cover classification,
sequence labeling and sequence generation cate-
gories. Specifically, the performances of semantic
role labeling and language inference models heav-
ily rely on structural information (Strubell et al.,
2018), while machine translation models need to
learn word order and syntactic structure (Chen
et al., 2018; Hao et al., 2019c).

3.1 Experimental Setup

Natural Language Inference aims to classify
semantic relationship between a pair of sentences,
i.e., a premise and corresponding hypothesis. We
conduct experiments on the Stanford Natural Lan-
guage Inference (SNLI) dataset (Bowman et al.,
2015), which has three classes: Entailment, Con-
tradiction and Neutral.

We followed Shen et al. (2018b) to use a to-
ken2token SAN layer followed by a source2token
SAN layer to generate a compressed vector rep-
resentation of input sentence. The selector is in-
tegrated into the token2token SAN layer. Taking
the premise representation sp and the hypothesis
vector sh as input, their semantic relationship is rep-
resented by the concatenation of sp, sh, sp−sh and
sp · sh, which is passed to a classification module
to generate a categorical distribution over the three
classes. We initialize the word embeddings with
300D GloVe 6B pre-trained vectors (Pennington
et al., 2014), and the hidden size is set as 300.

Semantic Role Labeling is a shallow semantic
parsing task, which aims to recognize the predicate-
argument structure of a sentence, such as “who
did what to whom”, “when” and “where”. Typi-
cally, it assigns labels to words that indicate their
semantic role in the sentence. Our experiments
are conducted on CoNLL2012 dataset provided by
Pradhan et al. (2013).

We evaluated selective mechanism on top of
DEEPATT1 (Tan et al., 2018), which consists of

1https://github.com/XMUNLP/Tagger.

https://github.com/XMUNLP/Tagger
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stacked SAN layers and a following softmax layer.
Following their configurations, we set the number
of SAN layers as 10 with hidden size being 200, the
number of attention heads as 8 and the dimension
of word embeddings as 100. We use the GloVe em-
beddings (Pennington et al., 2014), which are pre-
trained on Wikipedia and Gigaword, to initialize
our networks, but they are not fixed during training.
We choose the better feed-forward networks (FFN)
variants of DEEPATT as our standard settings.

Machine Translation is a conditional genera-
tion task, which aims to translate a sentence from
a source language to its counterpart in a target lan-
guage. We carry out experiments on several widely-
used datasets, including small English⇒Japanese
(En⇒Ja) and English⇒Romanian (En⇒Ro) cor-
pora, as well as a relatively large English⇒German
(En⇒De) corpus. For En⇒De and En⇒Ro, we
respectively follow Li et al. (2018) and He et al.
(2018) to prepare WMT20142 and IWSLT20143

corpora. For En⇒Ja, we use KFTT4 dataset pro-
vided by Neubig (2011). All the data are tokenized
and then segmented into subword symbols using
BPE (Sennrich et al., 2016) with 32K operations.

We implemented the approach on top of ad-
vanced TRANSFORMER model (Vaswani et al.,
2017). On the large-scale En⇒De dataset, we fol-
lowed the base configurations to train the NMT
model, which consists of 6 stacked encoder and
decoder layers with the layer size being 512 and
the number of attention heads being 8. On the
small-scale En⇒Ro and En⇒Ja datasets, we fol-
lowed He et al. (2018) to decrease the layer size to
256 and the number of attention heads to 4.

For all the tasks, we applied the selector to the
first layer of encoder to better capture lexical and
syntactic information, which is empirically vali-
dated by our further analyses in Section 4.

3.2 Experimental Results

Table 1 shows the results on the three NLP bench-
marks. Clearly, introducing selective mechanism
significantly and consistently improves perfor-
mances in all tasks, demonstrating the universality
and effectiveness of the selective mechanism for
SANs. Concretely, SSANs relatively improve pre-
diction accuracy over SANs by +0.8% and +0.5%

2http://www.statmt.org/wmt14.
3https://wit3.fbk.eu/mt.php?release=

2014-01.
4http://www.phontron.com/kftt.

Task Size SANs SSANs 4
Natural Language Inference (Accuracy)

SNLI 550K 85.60 86.30 +0.8%
Semantic Role Labeling (F1 score)

CoNLL 312K 82.48 82.88 +0.5%
Machine Translation (BLEU)

En⇒Ro 0.18M 23.22 23.91 +3.0%
En⇒Ja 0.44M 31.56 32.17 +1.9%
En⇒De 4.56M 27.60 28.50 +3.3%

Table 1: Results on the NLP benchmarks. “Size” in-
dicates the number of training examples, and “4” de-
notes relative improvements over the vanilla SANs.

respectively on the NLI and SRL tasks, showing
their superiority on structure modeling. Shen et al.
(2018c) pointed that SSANs can better capture de-
pendencies among semantically important words,
and our results and further analyses (§5) provide
supports for this claim.

In the machine translation tasks, SSANs consis-
tently outperform SANs across language pairs. En-
couragingly, the improvement on translation perfor-
mance can be maintained on the large-scale training
data. The relative improvements on the En⇒Ro,
En⇒Ja, and En⇒De tasks are respectively +3.0%,
+1.9%, and +3.3%. We attribute the improvement
to the strengths of SSANs on word order encod-
ing and structure modeling, which are empirically
validated in Sections 4 and 5.

Shen et al. (2018c) implemented the selec-
tion mechanism with the REINFORCE algorithm.
Jang et al. (2017) revealed that compared with
Gumbel-Softmax (Maddison et al., 2014), REIN-
FORCE (Williams, 1992) suffers from high vari-
ance, which consequently leads to slow converge.
In our preliminary experiments, we also imple-
mented REINFORCE-based SSANs, but it under-
performs the Gumbel-Softmax approach on the
benchmarking En⇒De translation task (BLEU:
27.90 vs. 28.50, not shown in the paper). The con-
clusion is consistent with Jang et al. (2017), and we
thus use Gumbel-Softmax instead of REINFORCE
in this study.

4 Evaluation of Word Order Encoding

In this section, we investigate the ability of SSANs
of capturing both local and global word orders on
the bigram order shift detection (§4.1) and word
reordering detection (§4.2) tasks.

http://www.statmt.org/wmt14
https://wit3.fbk.eu/mt.php?release=2014-01
https://wit3.fbk.eu/mt.php?release=2014-01
http://www.phontron.com/kftt
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Model Layer Acc. 4
SANs – 52.23 –

SSANs

1 62.55 +19.8%
2 53.73 +2.9%
3 54.65 +4.6%
4 54.29 +3.9%
5 54.78 +4.9%
6 54.23 +3.8%

Table 2: Results on the local bigram order shift detec-
tion task when SSANs are applied into different layers.

4.1 Detection of Local Word Reordering

Task Description Conneau et al. (2018) pro-
pose a bigram order shift detection task to test
whether an encoder is sensitive to local word or-
ders. Given a monolingual corpus, a certain portion
of sentences are randomly extracted to construct
instances with illegal word order. Specially, given a
sentence X = {x1, . . . , xN}, two adjacent words
(i.e., xn, xn+1) are swapped to generate an illegal
instance X ′ as a substitute for X . Given processed
data which consists of intact and inverted sentences,
examined models are required to distinguish intact
sentences from inverted ones. To detect the shift
of bigram word order, the models should learn to
recognize normal and abnormal word orders.

The model consists of 6-layer SANs and 3-layer
MLP classifier. The layer size is 128, and the
filter size is 512. We trained the model on the
open-source dataset5 provided by Conneau et al.
(2018). The accuracy of SAN-based encoder is
higher than previously reported result on the same
task (Li et al., 2019) (52.23 vs. 49.30).

Detection Accuracy Table 2 lists the results on
the local bigram order shift detection task, in which
SSANs are applied to different encoder layers.
Clearly, all the SSANs variants consistently out-
perform SANs, demonstrating the superiority of
SSANs on capturing local order information. Ap-
plying the selective mechanism to the first layer
achieves the best performance, which improves the
prediction accuracy by +19.8% over SANs. The
performance gap between the SSANs variants is
very large (i.e., 19.8% vs. around 4%), which we
attribute to that the detection of local word reorder
depends more on lexical information embedded in
the bottom layer.

5https://github.com/facebookresearch/
SentEval/tree/master/data/probing.
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Figure 2: Attention weights over attended words with
different relative distance from the query word on the
local reordering task. SSANs pay more attention to the
adjacent words (distance=1) than SANs.

(a) SANs (b) SSANs

Figure 3: Visualization of attention weights from an ex-
ample on the local reordering detection task. We high-
light the attended word (Y-axis) with maximum atten-
tion weight for each query (X-axis) in red rectangles.

Attention Behaviors The objective of local re-
ordering task is to distinguish the swap of two ad-
jacent words, which requires the examined model
to pay more attention to the adjacent words. Start-
ing from this intuition, we investigate the attention
distribution over the attended words with different
relative distances from the query word, as illus-
trated in Figure 2. We find that both SANs and
SSANs focus on neighbouring words (e.g., dis-
tance < 3), and SSANs pays more attention to the
adjacent words (distance=1) than SANs (14.6% vs.
12.4%). The results confirm our hypothesis that the
selective mechanism helps to exploit more bigram
patterns to accomplish the task objective. Figure 3
shows an example, in which SSANs attend most to
the adjacent words except the inverted bigram “he
what”. In addition, the surrounding words “exactly”
and “wanted” also pay more attention to the excep-
tional word “he”. We believe such features help to
distinguish the abnormally local word order.

https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
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Model Layer Insert Original Both
SANs – 73.20 66.00 60.10

SSANs

1 81.52 72.19 66.77
2 80.14 70.01 63.97
3 79.82 69.69 63.93
4 79.08 70.22 63.67
5 80.19 69.84 64.12
6 80.27 69.50 63.73

Table 3: Performance on the global word reordering
detection (WRD) task.

4.2 Detection of Global Word Reordering
Task Description Yang et al. (2019a) propose a
word reordering detection task to investigate the
ability of SAN-based encoder to extract global
word order information. Given a sentence X =
{x1, . . . , xN}, a random word xi is popped and
inserted into another position j (i 6= j). The objec-
tive is to detect both the original position the word
is popped out (labeled as “O”), and the position the
word is inserted (labeled as “I”).

The model consists of 6-layer SANs and a output
layer. The layer size is 512, and the filter size is
2048. We trained the model on the open-source
dataset6 provided by Yang et al. (2019a).

Detection Accuracy Table 3 lists the results on
the global reordering detection task, in which all
the SSANs variants improve prediction accuracy.
Similarly, applying the selective mechanism to the
first layer achieves the best performance, which is
consistent with the results on the global word re-
ordering task (Table 2). However, the performance
gap between the SSANs variants is much lower that
that on the local reordering task (i.e., 4% vs. 15%).
One possible reason is that the detection of global
word reordering may also need syntactic and se-
mantic information, which are generally embedded
in the high-level layers (Peters et al., 2018).

Attention Behaviors The objective of the WRD
is to distinguish a global reordering (averaged dis-
tance is 8.7 words), which requires the examined
model to pay more attention to distant words. Fig-
ure 4 depicts the attention distribution according
to different relative distances. SSANs alleviate the
leaning-to-local nature of SANs and pay more at-
tention to distant words (e.g., distance> 5), which
better accomplish the task of detecting global re-
ordering. Figure 5 illustrates an example, in which

6https://github.com/baosongyang/WRD.
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Figure 4: Attention weights over attended words with
different relative distance from the query word on the
global WRD task. SSANs pay more attention to the
distant words (distance> 5) than SANs.

(a) SANs (b) SSANs

Figure 5: Visualization of attention weights from an ex-
ample on the global reordering detection task. We high-
light the attended word (Y-axis) with maximum atten-
tion weight for each query (X-axis) in red rectangles.

more queries in SSANs attend most to the inserted
word “the” than SANs. Particularly, SANs pay
more attention to the surrounding words (e.g., dis-
tance < 3), while the inserted word “the” only ac-
cepts subtle attention. In contrast, SSANs dispense
much attention over words centred on the inserted
position (i.e., “the”) regardless of distance, espe-
cially for the queries “current rules for now”. We
speculate that SSANs benefits from such features
on detecting the global word reordering .

5 Evaluation of Structure Modeling

In this section, we investigate whether SSANs bet-
ter capture structural information of sentences. To
this end, we first empirically evaluate the syntac-
tic structure knowledge embedded in the learned
representations (§5.1). Then we investigate the at-
tention behaviors by extracting constituency tree
from the attention distribution (§5.2).

https://github.com/baosongyang/WRD
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Class Ratio SANs SSANs 4
5 6.9% 68.66 75.22 +9.6%
6 14.3% 56.10 64.09 +14.2%
7 16.3% 46.63 55.05 +18.1%
8 17.9% 39.68 50.88 +28.2%
9 17.4% 38.33 50.97 +33.0%
10 15.3% 35.54 49.88 +40.3%
11 11.9% 48.86 56.39 +15.4%
All 100% 45.68 55.90 +22.4%

Table 4: F1 score on the tree depth task. “Ratio” de-
notes the portion each class takes.

Type Ratio SANs SSANs 4
Ques. 10% 95.90 97.06 +1.2%
Decl. 60% 88.48 91.34 +3.2%
Clau. 25% 72.78 78.32 +7.6%
Other 5% 50.67 61.13 +20.6%
All 100% 83.78 87.25 +4.1%

Table 5: F1 score on the top constituent task. We re-
port detailed results on 4 types of sentences: question
(“Ques.”), declarative (“Decl.”), a clause (“Clau.”),nd
other (“Other”) sentences.

5.1 Structures Embedded in Representations

Task Description We leverage two linguistic
probing tasks to assessing the syntactic information
embedded in a given representation. Both tasks are
cast as multi-label classification problem based on
the representation of a given sentence, which is
produced by an examined model:
Tree Depth (TreeDepth) task (Conneau et al.,
2018) checks whether the examined model can
group sentences by the depth of the longest path
from root to any leaf in their parsing tree. Tree
depth values range from 5 to 11, and the task is to
categorize sentences into the class corresponding
to their depth (7 classes).
Top Constituent (TopConst) task (Shi et al., 2016)
classifies the sentence in terms of the sequence of
top constituents immediately below the root node,
such as “ADVP NP VP .”. The top constituent
sequences fall into 20 categories: 19 classes for
the most frequent top constructions, and one for all
other constructions.

We trained the model on the open-source dataset
provided by Conneau et al. (2018), and used the
same model architecture in Section 4.1.

Probing Accuracy Table 4 lists the results on
the TreeDepth task. SSANs significantly outper-

Metric SANs SSANs 4
BP 21.09 22.07 +4.7%
BR 22.05 23.07 +4.6%
F1 21.56 22.56 +4.2%

Table 6: Evaluation on constituency trees generated
from the attention distribution.

form SANs by 22.4% on the overall performance.
Concretely, the performance of SANs dramatically
drops as the depth of the sentences increases.7 On
the other hand, SSANs is more robust to the depth
of the sentences, demonstrating the superiority of
SSANs on capturing complex structures.

Table 5 shows the results on the TopConst task.
We categorize the 20 classes into 4 categories based
on the types of sentences: question sentence (“*
SQ .”), declarative sentence (“* NP VP *” etc.),
clause sentence (“SBAR *” and “S *”), and others
(“OTHER”). Similarly, the performance of SANs
drops as the complexity of sentence patterns in-
creases (e.g., “Ques.”⇒ “Others”, 95.90⇒ 50.67).
SSANs significantly improves the prediction F1
score as the complexity of sentences increases,
which reconfirm the superiority of SSANs on cap-
turing complex structures.

5.2 Structures Modeled by Attention
Task Description We evaluate the ability of self-
attention on structure modeling by constructing
constituency trees from the attention distributions.
Under the assumption that attention distribution
within phrases is stronger than the other, Mareček
and Rosa (2018) define the score of a constituent
with span from position i to position j as the atten-
tion merely inside the span denoted as score(i, j).
Based on these scores, a binary constituency tree
is generated by recurrently splitting the sentence.
When splitting a phrase with span (i, j), the target
is to look for a position k maximizing the scores of
the two resulting phrases:

k = argmax
k′

(score(i, k
′
) · score(k

′
, j)) (6)

We utilized Stanford CoreNLP toolkit to an-
notate English sentences as golden constituency
trees. We used EVALB8 to evaluate the generated
constituency trees, including bracketing precision,
bracketing recall, and bracketing F1 score.

7The only exception is the class of “11”, which we attribute
to the extraction of feature of associating “very complex sen-
tence” with maximum depth “11”.

8http://nlp.cs.nyu.edu/evalb.

http://nlp.cs.nyu.edu/evalb
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(a) SANs (b) SSANs

Figure 6: Example of constituency trees generated from the attention distributions.

Type TreeDepth TopConst En⇒De Translation
SANs SSANs 4 SANs SSANs 4 SANs SSANs 4

C
on

te
nt

Noun 0.149 0.245 +64.4% 0.126 0.196 +55.6% 0.418 0.689 +64.8%
Verb 0.165 0.190 +15.2% 0.165 0.201 +21.8% 0.146 0.126 -13.7%
Adj. 0.040 0.069 +7.3% 0.033 0.054 +63.6% 0.077 0.074 -3.9%
Total 0.354 0.504 +42.4% 0.324 0.451 +39.2% 0.641 0.889 +38.7%

C
on

te
nt

-F
re

e Prep. 0.135 0.082 -39.3% 0.123 0.119 -3.3% 0.089 0.032 -64.0%
Dete. 0.180 0.122 -32.2% 0.103 0.073 -29.1% 0.070 0.010 -85.7%
Punc. 0.073 0.068 -6.8% 0.078 0.072 -7.7% 0.098 0.013 -86.7%
Others 0.258 0.224 -13.2% 0.373 0.286 -23.3% 0.102 0.057 -41.1%
Total 0.646 0.496 -23.3% 0.676 0.549 -18.8% 0.359 0.111 -69.1%

Table 7: Attention distributions on linguistic roles for the structure modeling probing tasks (§5.1, “TreeDepth” and
“TopConst”) and the constituency tree generation task (§5.2, “En⇒De Translation”).

Parsing Accuracy As shown in Table 6, SSANs
consistently outperform SANs by 4.6% in all the
metrics, demonstrating that SSANs better model
structures than SANs. Figure 6 shows an example
of generated trees. As seen, the phrases “he ran”
and “heart pumping” can be well composed for
both SANs and SSANS. However, SANs fail to
parse the phrase structure “legs churning”, which
is correctly parsed by SSANs.

5.3 Analysis on Linguistic Properties

In this section, we follow He et al. (2019) to ana-
lyze the linguistic characteristics of the attended
words in the above structure modeling tasks, as
listed in Table 7. Larger relative increase (“4”) de-
notes more attention assigned by SSANs. Clearly,
SSANs pay more attention to content words in all
cases, although there are considerable differences
among NLP tasks.

Content words possess semantic content and con-
tribute to the meaning of the sentence, which are
essential in various NLP tasks. For example, the
depth of constituency trees mainly relies on the
nouns, while the modifiers (e.g., adjective and

content-free words) generally make less contri-
butions. The top constituents mainly consist of
VP (95% examples) and NP (75% examples) cat-
egories, whose head words are verbs and nouns
respectively. In machine translation, content words
carry essential information, which should be fully
transformed to the target side for producing ade-
quate translations. Without explicit annotations,
SANs are able to learn the required linguistic fea-
tures, especially on the machine translation task
(e.g., dominating attention on nouns). SSANs fur-
ther enhance the strength by paying more attention
to the content words.

However, due to their high frequency with a lim-
ited vocabulary (e.g., 150 words9), content-free
words, or function words generally receive a lot of
attention, although they have very little substantive
meaning. This is more series in structure prob-
ing tasks (i.e., TreeDepth and TopConst), since the
scalar guiding signal (i.e., class labels) for a whole
sentence is non-informative as it does not neces-
sarily preserve the picture about the intermediate
syntactic structure of the sentence that is being

9https://en.wikipedia.org/wiki/Function word.
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generated for the prediction. On the other hand,
the problem on content-free words is alleviated on
machine translation tasks due to the informative
sequence signals. SSANs can further alleviate this
problem in all cases with a better modeling of struc-
tures.

6 Conclusion

In this work, we make an early attempt to assess
the strengths of the selective mechanism for SANs,
which is implemented with a flexible Gumbel-
Softmax approach. Through several well-designed
experiments, we empirically reveal that the selec-
tive mechanism migrates two major weaknesses of
SANs, namely word order encoding and structure
modeling, which are essential for natural language
understanding and generation. Future directions
include validating our findings on other SAN ar-
chitectures (e.g., BERT (Devlin et al., 2019)) and
more general attention models (Bahdanau et al.,
2015; Luong et al., 2015).
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