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Abstract

This paper presents an audio visual automatic
speech recognition (AV-ASR) system using a
Transformer-based architecture. We particu-
larly focus on the scene context provided by
the visual information, to ground the ASR. We
extract representations for audio features in
the encoder layers of the transformer and fuse
video features using an additional crossmodal
multihead attention layer. Additionally, we in-
corporate a multitask training criterion for mul-
tiresolution ASR, where we train the model to
generate both character and subword level tran-
scriptions. Experimental results on the How2
dataset, indicate that multiresolution training
can speed up convergence by around 50% and
relatively improves word error rate (WER) per-
formance by upto 18% over subword predic-
tion models. Further, incorporating visual in-
formation improves performance with relative
gains upto 3.76% over audio only models. Our
results are comparable to state-of-the-art Lis-
ten, Attend and Spell-based architectures.

1 Introduction

Automatic speech recognition is a fundamental
technology used on a daily basis by millions of
end-users and businesses. Applications include au-
tomated phone systems, video captioning and voice
assistants providing an intuitive and seemless in-
terface between users and end systems. Current
ASR approaches rely solely on utilizing audio in-
put to produce transcriptions. However, the wide
availability of cameras in smartphones and home
devices acts as motivation to build AV-ASR models
that rely on and benefit from multimodal input.

Traditional AV-ASR systems focus on tracking
the user’s facial movements and performing lipread-
ing to augment the auditory inputs (Potamianos
et al., 1997; Mroueh et al., 2015; Tao and Busso,
2018). The applicability of such models in real
world environments is limited, due to the need for

accurate audio-video alignment and careful camera
placement. Instead, we focus on using video to
contextualize the auditory input and perform multi-
modal grounding. For example, a basketball court
is more likely to include the term “lay-up” whereas
an office place is more likely include the term “lay-
off”. This approach can boost ASR performance,
while the requirements for video input are kept
relaxed (Caglayan et al., 2019; Hsu et al., 2019).
Additionally we consider a multiresolution loss
that takes into account transcriptions at the charac-
ter and subword level. We show that this scheme
regularizes our model showing significant improve-
ments over subword models. Multitask learning on
multiple levels has been previously explored in the
literature, mainly in the context of CTC (Sanabria
and Metze, 2018; Krishna et al., 2018; Ueno et al.,
2018). A mix of seq2seq and CTC approaches
combine word and character level (Kremer et al.,
2018; Ueno et al., 2018) or utilize explicit phonetic
information (Toshniwal et al., 2017; Sanabria and
Metze, 2018).

Modern ASR systems rely on end-to-end, align-
ment free neural architectures, i.e. CTC (Graves
et al., 2006) or sequence to sequence models
(Graves et al., 2013; Zhang et al., 2017). The use of
attention mechanisms significantly improve results
in (Chorowski et al., 2015) and (Chan et al., 2016).
Recently, the success of transformer architectures
for NLP tasks (Vaswani et al., 2017; Devlin et al.,
2019; Dai et al., 2019) has motivated speech re-
searchers to investigate their efficacy in end-to-end
ASR (Karita et al., 2019b). Zhou et. al., apply
an end-to-end transformer architecture for Man-
darin Chinese ASR (Zhou et al., 2018). Speech-
Transformer extends the scaled dot-product atten-
tion mechanism to 2D and achieves competitive
results for character level recognition (Dong et al.,
2018; Karita et al., 2019a). Pham et. al. introduce
the idea of stochastically deactivating layers dur-
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ing training to achieve a very deep model (Pham
et al., 2019). A major challenge of the transformer
architecture is the quadratic memory complexity
as a function of the input sequence length. Most
architectures employ consecutive feature stacking
(Pham et al., 2019) or CNN preprocessing (Dong
et al., 2018; Karita et al., 2019b) to downsample
input feature vectors. Mohamed et al. (2019) use
a VGG-based input network to downsample the
input sequence and achieve learnable positional
embeddings.

Multimodal grounding for ASR systems has
been explored in (Caglayan et al., 2019), where
a pretrained RNN-based ASR model is finetuned
with visual information through Visual Adaptive
Training. Sterpu et al. (2018) propose a seq2seq
model based on RNNs for lip-reading that performs
cross-modal alignment of face tracking and audio
features through an attention mechanism. Further-
more, Hsu et al. (2019) use a weakly supervised
semantic alignment criterion to improve ASR re-
sults when visual information is present. Multi-
modal extensions of the transformer architecture
have also been explored. These extensions mainly
fuse visual and language modalities in the fields
of Multimodal Translation and Image Captioning.
Most approaches focus on using the scaled dot-
product attention layer for multimodal fusion and
cross-modal mapping. Afouras et al. (2018) present
a transformer model for AV-ASR targeted for lip-
reading in the wild tasks. It uses a self attention
block to encode the audio and visual dimension
independently. A decoder individually attends to
the audio and video modalities producing character
transcriptions. In comparison our study uses the
video features to provide contextual information
to our ASR. Libovickỳ et al. (2018) employ two
encoder networks for the textual and visual modali-
ties and propose four methods of using the decoder
attention layer for multimodal fusion, with hier-
archical fusion yielding the best results. Yu et al.
(2019) propose an encoder variant to fuse deep,
multi-view image features and use them to produce
image captions in the decoder. Le et al. (2019) use
cascaded multimodal attention layers to fuse visual
information and dialog history for a multimodal
dialogue system. Tsai et al. (2019) present Mul-
timodal Transformers, relying on a deep pairwise
cascade of cross-modal attention mechanisms to
map between modalities for multimodal sentiment
analysis.

In relation to the previous studies, the main con-
tributions of this study are a) a fusion mechanism
for audio and visual modalities based on the cross-
modal scaled-dot product attention, b) an end to
end training procedure for multimodal grounding
in ASR and c) the use of a multiresolution training
scheme for character and subword level recognition
in a seq2seq setting without relying on explicit pho-
netic information. We evaluate our system in the
300 hour subset of the How2 database (Sanabria
et al., 2018), achieving relative gains up to 3.76%
with the addition of visual information. Further we
show relative gains of 18% with the multiresolution
loss. Our results are comparable to state-of-the-art
ASR performance on this database.

2 Proposed Method

Our transformer architecture uses two transformer
encoders to individually process acoustic and vi-
sual information (Fig. 1). Audio frames are fed to
the first set of encoder layers. We denote the space
of the encoded audio features as the audio space
A. Similarly, video features are projected to the
video space V using the second encoder network.
Features from audio and visual space are passed
through a tied feed forward layer that projects them
into a common space before passing them to their
individual encoder layers respectively. This tied
embedding layer is important for fusion as it helps
align the semantic audio and video spaces. We then
use a cross-modal attention layer that maps pro-
jected video representations to the projected audio
space (Section 2.1). The outputs of this layer are
added to the original audio features using a learn-
able parameter α to weigh their contributions. The
fused features are then fed into the decoder stack
followed by dense layers to generate character and
subword outputs. For multiresolution predictions
(Section 2.2), we use a common decoder for both
character and subword level predictions, followed
by a dense output layer for each prediction. This
reduces the model parameters and enhances the
regularization effect of multitask learning.

2.1 Cross-modal Attention

Scaled dot-product attention operates by construct-
ing three matrices, K, V and Q from sequences
of inputs. K and V may be considered keys and
values in a “soft” dictionary, whileQ is a query that
contextualizes the attention weights. The attention
mechanism is described in Eq. 1, where σ denotes
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Figure 1: Overall system architecture. A cross-modal scaled dot-product attention layer is used to project the visual
data into the audio feature space followed by an additive fusion.

the softmax operation.

Y = σ(KQT )V (1)

The case where K, V and Q are constructed
using the same input sequence consists a self-
attention mechanism. We are interested in cross-
modal attention, where K and V are constructed
using inputs from one modality M1, video in our
case (Fig. 1) and Q using another modality M2,
audio. This configuration as an effective way to
map features from M1 to M2 (Tsai et al., 2019).
Note, that such a configuration is used in the de-
coder layer of the original transformer architecture
(Vaswani et al., 2017) where targets are attended
based on the encoder outputs.

2.2 Multiresolution training
We propose the use of a multitask training scheme
where the model predicts both character and sub-
word level transcriptions. We jointly optimize the
model using the weighted sum of character and
subword level loss, as in Eq. 2:

L = γ ∗ Lsubword + (1− γ) ∗ Lcharacter (2)

where γ is a hyperparameter that controls the im-
portance of each task.

The intuition for this stems from the reasoning
that character and subword level models perform

different kinds of mistakes. For character predic-
tion, the model tends to predict words that sound
phonetically similar to the ground truths, but are
syntactically disjoint with the rest of the sentence.
Subword prediction, yields more syntactically cor-
rect results, but rare words tend to be broken down
to more common words that sound similar but are
semantically irrelevant. For example, character
level prediction may turn “old-fashioned” into “old-
fashioning”, while subword level turns the sentence
“ukuleles are different” to “you go release are differ-
ent”. When combining the losses, subword predic-
tion, which shows superior performance is kept as
the preliminary output, while the character predic-
tion is used as an auxiliary task for regularization.

3 Experimental Setup

We conduct our experiments on the How2 instruc-
tional videos database (Sanabria et al., 2018). The
dataset consists of 300 hours of instructional videos
from the YouTube platform. These videos depict
people showcasing particular skills and have high
variation in video/audio quality, camera angles and
duration. The transcriptions are mined from the
YouTube subtitles, which contain a mix of automat-
ically generated and human annotated transcrip-
tions. Audio is encoded using 40 mel-filterbank
coefficients and 3 pitch features with a frame size
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Input handling Recognition level WER

Filtering Character 33.0

Filtering Subword 29.7

Chunking Character 31.3

Chunking Subword 29.9

Stacking Character 28.3

Stacking Subword 26.1

Stacking MR 21.3

Table 1: Results for different methods of input filter-
ing for different prediction resolutions. MR stands for
multiresolution.

of 10 ms, yielding 43-dimensional feature vec-
tors. The final samples are segments of the original
videos, obtained using word-level alignment. We
follow the video representation of the original pa-
per (Caglayan et al., 2019), where a 3D ResNeXt-
101 architecture, pretrained on action recognition,
is used to extract 2048D features (Hara et al., 2018).
Video features are average pooled over the video
frames yielding a single feature vector. For our ex-
periments, we use the train, development and test
splits proposed by (Sanabria et al., 2018), which
have sizes 298.2 hours, 3.2 hours and 3.7 hours
respectively.

Our model consists of 6 encoder layers and 4
decoder layers. We use transformer dimension 480,
intermediate ReLU layer size 1920 and 0.2 dropout.
All attention layers have 6 attention heads. The
model is trained using Adam optimizer with learn-
ing rate 10−3 and 8000 warmup steps. We employ
label smoothing of 0.1. We weigh the multitask
loss with γ = 0.5 which gives the best perfor-
mance. A coarse search was performed for tuning
all hyperparameters over the development set. For
character-level prediction, we extract 41 graphemes
from the transcripts. For subword-level predic-
tion, we train a SentencePiece tokenizer (Kudo and
Richardson, 2018) over the train set transcriptions
using byte-pair encoding and vocabulary size 1200.
For decoding we use beam search with beam size 5
and length normalization parameter 0.7. We train
models for up to 200 epochs and the model achiev-
ing the best loss is selected using early stopping.
Any tuning of the original architecture is performed
on the development split. No language model or
ensemble decoding is used in the output.

4 Results and Discussion

One of the challenges using scaled dot-product at-
tention is the quadratic increase of layerwise mem-

ory complexity as a function of the input sequence
length. This issue is particularly prevalent in ASR
tasks, with large input sequences. We explore three
simple approaches to work around this limitation.
First, we filter out large input sequences (x > 15s),
leading to loss of 100 hours of data. Second we,
chunk the input samples to smaller sequences, us-
ing forced-alignment with a conventional DNN-
HMM model to find pauses to split the input and
the transcriptions. Finally, we stack 4 consecutive
input frames into a single feature vector, thus re-
ducing the input length by 4. Note that this only re-
shapes the input data as the dimension of our input
is increased by the stacking process 1. Results for
the downsampling techniques for character and sub-
word level predictions are summarized in Table 1.
We observe that subword-level model performs bet-
ter than the character level (upto 10% relative) in
all settings. This can be attributed to the smaller
number of decoding steps needed for the subword
model, where error accumulation is smaller. Fur-
thermore, we see that the naive filtering of large
sequences yields to underperforming systems due
to the large data loss. Additionally, we see that
frame stacking has superior performance to chunk-
ing. This is not surprising as splitting the input
samples to smaller chunks leads to the loss of con-
textual information which is preserved with frame
stacking. We evaluate the proposed multiresolution
training technique with the frame stacking tech-
nique, observing a significant improvement(18.3%)
in the final WER. We thus observe that predict-
ing finer resolutions as an auxiliary task can be
used as an effective means of regularization for
this sequence to sequence speech recognition task.
Furthermore, we have empirically observed that
when training in multiple resolutions, models can
converge around 50% faster than single resolution
models.

Next, we evaluate relative performance improve-
ment obtained from utilizing the visual features
(Table 2). We observe that incorporating visual
information improves ASR results. Our AV-ASR
system yields gains > 3% over audio only mod-
els for both subword and multiresolution predic-
tions. Finally, we observe that while the Listen,
Attend and Spell-based architecture of (Caglayan
et al., 2019) is slightly stronger than the transformer
model, the gains from adding visual information

1We tried to use the convolutional architecture from (Mo-
hamed et al., 2019), but it failed to converge in our experi-
ments, possibly due to lack of data
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⇑
Features Level WER over audio

Audio Subword 26.1 -
Audio + ResNeXt Subword 25.0 3.45%

Audio MR 21.3 -
Audio + ResNeXt MR 20.5 3.76%

Audio (B) Subword 19.2 -
Audio + ResNext (B) Subword 18.4 3.13%

Table 2: Comparison of audio only ASR models ver-
sus AVASR models with ResNeXt image features. MR
stands for multiresolution. (B) shows the results for the
LAS model (Caglayan et al., 2019)

Missing input handling WER

Zeros 23.1
Gaussian Noise σ=0.2 22.6

Gating visual input α=0 22.8

Table 3: Experimental evaluation of AV-ASR model for
handling missing visual input. Here σ denotes the stan-
dard deviation of the noise

is consistent across models. It is important to note
that our models are trained end-to-end with both
audio and video features.

An important question for real-world deploy-
ment of multimodal ASR systems is their perfor-
mance when the visual modality is absent. Ideally,
a robust system satisfactorily performs when the
user’s camera is off or in low light conditions. We
evaluate our AV-ASR systems in the absence of
visual data with the following experiments - a) re-
place visual feature vectors by zeros b) initialize
visual features with gaussian noise with standard
deviation 0.2 c) tweak the value α to 0 on infer-
ence, gating the visual features completely. Table 3
shows the results for the different experiments. Re-
sults indicate gating visual inputs works better than
zeroing them out. Adding a gaussian noise per-
forms best which again indicates the limited avail-
ability of data. Overall, in the absence of visual
information, without retraining, the AV-ASR model
relatively worsens by 6% compared to audio only
models.

5 Conclusions

This paper explores the applicability of the trans-
former architecture for multimodal grounding in
ASR. Our proposed framework uses a crossmodal
dot-product attention to map visual features to au-
dio feature space. Audio and visual features are
then combined with a scalar additive fusion and

used to predict character as well as subword tran-
scriptions. We employ a novel multitask loss that
combines the subword level and character losses.
Results on the How2 database show that a) mul-
tiresolution losses regularizes our model producing
significant gains in WER over character level and
subword level losses individually b) Adding visual
information results in relative gains of 3.76% over
audio model’s results validating our model.

Due to large memory requirements of the atten-
tion mechanism, we apply aggressive preprocess-
ing to shorten the input sequences, which may hurt
model performance. In the future, we plan to alle-
viate this by incorporating ideas from sparse trans-
former variants (Kitaev et al., 2020; Child et al.,
2019). Furthermore, we will experiment with more
ellaborate, attention-based fusion mechanisms. Fi-
nally, we will evaluate the multiresolution loss on
larger datasets to analyze it’s regularizing effects.
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